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ABSTRACT
Astroglial excitatory amino acid transporter 2
(EAAT2, GLT-1, SLC1A2) regulates the duration and
extent of neuronal excitation by removing glutamate
from the synaptic cleft. Human patients with altered
EAAT2 function exhibit epileptic seizures, suggest‐
ing an important role for astroglial glutamate trans‐
porters in balancing neuronal excitability. To study
the impact of EAAT2 function at the neural network
levels, we generated eaat2amutant zebrafish. We ob‐
served that eaat2a-/- mutant zebrafish larvae display
recurrent spontaneous and light-induced seizures in
neurons and astroglia, which coincide with an abrupt
increase in extracellular glutamate levels. In stark
contrast to this hyperexcitability, basal brain activity
was surprisingly reduced in eaat2a-/- mutant animals,
which manifested in decreased locomotion, neuronal
and astroglial calcium signals. Our results reveal an
unexpected key role of the astroglial EAAT2a in bal‐
ancing brain excitability, affecting both neuronal and
astroglial network activity.

INTRODUCTION
Astroglia are the most numerous glial cells within the
central nervous system (CNS). They do not only pro‐
vide trophic support to neurons but also play an im‐
portant role in synapse formation and neurotransmis‐
sion1–4. By taking up neurotransmitters from the
synaptic cleft, these glial cells are crucial for regulat‐
ing synaptic transmission. The excitatory amino acid
transporter 2 (EAAT2) expressed on astroglia plays a
key role in synaptic regulation by removing the ma‐
jority of extracellular glutamate, which is the main
excitatory neurotransmitter in the CNS5,6. Impaired
glutamate clearance by this transporter has been
shown to lead to synaptic accumulation of the neuro‐
transmitter, resulting in an overactive CNS and exci‐
totoxicity7,8. This in turn may cause epilepsy, a group
of brain disorders characterized by recurrent
seizures9. Indeed, EAAT2 malfunction has been asso‐
ciated with epileptic seizures in mice and humans10–15.
However, the mechanistic role of this astroglial gluta‐

mate transporter in developing epileptic seizures is
not fully understood.
Previous studies have shown that astroglia-neuron in‐
teractions may play an essential role in seizure initia‐
tion and propagation16–18. On one hand, the functional
coupling of astroglia through gap junctions is crucial
to avert excessive neuronal activation, accomplished
by rapid re-distribution of ions and neurotransmitters
across the connected astroglial network18. On the
other hand, this functional syncytium might also, un‐
der special circumstances, promote epileptogenesis19.
The intercellular spread of calcium waves among as‐
troglia can affect neuronal synchronization and there‐
fore influence the propagation of seizure activity16. In
addition, disruptions of the glutamate-glutamine cy‐
cle, in which EAAT2 is essential, are linked with tem‐
poral lobe epilepsy in human patients and rodents20.
Accordingly, it is essential to understand how loss of
EAAT2 affects neurons and astroglia.
In the present study, we generated a zebrafish (Danio
rerio) mutant lacking EAAT2a, the zebrafish ortho‐
logue matching the mammalian EAAT2 in biophysi‐
cal characteristics and glial expression pattern21,22. We
show that loss of this astroglial transporter in larval
zebrafish leads to increased brain excitability and re‐
current spontaneous seizures, mimicking the human
phenotype of patients with de novo mutations in
EAAT211,13. These seizures are manifested in ze‐
brafish larvae by epileptic locomotor bursts and peri‐
ods of excessive brain activity, accompanied by in‐
creased extracellular glutamate concentrations.
Counterintuitively, apart from these periods of hyper‐
excitation, neuronal and astroglial networks of
eaat2a-/- mutants are hypoactive. This coincides with
a decreased overall locomotion compared to their un‐
affected siblings, and mirrors slow background brain
activity and reduced muscle tone present in human
patients11,13. Altogether, our in vivomodel of impaired
EAAT2a function in astroglia results in a depressed
yet hyperexcitable brain state, and mimics a form of
developmental and epileptic encephalopathy (DEE).
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Figure 1: EAAT2a is mainly expressed in astroglial cells. a, b mRNA of eaat2a is expressed along the periventricular zones
(TVe, TeVe, RVe), resembling astroglial localization patterns in larval zebrafish as visible in lateral (a) and dorsal (b) view. c, d
Cross sections of b indicated by dashed lines. e, f eaat2a mRNA expression along periventricular zones (TVe, PGZ) is maintained
in adult zebrafish anterior forebrain (e) and midbrain (f). g-i Protein expression of EAAT2a (magenta), glutamine synthetase (GS,
cyan) and synaptic vesicle 2/acetylated tubulin (SV2/acT, yellow) on cross sections of larval anterior forebrain indicated in b. j-l
Zoom-ins of the telencephalic periventricular region illustrated in h (white box).m-o Overlay of EAAT2a, GS and SV2/acT shows
a greater co-localization of EAAT2a with astroglial (n) than neuronal (o) cells. CeP = cerebellar plate, Hi = intermediate hypothal‐
amus, Hd = dorsal zone of periventricular hypothalamus, LVe = lateral ventricular recess of hypothalamus, OB = olfactory bulb
nuclei, PGZ = periventricular gray zone of the optic tectum, TVe = periventricular zone of the telencephalon, TeO = optic tectum,
TeVe = periventricular zone of the tectum, RVe = periventricular zone of the rhombencephalon. Scale bars are 200 µm in a, b, e &
f; 50 µm in c, d & g; 10 µm in j.
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RESULTS
EAAT2a is predominantly expressed in astroglial
cells
To investigate the expression pattern of eaat2a tran‐
scripts in the larval zebrafish, we first performed in
situ hybridization staining. Our results showed that
eaat2a transcripts are expressed in all parts of the
CNS (Fig. 1a). Specifically, we observed eaat2a tran‐
scripts along the spinal cord (Fig. 1a), and the
periventricular zones of the forebrain, the midbrain,
and the hindbrain (Fig. 1b-d). In adult fish, the high
expression in the forebrain (Fig. 1e) and tectal
periventricular regions was maintained (Fig. 1f).
These results suggest that the spatial distribution of
eaat2a transcripts overlaps with the location of as‐
troglial cells of the zebrafish brain, the functional ho‐
mologues of mammalian astrocytes23,24. To further
confirm the precise expression of eaat2a, we per‐
formed triple staining using antibodies against glia
and neuron specific proteins together with our custom
made paralogue-specific polyclonal antibody against
EAAT2a22 (Fig. 1g-o). We found widespread co-lo‐
calization of EAAT2a staining with the glial glu‐
tamine synthetase (GS) (Fig. 1n), while neuronal cell
labeling with SV2 (presynapse) and acetylated tubu‐
lin (axons) only showed weak EAAT2a signals (Fig.

1o). These results demonstrate that EAAT2a is pre‐
dominantly expressed in astroglial cells across the
whole zebrafish brain.

Loss of EAAT2a leads to morphological defects
and larval lethality
To elucidate the function of EAAT2a in brain devel‐
opment and function, we generated CRISPR/Cas9-
mediated knockout (KO) mutants targeting exon 3
preceding the transmembrane domains involved in
transport function25. The selected mutant allele har‐
bors a -13 base pair deletion, leading to premature
STOP codons within the third transmembrane do‐
main (Supplementary Fig. 1). The predicted trun‐
cated protein fragment is devoid of functional trans‐
port domains, evidenced by the missing EAAT2a an‐
tibody signal in eaat2a-/- mutants (Supplementary
Fig. 1 and 2). We observed that eaat2a-/- zebrafish lar‐
vae displayed an aberrant morphology. They failed to
inflate their swim bladder, developed pericardial ede‐
mas and were smaller than their siblings (Fig. 2a).
Body size measurements confirmed that at 3, 4, 5, 6,
and 7 days post fertilization (dpf), eaat2a-/- zebrafish
were significantly smaller than control animals (Fig.
2b), with reduced brain size at 5 dpf (Supplementary
Fig. 3). Furthermore, eaat2a-/- mutants were not vi‐
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Figure 2: Knockout of eaat2a leads to increased responses to light-stimuli, altered appearance and reduced survival. a Lat‐
eral view of 5 dpf eaat2a mutants. eaat2a-/- larvae (bottom) are slightly curved, do not have an inflated swim bladder and develop
pericardial edema (arrowheads). eaat2a+/+ (top) and eaat2a+/- (middle) larvae are indistinguishable. Scale bar is 500 µm. b Spinal
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cord length analysis of eaat2a mutants at consecutive days reveals a smaller body size in eaat2a-/- (magenta) compared to their
eaat2a+/- (yellow) and eaat2a+/+ (cyan) siblings. c Survival curve of eaat2a mutants. d Whole-brain neuronal activity (elavl3:G‐
CaMP6s signal) of three representative eaat2a mutant larvae (eaat2a+/+ in cyan, eaat2a+/- in yellow and eaat2a-/- in magenta) ex‐
posed to five 10-second light stimuli with 5-minute interstimulus interval. e Changes in fluorescence over time (ΔF/F) per larvae
aligned at the onset of light stimuli. f ΔF/F trace of an example eaat2a-/- larvae with diverse responses to light-stimuli. g Mean
responses to light stimuli in 5 dpf eaat2a+/+ and eaat2a+/- (cyan), and eaat2a-/- (magenta) zebrafish larvae. Shaded area represents
SEM. Significance level: ***p = < 0.001, Kruskal Wallis test with Wilcoxon rank-sum post hoc test (b) or Wilcoxon rank-sum test
(g).

able past larval stage and started to die from 6 dpf on
(Fig. 2c). Only 10% of eaat2a-/- larvae were still alive
at 9 dpf, and remaining survivors were heavily im‐
paired, displaying large edemas and reduced locomo‐
tion. In contrast, eaat2a+/- heterozygotes were indis‐
tinguishable from eaat2a+/+ siblings by visual inspec‐
tion.

eaat2a-/-mutant zebrafish exhibit hyperexcitability
in response to light stimulation
EAAT2 is an essential part of the glutamate clearance
mechanism in the brain5,22. Hence, the absence of the
glutamate transporter may lead to changes in neu‐
ronal excitability in eaat2a-/- mutant zebrafish. To test
this hypothesis, we compared brain-wide neuronal re‐
sponses to transient light flashes in eaat2a-/- zebrafish
and control siblings expressing the transgenic cal‐
cium indicator GCaMP6s under the neuronal elavl3
promoter16. We observed that eaat2a-/- mutant larvae
displayed highly amplified light responses compared
to their eaat2a+/- and eaat2a+/+ siblings (Fig. 2d and
e), with varying response amplitudes across and
within eaat2a-/- larvae (Fig. 2f). Strikingly, average
neuronal responses in eaat2a-/- larvae were not only
excessively enlarged, but also very long lasting (Fig.
2g). Occasionally, we also observed spontaneous
neuronal activity bursts of similar magnitude (Fig.
2e), potentially resembling spontaneous epileptic
seizures9,26–28. Taken together, our results show that
eaat2a-/- zebrafish brains exhibit increased excitabil‐
ity in responses to light stimulation and are possibly
prone to epileptic seizures.

eaat2a-/- mutant zebrafish show spontaneous
seizures coinciding with a surge of extracellular
glutamate
Our neuronal activity recordings suggested that
eaat2a-/- mutant zebrafish not only exhibit strong
light-induced responses but also display occasional
neuronal activity bursts resembling epileptic
seizures. To further characterize this spontaneous
seizure-like phenotype in eaat2a-/- mutants, we exam‐
ined swimming behavior in 5 dpf larvae by using au‐
tomated behavioral tracking. We observed that
eaat2a+/+ and eaat2a+/- zebrafish swim with periods
of stop, slow and fast swims as described previously
in healthy zebrafish29,30. In contrast, eaat2a-/- mutant
animals displayed aberrant locomotor patterns (Fig.
3a-f). eaat2a-/- larvae swam substantially less than

their eaat2a+/- and eaat2a+/+ siblings, mainly lying
motionless on the bottom of the dish (Fig 3a-c). Strik‐
ingly, when eaat2a-/- larvae swam, they showed con‐
vulsive twitching and swim bursts occasionally fol‐
lowed by swirling around their body axis and finally
immobilized sinking to the bottom of the dish (Sup‐
plementary Movie 1). Compared to their siblings,
eaat2a-/- zebrafish showed more swim bursts of either
long distance (Fig. 3d and e) or high velocity during
a prolonged period (Fig. 3f, Supplementary Fig. 4).
This swirling and bursting behavior highly resembles
established models of epilepsy and is interpreted as
seizure-like behavior in zebrafish27,31. All these find‐
ings support the idea that eaat2a-/- larvae exhibit
spontaneous seizures.
To verify the presence of seizure-activity in eaat2a-/-

mutant brains, we measured local field potentials
(LFPs) by inserting a micro-electrode in the anterior
forebrain (telencephalon)16 of 5 dpf animals. As ex‐
pected, the measured electrical activity in eaat2a-/-

larvae revealed spontaneous episodes of high voltage
LFP deflections (Fig. 3g), resembling seizure-like
LFP activity in other zebrafish models16,32,33. These
spontaneous seizures were not detected in eaat2a+/- or
eaat2a+/+ siblings (Fig. 3g and h). We hypothesized
that spontaneous seizures in eaat2a-/- mutant larvae
are associated with an excess of extracellular gluta‐
mate that cannot be removed due to impaired gluta‐
mate clearance34. Hence, we expected to see large
glutamate surges during spontaneous seizures. To test
this hypothesis, we combined LFP measurements
with simultaneous fluorescence recordings of extra‐
cellular glutamate near astroglial terminals using Tg
(gfap:iGluSnFR) animals35. In eaat2a-/- larvae, we ob‐
served massive increases of iGluSnFR signal reflect‐
ing glutamate levels, coinciding with spontaneous
LFP-seizures (Fig. 3i). No such large glutamate
surges were observed in eaat2a+/- and eaat2a+/+ con‐
trol siblings. Taken together, our results show that
loss of EAAT2a leads to spontaneous seizures that
coincide with a massive surge in extracellular gluta‐
mate levels.

Neuronal hyperactivity during seizures contrasts
with basal hypoactivity in eaat2a-/- larvae
To characterize EAAT2a-related seizures further, we
investigated the neuronal activity in 5 dpf
Tg(elavl3:GCaMP5G) zebrafish. Our recordings re‐
vealed recurrent periods of excessive neuronal activ‐
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Figure 3: eaat2a-/- mutants show epileptic behavior with excessive extracellular glutamate during seizure-like events. a, b
Representative traces for swim location (a) and distances (b) over 30 minutes in 5 dpf eaat2a-/- (magenta), eaat2a+/- (yellow) and
eaat2a+/+ (cyan) larvae. c Ratio of time period with active swimming, per genotype. d Distance moved per five-second integral
during 30-minute recordings, per genotype. Black dotted line represents threshold > 40 mm/5 s. e Proportion of fish showing one
or more bursts bigger than 40 mm during five-second integrals. f Velocity of all bursts lasting longer than 3.5 seconds. g Represen‐
tative telencephalic local field potential (LFP) recordings. h Number of spontaneous global seizures detected during two-hour LFP
recordings. iAverage change in iGluSnFR fluorescence (ΔF/F, green) and simultaneous local field potential (LFP, black) recordings
during epileptic activity in 5 dpf eaat2a-/- mutants. n = 8 fish. Signals are aligned at the onset of global seizures. Significance levels:
***p = < 0.001, ns = not significant (p > 0.05), Kruskal-Wallis rank-sum test with Wilcoxon rank-sum posthoc test (c) or two-sam‐
ple Kolmogorov-Smirnov test (f).

ity spreading across the entire brain of eaat2a-/- mu‐
tants (Fig. 4a, Supplementary Movie 2 and 3). During
these spontaneous seizures, neuronal calcium signals
across the brain reached levels greater than 100% of
relative change in fluorescence (ΔF/F) (Fig. 4b bot‐
tom). These globally high levels of neuronal seizure-
activity were maintained for more than a minute be‐
fore decreasing to a short hypoactive period, and fi‐
nally returning to inter-ictal (between seizures) levels
(Fig. 4b bottom and 4c). These results confirm that
eaat2a-/- mutants exhibit spontaneous global seizures

that are not present in eaat2a+/- and eaat2a+/+ control
siblings (Fig. 4d). In addition to these global seizures,
we found that some larvae additionally or exclusively
showed localized seizures not reaching the anterior
forebrain and lasting for less than a minute (Supple‐
mentary Fig. 5).
Next, we asked how different brain regions are re‐
cruited during seizure propagation in eaat2a-/- mu‐
tants. As represented in Figure 4e, excessive increase
in intracellular calcium levels was initiated in the
midbrain (8 of 12 fish) or hindbrain (4 of 12 fish). To
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Figure 4: eaat2a-/-mutants exhibit spontaneous global seizures and reduced basal neuronal activity. a Time lapse of neuronal
calcium signals during a seizure in eaat2a-/- larva in Tg(elavl3:GCaMP5G) background (dorsal view). Scale bar is 100 µm. b Rep‐
resentative calcium signals (elavl3:GCaMP5G) recorded across the brain of eaat2a+/+ (cyan, top), eaat2a+/- (yellow, middle) and
eaat2a-/- (magenta, bottom) larvae. c Duration of spontaneous global seizures present in eaat2a-/- mutants (median 2 min 7 sec (std
± 52 sec)). d Number of spontaneous global seizures recorded by calcium imaging during 60 minutes. e Neuronal activity
(elavl3:GCaMP5G) of the three main brain regions of a representative global seizure. The half maxima (hm) represents the time
point of max(ΔF/F)/2. f Relative time for ΔF/F half maxima represents propagation of global seizures across brain parts over time.
Colors indicate region of seizure origin: light grey for midbrain, black for hindbrain. n = 12 eaat2a-/- larvae. g Calcium signals
(elavl3:GCaMP6s) one minute before and immediately after light stimuli. Brackets indicate global (curly brackets) and local
(square brackets) reflex seizures. h Averaged calcium signals for spontaneous (magenta) and reflex (light pink) seizures during
light-stimuli recordings. Shaded area represents SEM. iMagnification of b shows calcium signals (elavl3:GCaMP5G) during two-
minute basal activity period used for standard deviation calculations in j. j Neuronal basal activity calculated by the standard devi‐
ation of ΔF/F over two minutes in eaat2a-/- mutants (mean 0.63, n = 23) compared to their eaat2a+/- (mean 1.54, n = 20, p = 2.7e-07)
and eaat2a+/+ (mean 1.44, n = 9, p = 1e-04) siblings. Significance levels: ***p = < 0.001, ns = not significant (p => 0.05), Kruskal
Wallis test with Wilcoxon rank-sum posthoc test (i).

quantify this further, we compared half maxima of
neuronal calcium signals (ΔF/F) between anterior
forebrain, midbrain and hindbrain during global
seizures lasting for more than one minute. We ob‐
served that neurons of the anterior forebrain were re‐
cruited only seconds after seizure initiation (mean 13
sec, SD ± 5.67 sec), regardless of the seizure origin
(Fig. 4f). Beyond these spontaneous seizures, we also
observed that the large amplitude light responses
shown earlier in Fig. 2e were very similar to sponta‐

neous global (Fig. 4g, curly brackets) and localized
(Fig. 4g, square brackets) seizures with comparable
amplitudes (Fig. 4h). Since epileptic seizures that are
objectively and consistently evoked by a specific ex‐
ternal stimulus are referred to as reflex seizures, we
termed these excessive responses to light in eaat2a-/-

mutants as light-induced reflex seizures36.
Intriguingly, during inter-ictal periods, eaat2a-/- mu‐
tants exhibited reduced basal neuronal activity com‐
pared to eaat2a+/- and eaat2a+/+ siblings (Fig. 4i). We

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.435577doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435577


77

observed smaller fluctuations (standard deviation) of
neuronal calcium signals in eaat2a-/- larvae compared
to their siblings (Fig. 4j). This reduced basal activity
might explain hypoactive locomotor behaviors of
eaat2a-/- mutants (Fig. 3c). Taken together, our results
indicate that loss of EAAT2a not only leads to spon‐
taneous seizures, but also reduces basal neuronal ac‐
tivity during inter-ictal periods. Moreover, in all our
experiments, eaat2a+/- mutants were indistinguish‐
able from their eaat2a+/+ siblings, suggesting that
eaat2a+/- mutation does not lead to haploinsufficiency
or any seizure phenotype.

Astroglial network in eaat2a-/-mutants is silent yet
hyperexcitable
Given the glial expression of EAAT2a, one potential
cause for the reduced neuronal basal activity in
eaat2a-/- mutants may be the impaired astroglial glu‐
tamate recycling, which reduces available glutamate.
To investigate whether astroglial function is impaired
in eaat2a-/- mutants, we recorded glial calcium signals
in 5 dpf larvae expressing GCaMP6s under the glial
promoter gfap (Tg(gfap:Gal4)nw7;Tg(UAS:GCaM‐
P6s))16. To exclusively analyze astroglial activity, we
focused on the region along the ventricular zones in
the forebrain and midbrain (Fig. 5a)16. In line with our
previous results, we observed spontaneous events of
excessive astroglial activity (ΔF/F greater than 100
%) spreading across the entire brain of eaat2a-/- mu‐
tants (Fig. 5b), often finally recruiting the anterior
forebrain (Fig. 5c, Supplementary Movie 4 and 5).
These events likely represent astroglial activity dur‐
ing seizures16. Such spontaneous global events were
prominent at least once per hour in eaat2a-/- mutants
and absent in eaat2a+/- and eaat2a+/+ control siblings
(Fig. 5d). To further characterize astroglial activity,
we quantified the ratio of active glial cells and the
amplitudes per calcium burst in eaat2a-/- mutant lar‐
vae during inter-ictal, pre-ictal (preceding seizure on‐
set) and ictal periods. We observed a drastic increase
in the ratio of active astroglia and amplitude of cal‐
cium bursts at the transition from pre-ictal to ictal pe‐
riod, while inter-ictal and pre-ictal periods appeared
to be similar (Fig. 5e and f). Next, we tested whether
these large bursts of astroglial calcium signals are
also present in light-evoked seizures. Our results re‐
vealed that the ratio and the amplitude of astroglial
calcium signals were significantly larger in eaat2a-/-

mutants, when compared to control siblings (Fig. 5g
and h). Furthermore, some of these light-evoked
seizures propagated globally, recruiting the entire
brain including the anterior forebrain (Fig. 5h, arrow‐
heads). During inter-ictal periods, a smaller ratio of
astroglial cells were active (Fig. 5i), and these active
cells had reduced overall activity (Fig. 5j) in eaat2a-/-

mutants compared to their siblings’. However, we did
not observe a significant difference in the amplitude
or the duration of individual astroglial calcium bursts
between eaat2a-/- mutants and control siblings during

inter-ictal/basal periods (Fig. 5k and l). Taken to‐
gether, our results revealed that astroglial cells in
eaat2a-/- mutants are less active during inter-ictal
states, and generate excessive calcium bursts only
during seizures.
The depressed yet hyperexcitable brain state of
eaat2a-/- mutants implies pathological changes in the
brain. To test the impact of eaat2a loss on the gene
expression of key regulators of neuronal and as‐
troglial activity, we analyzed whole-brain transcript
levels using quantitative reverse transcription PCR
(RT-qPCR). Firstly, we tested for transcriptional
adaptation of other eaat glutamate transporters. Ex‐
pression levels of eaat2b, the eaat2a paralogue, did
not differ in eaat2a-/- animals (Fig. 5m). In contrast,
another astroglial transporter eaat1b was upregulated
in eaat2a-/- mutants compared to eaat2a+/+ siblings
(Fig. 5m), suggesting a compensatory effect to im‐
prove buffering of excess synaptic glutamate in
eaat2a-/- mutants (Fig. 3i). Secondly, we assessed
whether expression of genes associated with in‐
hibitory neurotransmission of γ-aminobutyric acid
(GABA) is altered. We found that neither the expres‐
sion of the GABAA receptor subunit gabra1 nor the
presynaptic enzyme gad1b differed considerably be‐
tween eaat2a-/- and eaat2a+/+ brains (Fig. 5m). Fi‐
nally, we investigated whether metabotropic gluta‐
mate receptors (mGluRs) on astroglia are affected.
These receptors can influence intracellular calcium
transients in astroglia following synaptic glutamate
release3. In eaat2a-/- larval brains, we observed no
difference in expression levels of glial expressed
mglur3 or brain abundant37 mglur5b. This suggests
that reduced inter-ictal activity in eaat2a-/- mutant as‐
troglia is not due to impaired mGluR-induced cal‐
cium signaling. Taken together, the altered gene ex‐
pression levels of eaat1b in eaat2a-/- mutants suggest
a compensatory attempt to adjust increased brain ex‐
citability by buffering glutamate.

DISCUSSION
In sum, we show that the astroglial glutamate trans‐
porter EAAT2a is required to balance brain excitabil‐
ity by regulating extracellular glutamate levels. Our
results indicate that impaired EAAT2a function re‐
sults in epileptic seizures but also reduced basal brain
activity (Fig. 6).
Epileptic seizures are due to an imbalance between
excitatory and inhibitory synaptic transmission. In
this study, we show that a genetic perturbation of the
excitatory glutamate system leads to profound func‐
tional alterations in neuronal and astroglial networks,
leading to spontaneous and light-induced seizures.
Our novel eaat2a-/- mutant zebrafish epilepsy model
has several important characteristics. Firstly, ho‐
mozygous mutations of the astroglial eaat2a in ze‐
brafish resemble a form of DEE present in human
epilepsy patients with de novo mutations in the or‐
thologous gene (EAAT2 = SLC1A2)11,13,14. DEE is
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igure 5: eaat2a-/- mutants display large astroglial calcium bursts during seizures despite reduced basal glial activity. a Two-
photon microscopy image of the forebrain and midbrain in a 5 dpf Tg(gfap:Gal4;UAS:GCaMP6s) zebrafish larva expressing
GCaMP6s in GFAP positive glial cells. Individual astroglia along the ventricular regions are color-coded according to three differ‐
ent areas: forebrain (light grey), forebrain/midbrain boundary region (dark grey), and midbrain (white). Scale bar is 100 µm. b
Calcium signals (ΔF/F) of individual glial cells over time in representative eaat2a+/- (top) and eaat2a-/- (bottom) larvae. Warm color
indicates high activity as seen during the seizure in the eaat2a-/- larva. c Four-minute periods of calcium signals in b. d Number of
global seizures detected in eaat2a-/- mutants (magenta) compared to their eaat2a+/- and eaat2a+/+ siblings (cyan). e-f Percentage of
active glial cells (e) and average event amplitudes of active cells (f) of individual eaat2a-/- mutants during two-minute basal, preictal
and ictal (spontaneous seizures) periods (e: pb-p= 1, pb-i= 0.0078, pp-i= 0.0078; f: pb-p= 0.95, pb-i= 0.0078, pp-i= 0.0078). Cyan dots
show average basal values of eaat2a+/+ and eaat2a+/- siblings. g-h Evaluation of one-minute periods immediately before and after
10-second light stimuli in eaat2a+/+/eaat2a+/- (cyan) and eaat2a-/- (magenta) animals of the proportion of active cells (g, p = 8.7e-4)
and averaged amplitude over all cells (h, p = 6.7e-4). Arrowheads indicate global seizures. n = 5 fish per group, 2 stimuli per fish.
i-lAnalysis during inter-ictal basal periods of percentage active astroglia per fish (i, p = 0.011), total activity of active cells (j, area
under the curve =AUC, p = 0.0011), amplitudes (k, p = 0.052) and durations (l, p = 0.37) of individual calcium bursts in active glial
cells are plotted in violin plots with individual data points (black). n(eaat2a+/+/eaat2a+/-) = 6, n(eaat2a-/-) = 8. m mRNA transcript
levels of eaat1b (p = 0.00075), eaat2b (p = 0.94), gabra1 (p = 0.40), gad1b (p = 0.024), mglur3 (p = 0.86) and mglur5b (p = 0.40)
in 5 dpf eaat2a-/- relative to eaat2a+/+ siblings. Transcripts were measured by RT-qPCR and normalized to g6pd and b2m. Signifi‐
cance levels: ***p = < 0.001, **p = < 0.01, *p = < 0.05, ns = not significant (p => 0.05), Wilcoxon signed rank test (e, f), Welch
two sample unpaired t-test (i, m) or Wilcoxon rank-sum test (g, h, j-l).
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clinically defined as a condition where developmen‐
tal defects due to a mutation as well as epileptic activ‐
ity itself contribute to the impairments38. The pres‐
ence of both recurrent spontaneous seizures and se‐
vere developmental abnormalities in eaat2a-/- mu‐
tants mirror the human phenotype11,13. Secondly,
spontaneous recurrent seizures in our eaat2a-/- mu‐
tants enable the investigation of epileptogenesis
throughout development. Although eaat2a-/- mutants’
premature death restricts analysis to larval stages, fu‐
ture work on an inducible gene knockout would allow
studies at more advanced developmental stages39. Fi‐
nally, knockout of EAAT2a directly targets astroglial
networks, which are of great importance during

seizure initiation and propagation16–18. Therefore, our
model will enable further investigations into the role
of glia-neuron interactions in epilepsy. All these
points give a novel vantage point for modelling and
understanding potential mechanisms underlying hu‐
man genetic epilepsies.
Recent studies show that astroglia and their interac‐
tions with neurons play an essential role in epilepsy16–

18,40. The role of astroglial gap junctions in redistribut‐
ing ions and neurotransmitters in epilepsy models are
well investigated18,41. However, the function of as‐
troglial glutamate transporters in epilepsy are less un‐
derstood. Our results provide direct evidence for the
importance of astroglial glutamate transporters for

Figure 6: Working model of coexisting hyper- and hypoactivity in eaat2a-/- mutants. a, b Glutamate transporter EAAT2a is
important for both clearance of glutamate at the synaptic cleft and recycling of glutamate to the presynapse during basal activity
and stimulation. c Loss of EAAT2a function leads to neuronal hypoactivity during basal periods, likely reflecting reduced levels of
available glutamate/glutamine. d Once glutamate is released in higher quantities from the presynapse (e.g. following light stimuli
or spontaneous glutamate release), astroglia cannot sufficiently take up glutamate. Accumulated glutamate in the synaptic cleft hy‐
perexcites postsynaptic neurons, which can lead to a cascade of glutamate release across the nervous system and results in epileptic
seizures. Such recurrent epileptic seizures could also potentially lead to desensitization or a negative feedback to the presynapse (c),
which can further explain reduced basal neuronal activity in eaat2a-/- mutants.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.16.435577doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435577


balancing brain excitability. On the one hand, in the
absence of glial glutamate transporter EAAT2a we
observed spontaneous seizures recruiting both neu‐
ronal and astroglial networks. In addition, light-in‐
duced reflex seizures are apparent in both cellular
networks. Such evidence of hyperexcitability is likely
due to impaired glutamate clearance in eaat2a-/- mu‐
tants, leading to a massive transient surge of extracel‐
lular glutamate34, as measured by iGluSnFR imaging.
The observed upregulation of glial eaat1b transcripts
further supports this hypothesis. On the other hand,
we observed that both neuronal and astroglial net‐
works are hypoactive during inter-ictal periods. We
argue that this hypoactive state might reflect the re‐
duced availability of glutamate due to depletion of
the presynaptic glutamate pool after seizures in com‐
bination with impaired glutamate recycling. Since as‐
troglial uptake of glutamate is impaired in eaat2a-/-

mutants, the conversion of glutamate to glutamine is
likely reduced, resulting in an impaired glutamate-
glutamine cycle42. This eventually leads to lesser glu‐
tamate reconversion in the presynaptic neurons, lead‐
ing to hypoactivity43. Alternatively, impaired gluta‐
mate clearance from the synaptic cleft can lead to de‐
sensitization or reduction of postsynaptic glutamate
receptors, especially ionotropic AMPA receptors44,45.
Consequently, the sensitivity to basal extracellular
glutamate fluctuations may be decreased in these ani‐
mals, and only higher levels of extracellular gluta‐
mate induced by sensory stimulation lead to the ob‐
served hyperexcitability. A third possibility is that the
spontaneous release of glutamate from the presy‐
napse may be suppressed by a negative feedback by
neuropeptide modulators. As such, neuropeptide Y,
which indirectly inhibits presynaptic glutamate re‐
lease, has been shown to be upregulated in patients
with resistant epilepsy and rodent models46,47. It is
likely that all these mechanisms contribute to the
switch between the hypoactive inter-ictal state and
epileptic seizures. In fact, not only the recurrent spon‐
taneous seizures of eaat2a-/- mutants, but also the re‐
duced interictal brain activity mirror observations in
human patients; de novo mutations in the human or‐
thologue EAAT2 cause lower residual brain activity
and profound intellectual disability11,13.
In recent years, pharmacological and genetic ze‐
brafish models have been used to advance the under‐
standing of epileptogenesis31–33,48–55. Many of these
studies focus on the inhibitory system by either phar‐
macologically or genetically manipulating GABA re‐
ceptors. However, a better understanding of the major
excitatory neurotransmitter system is of great impor‐
tance, also considering that glutamate is the primary
precursor of GABA42. In our model of targeting the
astroglial glutamate transporter, we found several
similarities to existing zebrafish models. Considering
seizure propagation, we found that seizures in eaat2a-

/- mutants initiate in midbrain and hindbrain regions
that include important primary processing areas such

as the optic tectum (homologous to mammalian supe‐
rior colliculus56) and the cerebellum57. Interestingly,
the anterior forebrain (homologous to mammalian
neocortex58) is recruited only with a significant delay.
Compared to the PTZ-induced model leading to a
lack of neuronal inhibition, our results are similar to
findings of one study16, yet contradicting another
study showing epileptic propagation from anterior to
posterior brain regions32. However, both studies
found neuronal microcircuits to be a crucial step in
seizure propagation. In line with this idea, we ob‐
served not only global but also localized seizures in
eaat2a-/- mutants, all starting in subcortical regions.
These findings support the hypothesis that highly
connected hub-like regions play an important role as
gate keepers between seizure foci and global brain
networks59. Furthermore, it suggests that the recruit‐
ment of seizure-prone (ictogenic) hubs during seizure
propagation might be more crucial than the initial
dysfunction itself. It is likely that this recruitment of
specific circuits is dependent on the current brain
state, which has been suggested to influence seizure
probability60. In fact, eaat2a-/- animals suffering
global reflex seizures also always exhibited sponta‐
neous global seizures. Hence, future studies in our
model may help to understand the transition from lo‐
cal to global seizure networks, and the role of as‐
troglia in these transitions.
We also observed fundamental differences between
our eaat2a-/- mutants and existing zebrafish models.
Our model reflects that epilepsy is more than just a
seizure disorder. In fact, subsequent neurobiological
and cognitive consequences is part of the epilepsy
definition9. While existing zebrafish models helped to
observe several aspects of epileptic hyperexcitabil‐
ity16,32,33,48, our eaat2a-/- mutants display reduced in‐
ter-ictal brain activity. The low neuronal and as‐
troglial network activity in eaat2a-/- mutants likely re‐
flects pathological changes in the brain38, potentially
corresponding to intellectual disabilities in patients
with EAAT2 de novo mutations11,13. We also observed
decreased brain size in eaat2a-/- larvae, possibly re‐
flecting cerebral atrophy found in patients with
EAAT2 mutations11,13. Furthermore, our findings on
overall reduced locomotion in eaat2a-/- zebrafish is
consistent with reduced muscle tone in human pa‐
tients11,13. Hence, relying solely on increased locomo‐
tion as seizure readout in zebrafish models may miss
important aspects of epilepsy. Accordingly, focusing
not only on the seizure-related hyperactivity but also
on the pathophysiology of reduced inter-ictal activity
might help unraveling important underlying details of
the combined clinical presentation of DEE.
Our findings in eaat2a-/- mutant zebrafish may also
have a broader relevance for epilepsy research. The
current clinical dichotomy between focal and gener‐
alized seizures is operational and may not reflect
mechanistic distinctions61–63. Recent research in hu‐
man patients using advanced neurophysiological
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methods and functional imaging is transforming our
understanding on ictogenesis. Even the archetypical
‘generalized’ absence seizures involve rather selec‐
tive parts of the brain, and not the entire cortex as
suggested by conventional scalp electroencephalo‐
gram63,64. Our transparent zebrafish model enables de‐
tailed whole-brain imaging of widespread glia-neu‐
ron networks65,66. We observed at high temporal reso‐
lution a local subcortical seizure origin and subse‐
quent global propagation. It has been proposed that
all seizures in fact initiate within local networks, and
subsequent spreading results from a lost balance be‐
tween local and global network connectivity67,68. Sub‐
cortical networks are likely of particular interest,
given that they have been shown to be intimately in‐
volved in seizures traditionally thought to arise from
cortical lobes69,70. Furthermore, the eaat2a-/- model
enables a certain temporal control of seizure onset
through light-induction, providing a prominent win‐
dow to study ictogenesis. Future studies in our
eaat2a-/- model may help to improve the understand‐
ing on interactions between local and global seizure
networks. For all these reasons, we propose to use our
novel epilepsy model comprehensively to further the
understanding of underlying epileptogenic mecha‐
nisms. We argue that our astroglial eaat2a-/- mutant
zebrafish model will provide an unexplored platform
for identifying new treatment approaches, especially
taking into account gliotransmission as a promising
novel target71–74.

METHODS
Fish husbandry
Zebrafish (Danio rerio) were kept under standard
conditions75. In this study, WIK and Tübingen wild-
type strains were used. For calcium imaging experi‐
ments, heterozygous eaat2a mutant animals were
outcrossed with Tg(elavl3:GCaMP5G);nacre-/- 76(epi‐
fluorescence microscope), Tg(gfap:
Gal4)nw7;Tg(UAS:GCaMP6s)16,77 fish (two-photon
spontaneous recordings) and Tg(elavl3:GCaMP6s)78
(two-photon light-stimulation recordings). Adult ani‐
mals were set up pairwise and embryos were raised in
E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM
CaCl2, 0.33 mM MgSO4, 10-5 % methylene blue)
(Zürich) or in egg water (60 mg/l marine salt, 10-4 %
methylene blue) (Trondheim) at 28°C. All experi‐
ments were conducted in accordance with local au‐
thorities (Zürich Switzerland: Kantonales Veter‐
inäramt TV4206, Trondheim Norway: directive
2010/63/EU of the European Parliament and the
Council of the European Union and the Norwegian
Food Safety Authorities).

In situ hybridization
eaat2a (ENSDARG00000102453) cloning into the
TOPO pCRII vector (TA Cloning Kit Dual Promoter,
Invitrogen, Basel, Switzerland) and preparation of
digoxigenin (DIG)-labeled antisense RNA probes is

described elsewhere21,22. RNAprobes were applied on
whole-mount zebrafish larvae (5 dpf) and adult brain
cross sections at a concentration of 2 ng/µL at 64°C
overnight79. Stained and paraformaldehyde (PFA)
post-fixed embryos (in glycerol) and sections were
imaged with an Olympus BX61 brightfield micro‐
scope. Images were adjusted for brightness and con‐
trast using Affinity Photo Version 1.8 and assembled
Affinity Designer Version 1.7.

Immunohistochemistry
Generation of the chicken anti-EAAT2a (zebrafish)
antibody is described elsewhere22. 5 dpf larvae were
fixed in 4% PFA in PBS (pH 7.4) at room temperature
for 40 minutes. Embryos were cryo-protected in 30%
sucrose in PBS at 4°C overnight, embedded in Tissue
Freezing Medium TFMTM (Electron Microscopy
Sciences), cryo-sectioned at 14-16 µm and mounted
onto Superfrost slides (Thermo Fisher Scientific). Im‐
munohistochemistry was performed as described be‐
fore22. Chicken anti-EAAT2a 1:500, mouse anti-sy‐
naptic vesicle 2 (IgG1, 1:100, DSHB USA), mouse
anti-acetylated tubulin (IgG2b, 1:500, Sigma 7451)
and mouse anti–glutamine synthetase (IgG2a, 1:200,
EMD Millipore, MAB302) were used as primary an‐
tibodies. Secondary antibodies were goat anti-
chicken Alexa Fluor 488, goat anti-mouse IgG2a
Alexa Fluor 568, goat anti-mouse IgG2b Alexa Fluor
647 and goat anti-mouse IgG1 Alexa Fluor 647, all
1:500 (all from Invitrogen, Thermo Fisher Scientific).
Slides were cover-slipped using Mowiol (Poly‐
sciences) containing DABCO (Sigma-Aldrich) and
imaged with a TCS LSI confocal microscope (Leica
Microsystems). Images were adjusted for brightness
and contrast using Affinity Photo Version 1.8 and as‐
sembled Affinity Designer Version 1.7.

CRISPR/Cas9-mediated mutagenesis and geno‐
typing
CRISPR target sites for eaat2a (ENS‐
DARG00000102453) of the 5’-GG(N18)NGG-3’
motif favorable for T7-mediated in vitro transcrip‐
tion80 were selected using the https://chopchop.cbu
.uib.no/ and www.zifit.partners.org prediction tools.
Synthesis of single guide RNA (sgRNA) was per‐
formed using a PCR based approach as follows. ds‐
DNA of the target region was amplified with a high
fidelity Phusion polymerase (New England Bio Labs)
using the forward primer sg1 together with the com‐
mon reverse primer sg2 (Supplementary Table 1).
sgRNA was T7 in vitro transcribed (MEGAshort‐
scriptTM T7 Transcription Kit, Ambion) and subse‐
quently purified using the MEGAclearTM Kit (Am‐
bion).
The injection mix consisting of 160 ng/µL sgRNA, 1
µg/µL Cas 9 protein (Flag/ or GFP-tagged Cas9
kindly provided by Prof. Dr. C. Mosimann and Prof.
Dr. M. Jineck) and 300 mM KCl was incubated at
37°C for 10 minutes to enable Cas9/sgRNA complex
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formation. One-cell staged embryos were injected
with 1 nL injection mix into the cell. Mutation rate
efficiency was tested by genotyping a pool of around
10-15 injected F0 larvae per clutch while their sib‐
lings were raised to adulthood. Adult F0 crispant fish
were outcrossed to Tübingen wild-type animals. F1
embryos were genotyped at 3 dpf by larval tail biop‐
sies81 and raised in single tanks. The eaat2a target site
was PCR amplified with a fast-cycling polymerase
(KAPA2G Fast HotStart PCR kit, KAPABiosystems)
(primers: sense (fw) and antisense (rev, Supplemen‐
tary Table 1)). Amplicons were cloned into pCR 2.1-
TOPO vectors (Invitrogen) and sequenced. The re‐
sulting heterozygous mutant line carrying one copy
of a -13 null allele was repeatedly outcrossed to wild-
type and transgenic fish to generate stable heterozy‐
gous F2, F3 and F4 generations. eaat2a mutant fish
can be genotyped by the above-mentioned PCR am‐
plification and a subsequent gel-electrophoresis,
which allows detection of the 13 base pair deletion.
Larvae were genotyped after each experiment. After
two-photon microscopy, all larvae were genotyped by
means of a PCR melting curve analysis using SYBR
Green (PowerUp SYBR Green Master Mix, Thermo
Fisher Scientific). For qRT-PCR experiments, wild-
type progeny of eaat2a+/- incrosses were selected by
pre-genotyping using the Zebrafish Embryo Geno‐
typer (ZEG, wFluidx) as described previously82.
Briefly, 3-4 dpf embryos were loaded individually
onto the ZEG chip in 12 µL E3 and vibrated for 10
minutes at 1.4 Volts. Subsequently, 8 µL of each sam‐
ple E3 was used directly for PCR as described above
(KAPA Biosystems). Embryos were kept in 48-well
plates until genotyping was achieved.

Zebrafish survival analysis and length measure‐
ments
Embryos were raised separately in 24-well plates
containing 1.5 mL E3 medium, which was changed
daily. From 5 dpf on, larvae were fed manually. Ani‐
mal survival was monitored daily over an 11-day pe‐
riod. From 1 to 7 dpf, larvae were anaesthetized by
tricaine (0.2 mg/mL) and individually imaged with an
Olympus MVX10 microscope. Body lengths were
measured along the spinal cord using Fĳi ImageJ
(National Institutes of Health) and further analyzed
using R software version 3.6.0 with the RStudio ver‐
sion 1.2.1335 interface83,84.

Behavioral analysis
Swimming patterns of 5 dpf larvae were recorded us‐
ing the ZebraBox system (ViewPoint Life Sciences).
The room was kept at 27°C throughout the record‐
ings. Larvae were individually placed at randomized
positions of 48-well plates containing 1 mL E3
medium and transferred into the recording chamber
for a minimum of 10 minutes acclimatization. Subse‐
quently, recordings of 30 minutes in normal light con‐
ditions (20% light intensity) were performed. An au‐

tomated camera tracked individual larvae (threshold
black 30) and detected the distance and duration
moved by each larva exceeding 1 mm per second in
accumulating five-second intervals. Data processing
and analysis was done with a custom code written in
R with the RStudio interface 83,84. Software-related
artefacts were removed in a blinded manner. Velocity
of long-lasting bursts were calculated as distance di‐
vided by time for every five-second interval in which
the animal moved at least 3.5 seconds.

Combined LFP experiments together with epifluo‐
rescence iGluSnFR imaging
Simultaneous LFP (local field potential) recordings
of seizure activity and epifluorescence imaging of
iGluSnFR signals were performed in 5 dpf Tg
(gfap:iGluSnFR) zebrafish larvae16. First, zebrafish
larvae were anesthetized in 0.02% MS222 and para‐
lyzed by α-bungarotoxin injection85. Next, the larvae
were embedded in 1-1.5% low melting point agarose
(Fisher Scientific) in a recording chamber (Fluo‐
rodish, World Precision Instruments). Artificial fish
water (AFW, 1.2 g marine salt in 20 L RO water) was
constantly perfused during the experiments. For LFP
recordings, a borosilicate glass patch clamp pipette
(9-15 MOhms) loaded with teleost artificial cere‐
brospinal fluid86 (ACSF, containing in mM: 123.9
NaCl, 22 D-glucose, 2 KCl, 1.6 MgSO4 7H2O, 1.3
KH2PO4, 24 NaHCO3, 2 CaCl2 2H2O) was inserted
in the forebrain73. LFP recordings were performed by
a MultiClamp 700B amplifier, in current clamp mode
at 10 kHz sampling rate, and band pass filtered at 0.1–
1000 Hz. For imaging iGluSnFR signals, microscopy
images were collected at 10Hz sampling rate, using a
Teledyne QImaging QI825 camera, in combination
with Olympus BX51 fluorescence microscope and
Olympus UMPLANFL 10X water immersion objec‐
tive. Data acquisition of LFP signals were done in
MATLAB (Mathworks), and iGluSnFR signals were
done in Ocular Image Acquisition Software. All data
were analyzed using MATLAB.

Quantitative reverse transcription PCR
5 dpf larvae were anesthetized on ice and brains dis‐
sected using an insect pin and a syringe needle in a
dish containing RNA later (Sigma-Aldrich). Total
RNAof equal pools of larval brains was extracted us‐
ing the ReliaPrep kit (Promega). RNA was reverse
transcribed to cDNA using the Super Script III First-
strand synthesis system (Invitrogen) using 1:1 ratio of
random hexamers and oligo (dt) primers.
The qPCR reactions were performed using SsoAd‐
vanced Universal SYBR Green Supermix on a
CFX96 Touch Real-Time PCR Detection System
(Bio-rad). Primer (Supplementary Table 2) efficien‐
cies were calculated by carrying out a dilution series.
After the primer efficiencies were determined equal,
brain samples were used for qPCR using 10 ng of
cDNA per reaction. The controls “no reverse tran‐
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scription control” (nRT control) and “no template
control” (NTC) were performed with every qPCR re‐
action. g6pd and b2m were chosen as reference
genes. All reactions were performed in technical trip‐
licates. Data was analyzed in CFX Maestro Software
from Bio-Rad and Microsoft Excel. Statistical analy‐
sis was performed between dCt values.

Calcium imaging and data analysis
a. Epifluorescence microscope
5 dpf larvae in the Tg(elavl3:GCaMP5G) back‐
ground were individually immobilized in a drop of
1.8% NuSieveTM GTGTM low melting temperature
agarose (Lonza) with the tail freed from agarose in a
small cell culture dish (Corning Incorporated) filled
with water. Calcium signals were recorded using an
Olympus BX51 WI epifluorescence microscope and
by means of a camera (4 Hz sampling rate) and the
VisiView software established by the Visitron Sys‐
tems GmbH.
In each experiment, the GCaMP5G fluorescence sig‐
nal of manually selected ROIs (whole brain, fore‐
brain, midbrain and hindbrain) was extracted using
Fĳi ImageJ (National Institutes of Health). For each
time point, the mean intensity of each ROI was mea‐
sured and further processed using a custom script in
R with the RStudio interface83,84. The baseline (F0) of
every ROI was calculated as 1st percentile of the en‐
tire fluorescence trace per fish. Subsequently, the
fractional change in fluorescence (ΔF/F0) of each ROI
was computed to normalize the values obtained. In
order to compare basal activity between eaat2a-/-,
eaat2a+/- and eaat2a+/+ larvae, the standard deviation
of F0 for the whole brain was calculated and aver‐
aged over five two-minute time windows per animal
(same random windows for all fish, but adjusted if
during seizure). Seizure duration in eaat2a-/-mutants
was defined as the period from first time point where
ΔF/F is greater than 50% (seizure initiation) until first
time point where ΔF/F is below 50% in the midbrain.

b. Two-photon microscope
Two-photon calcium recordings were performed on 5
dpf eaat2a mutant Tg(gfap:Gal4)nw7;Tg(UAS:G‐
CaMP6s) zebrafish16. Larvae were pre-selected based
on morphological phenotype, paralyzed by injecting
1 nL of α-bungarotoxin (Invitrogen BI601, 1 mg/mL)
into the spinal cord, embedded in 1.5-2% low melting
point agarose (LMP, Fisher Scientific) in a recording
chamber (Fluorodish, World Precision Instruments)
and constantly perfused with artificial fish water
(AFW, 60 mg/l marine salt in RO water) during imag‐
ing. The cerebral blood flow was assessed in the pros‐
encephalic arteries or anterior cerebral veins87 before
and after the experiment, and animals without cere‐
bral blood flow were excluded from the final analysis.
Imaging was performed in a two-photon microscope
(Thorlabs Inc and Scientifica Inc) with a x16 water
immersion objective (Nikon, NA 0.8, LWD 3.0,

plan). Excitation was achieved by a mode-locked
Ti:Sapphire laser (MaiTai Spectra-Physics) tuned to
920 nm. Single plane recordings of 1536 x 650 pixels
were obtained at an acquisition rate of 24 Hz. The
plane was oriented towards the glial cells in the
boundary region between the telencephalon (anterior
forebrain) and the anterior thalamus (posterior fore‐
brain). First, spontaneous calcium activity was mea‐
sured for 60 minutes. Subsequently for a subgroup of
the fish, a custom-made Arduino was used to apply
two 10-second red-light stimuli (625 nm). Light was
flashed after 5 and 10 minutes of the total duration of
15 minutes.
Images were aligned, cells detected and ΔF/F0 rela‐
tive to the baseline calculated using the algorithm
previously described88,89, with adaptions as follows.
Glial cells along the ventricle were semi-automati‐
cally detected and subsequently assigned manually
according to their location16,88,90. Baseline was com‐
puted within a moving window of 80 seconds as the
8th percentile of activity defining noise with a Gauss‐
ian curve fit using an adapted algorithm91,92. Resam‐
pled ΔF/F0 traces of 4 Hz were used to detect glial
calcium signals. Calcium events were identified by
detecting events significantly different from noise
level within a 95% confidence interval91,92. For spon‐
taneous recordings, glial activity was quantified in
the following two-minute time windows: basal (be‐
tween seizure activity, averaged over six time points
per fish), preictal (preceding seizure onset) and ictal
(during seizure). Seizure onset frames were defined
as time points where the averaged ΔF/F0 of all cells
not located along the ventricles reached 50. For light
stimuli recordings, glial activity was compared be‐
tween one minute prior to and one minute following
light stimuli. In each period, a cell was considered ac‐
tive if at least one event occurred. The overall activity
of active cells was calculated by the trapezoidal nu‐
merical integration method (function trapz, MAT‐
LAB) to get the area under the curve (AUC). The am‐
plitude of each event was determined as its respective
maximum peak.
Light stimulus assay of neuronal activity was per‐
formed on 5 dpf eaat2a+/- Tg(elavl3:GCaMP6s) in-
cross progenies. Mutant larvae were pre-selected,
paralyzed and embedded as described above. After
the agarose solidified for 10 minutes, AFW was
added as an immersion medium before 20 more min‐
utes of agarose settling. The animals were acclima‐
tized in the setup for 20 minutes before volumetric
recordings of ten planes of 1536 x 650 pixels were
obtained using a Piezo element at a rate of 2,43 Hz.
Excitation was achieved as described above. Baseline
spontaneous calcium activity was recorded for ten
minutes in darkness, followed by a red-light stimulus
train using a red LED (LZ1-00R105, LedEngin; 625-
nm) placed in front of the animal. Five light stimuli
with five-minute inter-stimulus intervals were ap‐
plied by an Arduino-device. Images were aligned as
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described above. Regions of interest (ROIs) were
manually drawn on one single plane of maximal in‐
formation. F0 baseline was computed as 1st percentile
of the entire fluorescence trace per ROI.

Statistical analysis
Statistical analysis was done using R software ver‐
sion 3.6.0 with the RStudio version 1.2.1335 inter‐
face83,84. Data sets were tested for normality using
quantile-quantile plots and Shapiro-Wilk test. Nor‐
mally distributed data was analyzed using Welch
two-sample unpaired t-test (Fig. 5i and m). Wilcoxon
rank-sum test was used for non-paired analysis (Fig.
2g, Fig. 5g, h, j-l), Wilcoxon signed rank test for
paired analysis (Fig. 5e, f) and two-sample Kol‐
mogorov-Smirnov test for equality between distribu‐
tions (Fig. 3f). Kruskal-Wallis rank-sum test with
Wilcoxon rank-sum posthoc test was used for non-
paired analysis between all three genotypes (Fig. 2b,
Fig. 3c, Fig. 4j). P < 0.05 was considered as statisti‐
cally significant.

Data and Code availability
The datasets and codes supporting this study have
not been deposited in a public repository, but are
available from the corresponding authors upon re‐
quest.
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