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Abstract—Drug-drug interactions are one of the main concerns in drug discovery. Accurate prediction of drug-drug interactions 

plays a key role in increasing the efficiency of drug research and safety when multiple drugs are c o-prescribed. With various data 

sources that describe the relationships and properties between drugs, the comprehensive approach that integrates multiple data 

sources would be considerably effective in making high-accuracy prediction. In this paper, we propose a Deep Attention Neural 

Network based Drug-Drug Interaction prediction framework, abbreviated as DANN-DDI, to predict unobserved drug-drug interactions. 

First, we construct multiple drug feature networks and learn drug representations from these networks using the graph embedding 

method; then, we concatenate the learned drug embeddings and design an attention neural network to learn representations of 

drug-drug pairs; finally, we adopt a deep neural network to accurately predict drug-drug interactions. The experimental results 

demonstrate that our model DANN-DDI has improved prediction performance compared with state-of-the-art methods. Moreover, 

the proposed model can predict novel drug-drug interactions and drug-drug interaction-associated events. 

Index Terms—drug-drug interactions, deep attention neural networks  

——————————      —————————— 

1 INTRODUCTION

RUG-DRUG Interactions (DDIs) may occur when mul-
tiple drugs are co-prescribed. Although DDIs may have 

beneficial effects, they sometimes have serious adverse ef-
fects and lead to drug withdrawal from the market [1]. 
Drug-drug interaction (DDI) prediction can help reduce the 
probability of adverse reactions and optimize the drug de-
velopment and post-marketing surveillance process. 

Clinical trials are time-consuming, expensive, and infea-
sible when facing the large-scale data and limitations of ex-
perimental conditions. Therefore, the researchers introduce 
a lot of computational methods to accelerate the prediction 
process. The existing computational DDI prediction meth-
ods can be roughly divided into five categories: literature 
extraction-based, matrix factorization-based, similarity-
based, network-based and deep learning-based methods. 

Literature extraction-based methods take the extraction 
of DDIs as a multi-class classification task, which generally 
extract information from informative sentences of literature, 
then detect candidate DDIs and classify them. Chowdhury 
et al. [2] proposed a multi-phase relation extraction ap-
proach, which used hybrid kernel-based support vector ma-
chine to extract the possible relationships between drug-
drug pairs. Sun et al. [3] constructed a deep architecture 
with multiple layers of small convolutions based on a con-
volutional neural network to extract features automatically. 

Kim et al. [4] utilized a linear kernel-based classifier and 
added lexical and syntactic features to improve the accuracy 
of prediction. Zhang et al. [5, 6] proposed a hierarchical 
RNNs-based model, which combined short dependency 
path (SDP) and sentence sequence to obtain semantic infor-
mation and used attention mechanism to map representa-
tions. Jiang et al. [7] introduced a skeleton LSTM method to 
effectively extract the internal structure of DDIs. 

Matrix factorization-based methods decompose the 
drug-drug interaction matrix into several matrices, which 
reconstruct the interaction matrix to predict DDIs. Zhang et 
al. [8] introduced the manifold regularization based on drug 
features and proposed a novel matrix factorization method 
named MRMF to predict potential DDIs. Shi et al. [9] 
adopted the triple matrix factorization model to predict not 
only binary DDIs but comprehensive DDIs (i.e., enhancive 
and degressive DDIs) further. Yu et al. [10] designed 
DDINMF based on semi-nonnegative matrix factorization 
which decomposes the DDI adjacent matrix through the 
regular nonnegative matrix factorization (NMF) for enhanc-
ive and degressive DDI prediction. 

Similarity-based methods assume that similar drugs 
could interact with the same drug. Gottlieb et al. [11] con-
structed a model named INDI which calculated seven types 
of similarity and used a weighted logistic regression classi-
fier to predict drug-drug interactions. Cheng et al. [12] inte-
grated a variety of drug-drug similarities to describe drug-
drug pairs, and used five classifiers to build the prediction 
models. Foukoue et al. [13] proposed a framework named 
Tiresias which constructed a knowledge graph through se-
mantic integration of data and utilized the graph to calcu-
late similarities among drugs. 

Network-based methods consider the high-order simi-
larity of drugs and the propagation of similarity, or infer 
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from the network structure directly. Zhang et al. [14] intro-
duced a label propagation framework which computed the 
similarities of side effects, off label side effects and chemical 
structure, and paid attention to high-order similarity. Park 
et al. [15] used a random walk method to simulate signaling 
propagation on the protein-protein interaction (PPI) net-
work. Lee et al. [16] constructed a heterogeneous bioinfor-
matics network and adopted graph traversal algorithms to 
find paths of drug-drug pairs. Huang et al. [17] proposed a 
metric named S-score to measure the strength of network 
connections and obtained accurate prediction results 
through the Bayesian probability model.  

Moreover, deep learning-based methods, which are spe-
cialized in extracting high-quality drug features, have been 
widely applied in the field of biology [18, 19] and have 
achieved promising results. Karim et al. [20] constructed a 
knowledge graph which considered combining CNN and 
LSTM model to extract local and global features of drugs 
through the network. Chu et al. [21] utilized a factorization 
auto-encoder to learn the representations of complex non-
linear drug interactions. Liu et al. [22] introduced the multi-
modal deep auto-encoder named DDI-MDAE based on 
shared latent representation to predict DDIs. 

Many existing methods are proposed to predict whether 
drugs interact or not. In fact, diversified sub-types of inter-
actions could instruct further research on interaction events 
[23, 24]. Hence, DDI-associated events prediction has 
aroused some attention. Ryu et al. [25] proposed a deep 
learning method using structural information and a deep 
neural network to predict 86 important DDI types. Lee et al. 
[26] used auto-encoders to reduce dimensions of similarity 

files and applied a deep neural network to predict 106 types 

of DDIs. Deng et al. [27] proposed a multimodal deep learn-

ing framework which utilized multiple drug features to pre-

dict 65 categories of DDI events. 
Recent studies have highlighted the importance of inte-

grating heterogeneous drug features for the prediction of 
DDIs [28, 29]. However, integrating multiple diverse drug 
features in drug-drug interaction prediction is a challenging 
task. Heterogeneous drug features could be correlated and 
have redundant information, which may affect the perfor-
mances of conventional classifiers. Hence, an effective 
framework of integrating heterogeneous features is in de-
mand. Deep Neural Network (DNN) is one of the repre-
sentative algorithms of deep learning, which aims to use 
multiple nonlinear and complex processing layers to model 
high-level drug features. Thus, it is a suitable model for 
learning high-level representations from multiple drug fea-
tures. 

In this paper, we propose a Deep Attention Neural Net-
work based DDI prediction framework, abbreviated as 
DANN-DDI. Firstly, drug features are formulated as drug 
feature networks, and the graph representation learning 
method SDNE [30] is utilized to learn drug embeddings 
from these networks. Secondly, the drug embeddings are 
concatenated, and the attention neural network, which 
takes into account different contributions of different fea-

tures and their dimensions, is designed to learn the repre-
sentations of drug-drug pairs. Finally, the representations 
of drug-drug pairs are fed into a deep neural network to 
predict potential drug-drug interactions. The experimental 
results demonstrate that DANN-DDI could combine di-
verse drug information attentively, deliver high-accuracy 
performances, and outperform benchmark methods.  

In summary, the main contributions of DANN-DDI are 
as follows: (1) We introduce a deep attention neural net-
work framework for drug-drug interaction prediction, 
which can effectively integrate multiple drug features; (2) 
We employ the attention neural network to learn attention 
vectors of each of the specific drug-drug pairs; (3) Experi-
mental results demonstrate that DANN-DDI can predict 
novel drug-drug interactions and DDI-associated events. 

2 MATERIALS AND METHODS 

2.1 Dataset Description 

DrugBank [31] database integrates bioinformatics and 
chemical informatics resources to provide detailed drug 
data, including drug chemical substructures, targets, en-
zymes, pathways and drug-drug interactions. In this paper, 
we adopt the drug dataset with multiple drug features ob-
tained from the DrugBank database released in April 2018 
(version 5.1.0). Then, we use the ID mapping server to map 
the target proteins of the drugs into the KEGG drug data-
base [32] for obtaining drug pathways. Our dataset contains 
841 drugs with 619 chemical substructures, 1333 targets, 214 
enzymes and 307 pathways, which is described in Table 1. 
The 841 drugs have 353,220 drug-drug pairs, including 
82,620 known pairwise DDIs. 

TABLE 1 
THE DESCRIPTION ABOUT DRUG FEATURES AND SOURCES 

Data type Database Reference Description 

Drug DrugBank [31] 841 drug types 

Target DrugBank [31] 1333 target types 

Enzyme DrugBank [31] 214 enzyme type 

Pathway KEGG [32] 307 pathway types 

Substructure PubChem [33] 619 substructure types 

 
2.2 Overview of Methods 

In this paper, we propose a deep attention neural network 
framework named DANN-DDI to predict potential interac-
tions between drug-drug pairs in multiple drug feature net-
works.  

As described in Figure 1, DANN-DDI consists of three 
components, i.e. drug feature learning component, drug-
drug pair feature learning component and drug-drug inter-
action prediction component. The drug feature learning 
component first constructs drug feature networks, and then 
learn the representations of drugs from these networks us-
ing graph representation learning (Figure 1a). The drug-
drug pair feature learning component concatenates the five 
embeddings to obtain the comprehensive embeddings for 
drugs and designs an attention neural network to learn 
drug-drug pairs' representations (Figure 1b). The drug-drug 
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interaction prediction component uses a deep neural net-
work to predict potential drug-drug interactions, which 
uses the representations of drug-drug pairs as input (Figure 
1c). 
2.3 Drug Feature Learning 

In this work, we collect five drug features, i.e. chemical sub-
structures, targets, enzymes, pathways, and drug-drug in-
teractions. The basic idea of the drug feature learning is de-
scribed in Figure 1a. 

2.3.1 Construction of Drug Feature 

Due to the different effects of drug features on the perfor-
mances of DDI prediction, we consider all these drug fea-
tures to build five drug feature networks: drug-substructure 
network, drug-target network, drug-enzyme network, 
drug-pathway network and drug-drug interaction network. 
Each drug feature network includes drug nodes, feature 
nodes, and the links between them. The links of the net-
works represent associations between drugs and features. 
For example, a drug could have some substructures, and 
thus a drug node is linked to some substructure nodes in the 
drug-substructure network. 

2.3.2 Graph Representation Learning 

The graph embedding or representation learning is to learn 
the feature vectors of nodes in networks, and gains more 
and more attentions in bioinformatics [34]. Many graph rep-
resentation learning methods have been proposed, and 
studies have shown that the structural deep network em-
bedding (SDNE) could achieve competitive performances. 
Therefore, we adopt SDNE to learn the embeddings of drug 
nodes from drug feature networks. 

SDNE can preserve the first-order and second-order 
proximity simultaneously. The first-order proximity con-

strains the similarity of the latent representations (i.e., 𝑦𝑖
(𝐿)

 

and 𝑦𝑗
(𝐿)

) of a pair of vertexes (i.e., vertex 𝑖 and vertex 𝑗). The 

second-order proximity is reconstructed by minimizing the 
reconstruction error of the output 𝑥̂𝑖  and the input 𝑥𝑖. More 
details can be found in [30]. 

We extract the representations of drug nodes in five drug 
feature networks. Suppose that we have 𝑛 drugs; the five 

drug embeddings from above networks are denoted as 

{𝐸𝑖
𝑠}𝑖=1

𝑛 , {𝐸𝑖
𝑡}𝑖=1

𝑛 , {𝐸𝑖
𝑒}𝑖=1

𝑛 , {𝐸𝑖
𝑝}

𝑖=1

𝑛
 and {𝐸𝑖

𝑑}𝑖=1
𝑛  respectively. 

2.4  Drug-drug Pair Feature Learning 

Motivated by the successful applications of attention net-
works [6, 35-38], we introduce the drug-drug pair feature 
learning component in Figure 1b, which is an attention neu-
ral network to learn representations of drug-drug pairs by 
fusing learned representations of drugs from drug feature 
networks. 

First, we concatenate the five embeddings 𝐸𝑖
𝑠, 𝐸𝑖

𝑡 , 𝐸𝑖
𝑒, 

𝐸𝑖
𝑝  and 𝐸𝑖

𝑑 , then obtain a comprehensive vector 𝐸𝑖 =

[𝐸𝑖
𝑠, 𝐸𝑖

𝑡 , 𝐸𝑖
𝑒 , 𝐸𝑖

𝑝, 𝐸𝑖
𝑑] for drug 𝑖, 𝑖 = 1,2, … , 𝑛. The comprehen-

sive vectors combine diverse information learned from drug 
feature networks. Let 𝐾 denote the dimensions of the com-
prehensive vectors. 

Then, we learn the representations of drug-drug pairs 
from the comprehensive vectors of individual drugs. The 
representation of a drug-drug pair (drug 𝑖 and drug 𝑗) is de-
fined as follows: 

𝐹𝑖,𝑗 = 𝑎𝑖,𝑗⨀(𝐸𝑖⨀𝐸𝑗) (1) 
where ⨀  is the element-wise product. 𝑎𝑖,𝑗 =

(𝑎𝑖,𝑗,1, 𝑎𝑖,𝑗,2, ⋯ , 𝑎𝑖,𝑗,𝐾) is a 𝐾-dimensional attention vector to 

capture the different importance of 𝐾 dimensions in 𝐸𝑖⨀𝐸𝑗. 

Specifically, 𝐹𝑖,𝑗 = (𝑓1, 𝑓2, ⋯ , 𝑓𝐾)  and 𝑓𝑘 = 𝑎𝑖,𝑗,𝑘⨀(𝐸𝑖,𝑘⨀𝐸𝑗,𝑘) . 

𝑎𝑖,𝑗,𝑘 is the attention weight responsible for the 𝑘th dimen-

sion, 𝑘 = 1,2, … , 𝐾. 
Next, we calculate the attention vector 𝑎𝑖,𝑗 as follows: 

𝑎𝑖,𝑗,𝑘 =
𝑒𝑥𝑝(𝑎̂𝑖,𝑗,𝑘)

∑ 𝑒𝑥𝑝(𝑎𝑖,𝑗,𝑚)𝑘
𝑚=1

(2) 

where 𝑎̂𝑖,𝑗 = 𝑉𝑇𝑅𝐸𝐿𝑈(𝑊[𝐸𝑖 , 𝐸𝑗] + 𝑏) and 𝑅𝐸𝐿𝑈 is an activa-

tion function [39]. 𝑏  and 𝑊  are the bias vector and the 
weight matrix, and 𝑉𝑇 is the weight vector. [𝐸𝑖 , 𝐸𝑗] denotes 

the concatenation of 𝐸𝑖 and 𝐸𝑗. Attention vector 𝑎𝑖,𝑗,𝑘 is used 

to capture the importance on dimension 𝑘 of the represen-
tation of a drug-drug pair (drug 𝑖 and drug 𝑗). 

Therefore, the drug-drug pair feature learning compo-
nent employs the attention neural network to learn repre-
sentations of drug-drug pairs, which takes into account dif-

 

Fig. 1. An overview of DANN-DDI. (a) Drug Feature Learning. (b) Drug-drug pair feature learning. (c) Drug-drug interaction prediction. 
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ferent contributions of different features and their dimen-
sions. The attention neural network outputs representations 
of drug-drug pairs. 

2.5 Drug-drug interaction prediction  

The prediction of drug-drug interactions can be considered 
as a binary classification problem. The drug-drug interac-
tion prediction component uses representations of drug-
drug pairs to predict potential DDIs. 

The drug-drug interaction prediction component is de-
signed as follows. As shown in Figure 1c, the input layer of 
the network has the same dimensions as those of the repre-
sentations of drug-drug pairs. Then, the inputs pass 
through multiple fully connected hidden layers. The output 
layer contains two neurons, which denote two classes of 
drug-drug pairs (interaction or no-interaction). The softmax 
function is used for the output nodes to generate probabili-
ties. We adopt the Rectified Linear Unit (RELU) [39] as the 
activation function for all the hidden layers. 

2.6 Model Optimization  

DANN-DDI consists of three components. The drug feature 
learning component is trained and optimized first. Then, 
drug-drug pair feature learning component is trained and 
optimized along with the drug-drug interaction prediction 
component in an end-to-end way. 

To optimize the DANN-DDI models, we select the binary 
cross-entropy loss function and utilize Adam optimizer [40]  
with default parameters to optimize the drug-drug interac-
tion prediction component. Between hidden layers, batch 
normalization layers are adopted to accelerate the conver-
gence, and dropout layers [41] are adopted to avoid overfit-
ting and improve generalization ability. 

3 EXPERIMENT 

3.1 Evaluation Metrics 

In the previous work, 5-fold cross validation was adopted 
to evaluate prediction models [42, 43]. In this paper, we 
adopt 𝐾 -fold cross validation (i.e. 5-CV) to evaluate DDI 
prediction models. We randomly split the known drug-
drug interactions into 𝐾 subsets with an equal size. In each 
fold, one subset and all unlabeled data are selected as the 
testing set and the rest subsets and all unlabeled data as the 
training set. We use the known drug-drug interactions to 
train the prediction model and predict unobserved interac-
tions between drugs. 

Here, several evaluation metrics are used to measure the 
performances of the prediction model, i.e., the area under 
the precision-recall curve (AUPR), the area under ROC 
curve (AUC), F-measure (F), the accuracy (ACC), precision 
and recall. In our work, known drug-drug interactions are a 
small proportion of all drug-drug pairs. Therefore, we take 
AUPR which focuses on positive examples as the primary 
evaluation metric. 

3.2 Parameter Discussion 

There are four key parameters: the dimension of drug em-
beddings 𝑑, the number of DNN hidden layers 𝛼, the total 
epochs of DNN training 𝛽 and the dropout rate 𝜀 for DNN 
hidden layers. Here, we discuss the influence of these pa-
rameters on the performance of DANN-DDI. 

We consider the combinations of parameters: 𝑑 ∈{32, 64, 
128, 192, 256, 300}, α ∈{4, 5, 6, 7, 8}, 𝛽 ∈{50, 100, 150, 200, 250} 
and 𝜀 ∈{0, 0.1, 0.2, 0.3, 0.4, 0.5}. We build the DANN-DDI 
models using different parameter combinations, and 
DANN-DDI models are evaluated using 3-CV. The AUPR 
scores (primary metric) and AUC scores are adopted to 
measure the performances of prediction models.  

Among all parameter combinations, DANN-DDI 
achieves the best performance when 𝑑 = 128, 𝛼 = 7, 𝛽 =

150 and 𝜀 = 0.4. Then, we fix three parameters and discuss 

the influence of the remaining parameter. When fixing 𝛼, 𝛽 
and 𝜀 , the AUPR scores and AUC scores of DANN-DDI 
model achieve the best performances when the dimension 
𝑑 of drug embeddings equals to 128 or 256 as shown in Fig-
ure 2a. When fixing 𝑑, 𝛽 and 𝜀, we set the number of neu-
rons in the last hidden layer to 64 and consider the influence 
of 𝛼  on DANN-DDI. The AUPR score of DANN-DDI in-
creases as 𝛼 increases, and it decreases after reaching the 
peak as given in Figure 2b. When 𝑑, 𝛼 and 𝜀 are fixed, Fig-
ure 2c shows that the performance of DANN-DDI increases 
when 𝛽 increases from 50 to 150 and decreases slightly after 
that, and then increases when 𝛽 increases further. As shown 
in Figure 3d, when 𝑑, 𝛼 and 𝛽 are fixed, the performance of 
DANN-DDI is initially improved with the increase of 𝜀 var-
ying from 0 to 0.4 and then drops after that.  

We adopt 𝑑 = 128 , 𝛼 = 7 , 𝛽 = 150  and 𝜀 = 0.4  for 
DANN-DDI in the following studies. 

3.3 Performances of DANN-DDI 

To demonstrate good performances and robustness of 
DANN-DDI, we investigate three critical components of 

 

Fig. 2. Parameter Sensitivity.  
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DANN-DDI: drug feature learning, drug-drug pair feature 
learning and drug-drug interaction prediction. Here, we at-
tempt to demonstrate that they are the leading factors for 
the success of DANN-DDI. 

3.3.1 Drug Feature Learning 

Drug feature learning aims to learn drug embeddings from 
multiple drug feature networks. Graph embedding meth-
ods in machine learning can be adopted in the drug feature 
learning component. We replace SDNE with several state-
of-the-art graph embedding methods: Node2vec [44], Meta-
path2vec [45] and LINE [46]. The 5-CV results based on dif-
ferent graph embedding methods are reported in Table 2. 

From the results, we observe that DANN-DDI using 
SDNE performs better than Node2vec and LINE. The repre-
sentations generated by the Metapath2vec lead to the worst 
DDI prediction performance. The results show the effective-
ness of SDNE in the DANN-DDI framework. 

3.3.2 Drug-drug Pair Feature Learning 

Drug-drug pair feature learning aims to learn effective rep-

resentations for drug-drug pairs. An attention neural net-
work is adopted in this component, which takes into ac-
count different contributions of different features and their 
dimensions. In order to validate the effectiveness of the at-
tention neural network, the comparison method 
(SDNE+DNN) directly merge the embedding vectors of 
drugs to represent their pairs. 

The performances of the two methods are shown in Table 
2. We observe that DANN-DDI achieves a 3.60% improve-
ment in terms of AUPR and a 3.18% improvement in terms 
of AUC over the comparison method. The results indicate 
that the attention neural network in DANN-DDI can effi-
ciently learn representations of drug-drug pairs. 

The representation of drug-drug pairs has the same di-

mensions corresponding to the representation of the drugs 

in pairs. To observe different contributions of the five drug 

features intuitively, we output the attention weights of all 

drug pairs from one fold in 5-CV and calculate the average 

weight of each dimension. The attention weights of 128 di-

mensions related to each feature are adopted, and we visu-

alize the average weights of all drug pairs on the five fea-

tures. As shown in Figure 3, we observe that the median at-

tention weight of the enzyme is the highest, followed by the 

interaction, while target, structure, and pathway have lower 

median attention weights. In addition, enzyme and interac-

tion features have higher attention weights on the whole. 

Therefore, enzyme and interaction may have more contri-

butions to the representation of drug-drug pairs and may be 

more important to the prediction of drug-drug interactions. 

3.3.3 Drug-drug Interaction Prediction 

The drug-drug interaction prediction component utilizes 
the representations of drug-drug pairs to predict potential 
DDIs. In the design of DANN-DDI, we adopt the classic 
deep neural network (DNN) as the component. In order to 
test the performance of the deep neural network, we replace 
DNN with several classic classifiers: Random Forest (RF) 
[47], Support Vector Machine (SVM) [48] and Logistic Re-
gression classifier (LR) [49]. The learned drug embeddings 
of the two drugs in drug-drug pairs 𝐸𝑖  and 𝐸𝑗  are directly 

TABLE 2 
PERFORMANCES OF DANN-DDI 

DRL AUPR AUC F Accuracy Precision Recall 

Node2vec+ANN+DNN 0.9595 0.9646 0.9565 0.9947 0.9846 0.9301 

Metapath2vec+ANN+DNN 0.9173 0.9026 0.8934 0.9874 0.9579 0.8371 

LINE+ANN+DNN 0.9639 0.9686 0.9613 0.9952 0.9857 0.9381 

SDNE+ANN+DNN 0.9709 0.9763 0.9692 0.9962 0.9853 0.9537 

SDNE+DNN 0.9372 0.9462 0.9305 0.9865 0.9680 0.8958 

SDNE+ANN+DNN 0.9709 0.9763 0.9692 0.9962 0.9853 0.9537 

SDNE+SVM 0.4358 0.6972 0.4171 0.9228 0.3972 0.4390 

SDNE+ LR 0.4425 0.7086 0.4217 0.9193 0.3839 0.4677 

SDNE+ RF 0.8994 0.8940 0.8805 0.9864 0.9973 0.7881 

SDNE+ DNN 0.9372 0.9462 0.9305 0.9865 0.9680 0.8958 

DRL = Drug representation learning, ANN = Attention neural network, DNN = Deep neural networks. 

 

Fig. 3. Features' contributions to the prediction of drug-drug interac-

tions. Substructure, Target, Enzyme, Pathway, and Interaction repre-
sent five drug features: chemical substructure, target, enzyme, path-

way, and drug-drug interaction respectively. 
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concatenated as [𝐸𝑖,𝐸𝑗]. Then we feed the drug-drug pairs' 

representation into different classifiers to evaluate the per-
formances.  

Table 2 shows the superiority of DNN over the compared 
classifiers, from which DNN achieves a 4.20% improvement 
in terms of AUPR and a 5.84% improvement in terms of 
AUC compared to RF. Overall, conventional classifiers SVM 
and LR cannot extract high-level drug features, and results 
in the worst performances. The Random Forest classifier 
adopts the ensemble learning strategy to handle the non-lin-
ear drug feature data. Thus, it performs the second-best in 
terms of AUPR. 

3.4 Comparison with DDI Prediction Methods 

In this section, we compare the proposed model DANN-
DDI with several state-of-the-art prediction methods and 
baseline methods. We adjust the parameters of these com-
parison methods to ensure optimal performances. 

3.4.1 Compared Methods 

First, we compare the following state-of-the-art methods 
with DANN-DDI to evaluate the performances.  
 Nearest Neighbor [50] uses the nearest neighbor simi-

larity of drugs contained in known drug-drug interac-
tions to predict new DDIs. 

 Label Propagation [15] is a semi-supervised learning 
method based on graph which propagates the existing 
drug-drug interaction information in the network to 
identify novel DDIs. 

 MP [43] is a matrix perturbation method assuming that 
random removal of a small proportion of links from 
the network will not alter the network structure. 

 LPMS [14] is an integrative label propagation method 
which integrates multiple similarities derived from 
drug chemical substructures, drug label side effects 
and off-label side effects. 

 NDLM [26] uses autoencoders and a deep feed-for-
ward network that are trained using four Jaccard sim-
ilarity matrixes of four drug features to predict DDIs. 

 DDI-MDAE [22] utilizes multi-modal deep auto-en-
coders to learn unified drug representations in a 

shared hidden layer from multiple drug feature net-
works.  We learn drug representations using the repre-
sentation learning method in DDI-MDAE and feed 
them to DNN to predict DDIs.  

 DANN-DDI* adopts a single heterogeneous network 
which integrates multiple drug feature information as 
the input of representation learning, and the drug-
drug pair feature learning and drug-drug interaction 
prediction components remain unchanged. 

In addition, due to the imbalanced dataset, we add sim-

pler baseline methods to provide more comprehensive com-

parison. In the experiment, each drug can be represented by 

a binary feature vector, whose values (1 or 0) indicate the 
presence or absence of the corresponding feature. Then 
there are two strategies: one is to utilize principal compo-
nent analysis (PCA) to reduce dimensions; the other is to 
calculate the pairwise drug-drug similarity using Jaccard 
similarity measure. Then feature vectors pass through NB, 
SVM, and LR respectively. 

3.4.2 Cross validation results of compared methods 

To avoid the bias of results, we implement 10 runs of 5-CV 
for each model respectively, and adopt the average results 
of the 10 runs to measure the performances. 

As mentioned above, we adopt AUPR as the primary 
evaluation metric. As shown in Table 3, DANN-DDI outper-
forms all the comparison methods in most cases. DANN-
DDI performs slightly better than NDLM and DDI-MDAE 
in terms of AUPR and F-measure on 5-CV. In addition, 
DANN-DDI achieves a 3.45% improvement over MP in 
terms of AUPR and an 8.63% improvement over MP in 
terms of F-measure. Simple baseline methods generally re-
port dismal results on our dataset. Moreover, standard de-
viation for multiple CV runs shows the robustness of 
DANN-DDI. From the overall results, we observe that our 
framework DANN-DDI achieves satisfactory performances 
in DDI prediction. 

TABLE 3 
5-FOLD CROSS-VALIDATION RESULTS OF DIFFERENT MODELS 

Method AUPR AUC F Accuracy Precision Recall 

PCA+NB 0.6962+/-0.0002 0.3742+/-0.0002 0.2142+/-0.0001 0.5058+/-0.0004 0.3009+/-0.0002 0.8648+/-0.0000 

PCA+SVM 0.6994+/-0.0002 0.4344+/-0.0004 0.3969+/-0.0003 0.4395+/-0.0005 0.4171+/-0.0004 0.9293+/-0.0000 

PCA+LR 0.7112+/-0.0002 0.4418+/-0.0003 0.3849+/-0.0002 0.4680+/-0.0004 0.4224+/-0.0003 0.9264+/-0.0000 

Jaccard+NB 0.4405+/-0.0000 0.7360+/-0.0000 0.1541+/-0.0000 0.7102+/-0.0007 0.2532+/-0.0000 0.7589+/-0.0000 

Jaccard+SVM 0.6995+/-0.0001 0.4347+/-0.0003 0.3975+/-0.0003 0.4396+/-0.0003 0.4175+/-0.0003 0.9294+/-0.0000 

Jaccard+LR 0.7116+/-0.0001 0.4428+/-0.0002 0.3864+/-0.0001 0.4687+/-0.0003 0.4236+/-0.0002 0.9266+/-0.0000 

Nearest Neighbor 0.6344+/-0.0001 0.9381+/-0.0000 0.6102+/-0.0003 0.9579+/-0.0002 0.6601+/-0.0043 0.5676+/-0.0032 

Label Propagation 0.6192+/-0.0002 0.9348+/-0.0000 0.6026+/-0.0003 0.9567+/-0.0002 0.6449+/-0.0036 0.5657+/-0.0027 

LPMS 0.3826+/-0.0003 0.8634+/-0.0001 0.4166+/-0.0005 0.9239+/-0.0011 0.3758+/-0.0045 0.4681+/-0.0070 

MP 0.9385+/-0.0004 0.9854+/-0.0002 0.8922+/-0.0005 0.9878+/-0.0001 0.9180+/-0.0022 0.8678+/-0.0019 

NDLM 0.9664+/-0.0011 0.9772+/-0.0006 0.9650+/-0.0011 0.9960+/-0.0001 0.9743+/-0.0028 0.9559+/-0.0012 

DDI-MDAE 0.9634+/-0.0017 0.9625+/-0.0024 0.9587+/-0.0021 0.9926+/-0.0004 0.9945+/-0.0016 0.9255+/-0.0048 

DANN-DDI* 0.9415+/-0.0030 0.9567+/-0.0013 0.9382+/-0.0029 0.9924+/-0.0004 0.9619+/-0.0070 0.9159+/-0.0028 

DANN-DDI 0.9709+/-0.0019 0.9763+/-0.0010 0.9692+/-0.0019 0.9962+/-0.0002 0.9853+/-0.0033 0.9537+/-0.0020 
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3.5 Case Studies 

3.5.1 Predicting New Drug-drug interactions 

In this section, we conduct experiments to demonstrate the 
efficacy of DANN-DDI to predict novel DDIs.  

In the experiment, the 841 drugs collected have 353,220 

drug-drug pairs. Specifically, there are 82,620 known DDIs 
and 270,600 unlabeled pairs that may contain potential 
DDIs between drugs. We train DANN-DDI with all known 
drug-drug interactions to predict DDIs that are not con-
tained in our datasets. 

 
TABLE 4 

TOP 20 DDIS PREDICTED BY DANN-DDI 

 

Rank Drug 1 Drug 2 Evidence 

1 Bromocriptine Paclitaxel The metabolism of Paclitaxel can be decreased when combined with Bromocriptine. 

2 Abemaciclib Mitotane N.A. 

3 Abemaciclib Lumacaftor N.A. 

4 Amitriptyline Mianserin Amitriptyline may increase the anticholinergic activities of Mianserin. 

5 Crisaborole Thioridazine N.A. 

6 Quetiapine Flupentixol The risk or severity of QTc prolongation can be increased when Flupentixol is combined with Quet-

iapine. 

7 Metamfetamine Maprotiline Metamfetamine may decrease the sedative and stimulatory activities of Maprotiline. 

8 Dextroamphetamine Benzphetamine The risk or severity of serotonin syndrome can be increased when Benzphetamine is combined with 

Dextroamphetamine. 

9 Rufinamide Fluoxetine Rufinamide may increase the central nervous system depressant (CNS depressant) activities of 

Fluoxetine. 

10 Rotigotine Dronabinol Dronabinol may increase the central nervous system depressant (CNS depressant) activities of Ro-

tigotine. 

11 Bromocriptine Nifedipine The risk or severity of hypotension can be increased when Bromocriptine is combined with Nifedi-

pine. 

12 Quetiapine Pimozid The metabolism of Quetiapine can be decreased when combined with Pimozide. 

13 Phentermine Maprotiline Phentermine may decrease the sedative and stimulatory activities of Maprotiline 

14 Methylergometrine Verapamil N.A. 

15 Sertraline Isoprenaline N.A.. 

16 Fluoxetine Argatroban The risk or severity of hemorrhage can be increased when Fluoxetine is combined with Argatroban. 

17 Topiroxostat Lumacaftor N.A. 

18 Rosiglitazone Ketoprofen Ketoprofen may decrease the excretion rate of Rosiglitazone which could result in a higher serum 

level. 

19 Rufinamide Escitalopram The risk or severity of adverse effects can be increased when Rufinamide is combined with Escital-

opram. 

20 Rufinamide Rotigotine Rufinamide may increase the sedative activities of Rotigotine. 

N.A.: evidence not available

 
Table 4 demonstrates the top 20 predicted drug-drug in-

teractions by DANN-DDI. We search for the evidence to 
support the findings, and 14 novel interactions are con-
firmed in the 5.1.7 version of the DrugBank database (ac-
cessed on July 19, 2020). For example, it was reported that 
Rufinamide may increase the central nervous system de-
pressant (CNS depressant) activities of Fluoxetine, and the 
studies revealed that the metabolism of Paclitaxel can be de-
creased when combined with Bromocriptine. The descrip-
tion of the interaction between Fluoxetine (DB00472) and 
Argatroban (DB00278) is “The risk or severity of hemor-
rhage can be increased when Fluoxetine is combined with 
Argatroban.”. The case studies demonstrate the ability and 
power of DANN-DDI for predicting unobserved drug-drug 
interactions. 

3.5.2 Predicting New DDI-associated Events 

Predicting DDI-associated events is helpful to understand 
the underlying mechanism of adverse reactions, and to 
guide the combination of drugs. Hence, we extend DANN-
DDI to predict new DDI-associated events. The drug feature 
learning and drug-drug pair feature learning components 
of our model for DDI-associated event prediction stay the 
same as those for binary DDI prediction. For the settings for 
deep neural network, we set the number of neurons in the 
output layer as 65, denoting 65 types of events. We select the 
softmax function to generate probabilities for the output 
nodes. In addition, cross-entropy loss function is adopted. 
We utilize the interaction event dataset by [27] and adopt 
the same evaluation metrics. We apply 5-fold cross-valida-
tion (5-CV) to predict DDI-associated events between 
known drugs. The experimental results show that DANN-
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DDI can achieve an accuracy score of 0.8874, a micro AUPR 
score of 0.9088, a micro AUC score of 0.9943 and a macro-F1 
score of 0.7781. Performances of DANN-DDI are close to 
those of [27]. 

Furthermore, we conduct case studies to validate the ef-
fectiveness of our model in practice. We utilize all DDIs and 
their associated events in [27] to train the prediction model, 
and then predict associated events for other drug-drug pairs. 

DDI-associated events and corresponding descriptions are 
illustrated in [27]. We are concerned with the ten most fre-

quent events, numbered from # 1 to # 10, and examine the 
top 20 predictions associated with each event. We search for 
the evidence of the newly predicted DDI-associated events 
in the latest version 5.1.7 of DrugBank database.  

 
TABLE 5 

CONFIRMED DDIS AND THEIR ASSOCIATED EVENTS 

Event 

type 

Drug names Events 

#1 Nateglinide and Clemastine The metabolism of Nateglinide can be decreased when combined with Clemastine. 

#2 Etodolac and Naproxen The risk or severity of adverse effects can be increased when Etodolac is combined with Naproxen.  

#3 Halofantrine and Mifepristone The serum concentration of Halofantrine can be increased when it is combined with Mifepristone. 

#4 Cyproterone acetate and 

Bosentan 

The serum concentration of Cyproterone acetate can be decreased when it is combined with Bosentan.  

#5 Homatropine and Donepezil The therapeutic efficacy of Homatropine can be decreased when used in combination with Donepezil. 

#6 Buprenorphine and Hydromor-

phone 

Hydromorphone may increase the central nervous system depressant (CNS depressant) activities of 

Buprenorphine. 

#7 Amoxapine and Dronedarone Dronedarone may increase the QTc-prolonging activities of Amoxapine. 

#8 Bisoprolol and Diazoxide Diazoxide may increase the hypotensive activities of Bisoprolol. 

#9 Carbamazepine and Droneda-

rone 

The metabolism of Carbamazepine can be increased when combined with Dronedarone. 

#10 Bisoprolol and Diclofenac Diclofenac may decrease the antihypertensive activities of Bisoprolol. 

We list ten confirmed drug-drug interaction events in Ta-
ble 5. For instance, the interaction between Etodolac and 
Naproxen is predicted to cause event #2. The interaction be-
tween the two drugs is described as “The risk or severity of 
adverse effects can be increased when Etodolac is combined 
with Naproxen.”. The description of interaction which may 
lead to event #5 between Homatropine and Donepezil is 
“The therapeutic efficacy of Homatropine can be decreased 
when used in combination with Donepezil.”. The case stud-
ies demonstrate the promise of our method to detect the po-
tential DDI-associated events. 

4 CONCLUSION 

In this paper, we study how to attentively integrate multiple 
drug features to predict unknown drug-drug interactions 
and then propose a deep attention neural network frame-
work named DANN-DDI. We evaluate the performance of 
our proposed model against several state-of-the-art predic-
tion methods and baseline methods. Extensive experimental 
results demonstrate the superiority of DANN-DDI com-
pared to the comparison methods and the efficacy of the at-
tention mechanism. More importantly, the proposed model 
can also find novel interactions and DDI-associated events. 

In the future, we will consider optimizing and improving 
our work from the following aspects: (1) In the original data 
set, imbalanced data and the noise in the data bring chal-
lenges to the prediction accuracy. The future direction is to 
solve the problem of the imbalanced learning and enhance 
the robustness to noise; (2) Our method can be used to pre-
dict DDI-associated events, but there is still room for im-
provement. Some events lack detailed descriptions and 

proved interactions, and the interpretability of the model is 
needed. Enhancing the accuracy of DDI-associated event 
prediction can also be our future work. 
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APPENDIX 

The source codes of DANN-DDI are available at the follow-
ing GitHub repository.  

https://github.com/naodandandan/DANN-DDI 
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