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Abstract:  1 

The nature of the neural code underlying conceptual knowledge remains a major unsolved 2 

problem in cognitive neuroscience. Three main types of information have been proposed as 3 

candidates for the neural representations of lexical concepts: taxonomic (i.e., information about 4 

category membership and inter-category relations), distributional (i.e., information about patterns 5 

of word co-occurrence in natural language use), and experiential (i.e., information about sensory-6 

motor, affective, and other features of phenomenal experience engaged during concept 7 

acquisition). In two experiments, we investigated the extent to which these three types of 8 

information are encoded in the neural activation patterns associated with hundreds of English 9 

nouns from a wide variety of conceptual categories. Participants made familiarity judgments on 10 

the meaning of written nouns while undergoing functional MRI. A high-resolution, whole-brain 11 

activation map was generated for each noun in each participant’s native space. These word-12 

specific activation maps were used to evaluate different representational spaces corresponding to 13 

the three types of information described above. In both studies, we found a striking advantage for 14 

experience-based models in most brain areas previously associated with concept representation. 15 

Partial correlation analyses revealed that only experiential information successfully predicted 16 

concept similarity structure when inter-model correlations were taken into account. This pattern 17 

of results was found independently for object concepts and event concepts. Our findings indicate 18 

that the neural representation of conceptual knowledge primarily encodes information about 19 

features of experience, and that - to the extent that it is represented in the brain - taxonomic and 20 

distributional information may rely on such an experience-based code. 21 
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Significance Statement: 1 

The ability to identify individual objects or events as members of a kind (e.g., “knife”, “dog”, 2 

“party”) is a fundamental aspect of human cognition. It allows us to quickly access a wealth of 3 

information pertaining to a newly encountered object or event and use it to guide our behavior. 4 

How is this information represented in the brain? We used functional MRI to analyze patterns of 5 

brain activity corresponding to hundreds of familiar concepts, and quantitatively characterized 6 

the informational structure of these patterns. Our results indicate that, throughout the brain, 7 

conceptual knowledge is stored as patterns of neural activity that encode primarily experiential 8 

information grounded in modality-specific neural systems, challenging the idea that concept 9 

representations are independent of sensory-motor experience. 10 

Main Text: 11 

The capacity for conceptual knowledge is arguably one of the most defining properties of 12 

human cognition, yet it is still unclear how concepts are represented in the brain. Our tendency to 13 

organize objects, events and experiences into discrete categories has led most authors – dating 14 

back at least to Plato (1) – to take categorical structure as the central property of conceptual 15 

knowledge (2). Information about category membership and inter-category relations – i.e., 16 

taxonomic information – is traditionally seen as a hierarchically structured network, with basic 17 

level categories (e.g. “apple”, “orange”) grouped into superordinate categories (e.g., “fruit”, 18 

“food”), and subdivided into subordinate categories (e.g., “Gala apple”, “tangerine”) (3). A 19 

prominent account in cognitive science maintains that such categories are represented in the 20 

mind/brain as purely symbolic entities, whose semantic content and usefulness derive primarily 21 

from how they relate to each other (4, 5). Such representations are seen as qualitatively distinct 22 
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from the sensory-motor processes through which we interact with the world, much like the 1 

distinction between software and hardware in digital computers. 2 

An “experiential” representational system, on the other hand, encodes information about the 3 

experiences that led to the formation of particular concepts. It is motivated by a view, often 4 

referred to as embodied, grounded, or situated semantics, in which concepts arise primarily from 5 

generalization over particular experiences, as information originating from the various modality-6 

specific systems (e.g., visual, auditory, tactile, motor, affective, etc.) is combined and re-encoded 7 

into progressively more schematic representations that are stored in memory. Since, in this view, 8 

there is a degree of continuity between conceptual and modality-specific systems, concept 9 

representations are thought to reflect the structure of the perceptual, affective and motor 10 

processes involved in those experiences (6–9). 11 

A third type of information that can be encoded in concept representations, known as 12 

“distributional” information, pertains to statistical patterns of co-occurrence between lexical 13 

concepts (i.e., concepts that are widely shared within a population and denoted by a single word) 14 

in natural language usage. As is now widely appreciated, these co-occurrence patterns encode a 15 

substantial amount of information about word meaning (10–12). Although word co-occurrence 16 

patterns primarily encode contextual associations, such as those connecting the words “cow”, 17 

“barn”, and “farmer”, semantic similarity information is indirectly encoded, since words with 18 

similar meanings tend to appear in similar contexts (e.g., “cow” and “horse”, “pencil” and 19 

“pen”). This has led some authors to propose that concepts may be represented in the brain, at 20 

least in part, in terms of distributional information (10, 13). 21 

Whether, and to what extent, each of these types of information plays a role in the neural 22 

representation of conceptual knowledge is a topic of intense research and debate. A large body of 23 
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evidence has emerged from behavioral studies, functional neuroimaging experiments, and 1 

neuropsychological assessment of patients with semantic deficits, with results typically 2 

interpreted in terms of taxonomic (14–19), experiential (8, 20–25), or distributional (26–30) 3 

representations. However, the relative role of these representational systems in the neural 4 

representation of concepts remains controversial, in part because the evidence available is 5 

consistent with all three (18, 31, 32). Although these systems are qualitatively distinct, their 6 

representations of common lexical concepts are strongly inter-correlated: patterns of word co-7 

occurrence in natural language are driven in part by taxonomic and experiential similarities 8 

between the concepts to which they refer, and the taxonomy of natural categories is 9 

systematically related to the experiential attributes of the exemplars (33, 34). Consequently, the 10 

empirical evidence currently available is unable to discriminate between these theoretical 11 

accounts. 12 

We addressed this issue by deriving quantitative predictions from each of these 13 

representational systems for the similarity structure of a large set of concepts and then using 14 

representational similarity analysis (RSA) with high-resolution functional MRI (fMRI) to 15 

evaluate those predictions. Unlike the more typical cognitive subtraction technique, RSA focuses 16 

on the information structure of the pattern of neural responses to a set of stimuli (35). For a given 17 

stimulus set (e.g., words), RSA assesses how well the representational similarity structure 18 

predicted by a model matches the neural similarity structure observed from fMRI activation 19 

maps (Figure 1). This allowed us to directly compare, in quantitative terms, predictions derived 20 

from the three representational systems. 21 

 22 
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Results 1 

In two experiments, participants made familiarity judgments on a large number of lexical 2 

concepts, selected from a broad range of taxonomic categories, while undergoing fMRI (see 3 

Materials and Methods section for details). Written nouns were presented, one at a time, on a 4 

computer screen, and participants rated each one according to how often they encountered the 5 

corresponding entity or event in their daily lives, on a scale from 1 (“rarely or never”) to 3 6 

(“often”). RSAs were conducted for a set of cortical areas previously associated with concept 7 

representation (36–38):  angular gyrus (AG), supramarginal gyrus (SMG), superior temporal 8 

gyrus (STG), middle temporal gyrus (MTG), inferior temporal gyrus (ITG), anterior temporal 9 

lobe (ATL, including temporal cortical areas anterior to y = -2), parahippocampal gyrus (PHG), 10 

inferior frontal gyrus (IFG), caudal middle frontal gyrus (cMFG), superior frontal gyrus (SFG), 11 

precuneus (PCN), posterior cingulate gyrus (PCG), rostral anterior cingulate gyrus (rACG), and 12 

fusiform gyrus (FusG). These regions were anatomically defined following the Desikan-Killiany 13 

parcellation map (39). We also conducted RSA for a distributed, functionally defined region-of-14 

interest (ROI) based on the voxel-based meta-analysis by Binder et al. (36) (Figure 1D; 15 

heretofore referred to as “semantic network ROI”). The neural similarity structure of concept 16 

representations in this ROI reflected not only information encoded in the activation patterns 17 

within each cortical area, but also in the pattern of activations across different areas. 18 

From the fMRI data, we generated brain activation maps for each concept, reflecting the 19 

unique spatial pattern of neural activity for that concept (Figure 1). From these maps, a neural 20 

representational dissimilarity matrix (RDM) was generated for each ROI. RDMs consisted of all 21 

pairwise dissimilarities (1 – correlation) between the vectorized activation patterns across voxels. 22 

For each representational model investigated, a model-based RDM was computed, and its 23 
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similarity to the neural RDM was evaluated via Spearman correlation. We evaluated six different 1 

representational models: two based on taxonomic information, two based on experiential 2 

information, and two based on distributional information (see details below). The resulting 3 

profile of relative model performances provided an assessment of the degree to which each type 4 

of information is reflected in the neural activation patterns corresponding to different concepts. 5 

Because the RDMs from different models were partly correlated with each other (Table S1), we 6 

also conducted partial correlation RSAs to evaluate the unique contribution of each model to 7 

neural concept representation. We stress that the representational models investigated here are 8 

models of information content (i.e., taxonomic, experiential, or distributional); they are not 9 

meant to model the neural architecture through which information is encoded in the brain (see 10 

Supplementary Materials for extended model descriptions).  11 

Taxonomic models. WordNet is the most influential representational model based on 12 

taxonomic information, having been used in several neuroimaging studies to model semantic 13 

content (17, 28, 40, 41). It is organized as a knowledge graph in which words are grouped into 14 

sets of synonyms (“synsets”), each expressing a distinct concept. Synsets are richly 15 

interconnected according to taxonomic relations, resulting in a hierarchically structured network 16 

encompassing all noun concepts. Concept similarity is computed based on the shortest path 17 

connecting the two concepts in this network. 18 

In contrast to WordNet, which provides a comprehensive taxonomy of lexical concepts, the 19 

Categorical model was customized to encode the particular taxonomic structure of the concept 20 

set in each study, based on a set of a priori categories. Therefore, the Categorical model ignores 21 

concept categories that were not included in the study, such as “furniture” or “clothing”. To 22 

reduce the level of subjectivity involved in the assignment of items to categories and in the 23 
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evaluation of inter-category similarities, we tested 18 a priori versions of the Categorical model, 1 

with different numbers of categories and different levels of hierarchical structure, for the 2 

concepts in Study 1 (Figure S1). Each version was tested via RSA against the fMRI data, and the 3 

best performing version was selected for comparisons against other types of models. The 4 

selected model for Study 1 (model N in Figure S1) consisted of 19 hierarchically structured 5 

categories: Abstract (Mental Abstract, Social Abstract, Social Event, Other Abstract), Event 6 

(Social Event, Concrete Event), Animate (Animal, Human, Body Part), Inanimate (Artifact 7 

[Musical Instrument, Vehicle, Other Artifact], Food, Other Inanimate), and Place.  8 

In Study 2, the Categorical model consisted of 2 higher-level categories – Object and Event – 9 

each consisting of 4 sub-categories (Animal, Plant/Food, Tool, Vehicle; Sound Event, Social 10 

Event, Communication Event, Negative Event). 11 

Experiential models. The Exp48 model consists of 48 dimensions corresponding to distinct 12 

aspects of phenomenal experience, such as color, shape, manipulability, pleasantness, etc. (Table 13 

S2).  This model is based on the experiential salience norms of Binder et al. (34), in which each 14 

dimension encodes the relative importance of an experiential attribute according to crowd-15 

sourced ratings. Exp48 encompasses all perceptual, motor, spatial, temporal, causal, valuation, 16 

and valence dimensions present in those norms. 17 

The SM8 model consists of a subset of the Exp48 dimensions, focusing exclusively on 18 

sensory-motor information. These dimensions represent the relevance of each sensory modality 19 

(vision, audition, touch, taste, and smell) and of actions performed with each motor effector 20 

(hand, foot, and mouth) to the concept. The concept “apple”, for instance, has high values for 21 

vision, touch, taste, mouth actions, and hand actions, and low values for the other dimensions.  22 
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Distributional models. Distributional information was modeled with two of the most 1 

prominent distributional models available: word2vec (42) uses a deep neural network trained to 2 

predict a word based on a context window of a few words preceding and following the target 3 

word. In contrast, GloVe (43) is based on the ratio of co-occurrence probabilities between pairs 4 

of words across the entire corpus. In a comparative evaluation of distributional semantic models 5 

(12), word2vec and GloVe emerged as the two top performing models in predicting human 6 

behavior across a variety of semantic tasks. 7 

Study 1 evaluated these six models with a set of 300 concepts spanning a wide variety of 8 

semantic categories, including animate objects (e.g., “elephant”, “student”), places (e.g., 9 

“kitchen”, “beach”), artifacts (e.g., “comb”, “rocket”) and other inanimate objects (e.g., “cloud”, 10 

“ice”), events (e.g., “hurricane”, “election”), and highly abstract concepts (e.g., “fate”, 11 

“hygiene”) (Figure 2A, Tables S3-S4).   12 
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 1 

Figure 1: Representational similarity analysis. A. An fMRI activation map was generated for 2 

each concept presented in the study, and the activation across voxels was reshaped as a vector. B. 3 

The neural representational dissimilarity matrix (RDM) for the stimulus set was generated by 4 

computing the dissimilarity between these vectors (1 – correlation) for every pair of concepts. C. 5 

A model-based RDM was computed from each model, and the similarity between each model’s 6 

RDM and the neural RDM was evaluated via Spearman correlation. D. Cortical areas included in 7 

the functionally defined semantic network ROI (36) (red). 8 
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Figure 2: Study 1. A. Dissimilarity matrices for the representational spaces tested. Rows and 1 

columns represent each of the 300 concepts used in the study, grouped according to the 2 

Categorical model to reveal taxonomic structure.  B. RSA results for the semantic network ROI. 3 

Experiential (blue), taxonomic (purple), and distributional (red) models; Left: Correlations 4 

between the group-averaged neural RDM and each model-based RDM. Center: Partial 5 

correlation results for each model while controlling for its similarity with all other models. Right: 6 

Partial correlation results when Exp48 was excluded from the analysis. C. Pairwise partial 7 

correlations for the semantic network ROI, with blue bars representing Exp48 (left) or SM8 8 

(right) while controlling for its similarity to each of the other model-based RDMs; yellow bars 9 

correspond to each of the other model-based RDMs while controlling for their similarity to the 10 

model represented in blue. *** p < .0005, ** p < .005, * p < .05, Mantel test; solid bar: p < .001; 11 

dashed bar p < .05, permutation test. All p values are FDR-corrected for multiple comparisons (q 12 

= .05). Error bars represent the standard error. 13 

  14 
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Study 1 1 

Study1 revealed that all six models predicted the similarity structure of concept-related 2 

neural activation patterns in left AG, PCN, SFG, and IFG (Figures S2 and S3). In all of these 3 

areas, as well as in left and right PCG, left PHG, right IFG, and right SFG, the Exp48 model 4 

achieved the strongest correlation. SM8 did not perform as well as Exp48, and this difference 5 

reached significance in several ROIs, particularly in the left IFG. The same areas also showed a 6 

significant advantage for Exp48 over WordNet. The difference between Exp48 and the 7 

Categorical model reached significance in left AG, PCN, PC, and PHG, and in right IFG and 8 

SFG. There were no significant differences between Categorical and WordNet, although there 9 

was a trend toward higher correlations for Categorical in most areas. Relative to other models, 10 

the Categorical model performed best in the left IFG, STG, MTG, and SMG, and in the right 11 

AG. Several areas showed a trend toward lower performance for word2vec and GloVe relative to 12 

the other models, and in most areas these two models performed similarly, with two exceptions: 13 

in left IFG, GloVe significantly outperformed word2vec, while the inverse effect was found in 14 

right PCN.  Intriguingly, in none of the ROIs was Exp48 significantly outperformed by another 15 

model, although Categorical was the only model to reach significance in the left STG and the 16 

right cMFG. 17 

The functionally defined semantic network ROI reflected the overall pattern observed across 18 

the other ROIs, with overall stronger correlations (Figure 2B, left). Exp48 performed 19 

significantly better than any other model, with no other differences between models reaching 20 

significance. To investigate the unique contribution of each type of information to the similarity 21 

structure of neural activation patterns, we conducted partial correlation RSAs. These analyses 22 

assessed how well each model explained the neural data after controlling for its similarity to 23 
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other models. We conducted RSAs with the RDM of each model after regressing out the RDMs 1 

of all other models. As shown in Figure 2B (center), only Exp48 explained significant variance 2 

in the neural data after controlling for the other models. To verify whether Exp48 individually 3 

explains all of the variance accounted for by each of the other models, we performed pairwise 4 

partial correlation RSAs (Figure 2C, left). These analyses showed that no other model accounted 5 

for any measurable additional variance after controlling for their similarity to Exp48. In other 6 

words, Exp48 was the only model that made unique contributions to explaining the 7 

representational structure of lexical concepts in the semantic network ROI, while the other 8 

models only predicted the data to the extent that their similarity structure correlated with that of 9 

Exp48.   10 

We then investigated whether information about the relative importance of eight sensory-11 

motor modalities, by itself, successfully predicted the neural similarity structure of concepts after 12 

controlling for taxonomic and distributional information. The results showed that, when Exp48 13 

was not included in the partial correlation analysis, SM8 remained highly significantly correlated 14 

with the data after controlling for all other models, while WordNet, word2vec and GloVe did not 15 

(Figure 2B, right). Categorical was the only other model displaying a significant partial 16 

correlation, although numerically lower and less significant than that of SM8. Pairwise partial 17 

correlation RSAs showed that SM8 did not explain all the variance accounted for by WordNet, 18 

word2vec, or Glove; however, there was a trend toward stronger correlations for SM8 than for 19 

any of the non-experiential models (Figure 2C, right). Together, these results suggest that 20 

experiential information – including but not restricted to sensory-motor information – plays a 21 

fundamental role in the neural representation of conceptual knowledge in heteromodal cortical 22 
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areas, while taxonomic and distributional representational spaces may contribute little, if any, 1 

independent information. 2 

Study 2 3 

Study 2 was designed to further investigate the information content of concept 4 

representations with a different set of concepts, a larger participant sample size, and matched 5 

subsets of object and event concepts. This study examined whether the pattern of model 6 

performances found in Study 1 would be observed independently for objects and events, or – 7 

given their markedly distinct ontological status – whether these two types of concepts would 8 

differ in the degree to which they encode experiential, taxonomic, and distributional information. 9 

The 320 concepts included in the study were selected to be typical exemplars of four categories 10 

of objects (animals, tools, plants/foods, and vehicles) and four categories of events (sounds, 11 

negative events, social events, and communication events). The larger sample size (36 12 

participants) allowed for statistical testing across participants as well as across stimuli (i.e., 13 

words). 14 

In all ROIs, RSAs based on the entire concept set (i.e., all categories included) revealed an 15 

advantage for experiential models relative to taxonomic and distributional models (Figures S4 16 

and S5). As in Study 1, correlations were particularly strong in the left IFG, AG, and PCN, with 17 

the IFG showing substantially stronger correlations than other ROIs. For all models, correlations 18 

were stronger in left hemisphere ROIs than in their right hemisphere homologs, consistent with 19 

left lateralization of lexical semantic representations. In almost all ROIs examined (28 out of 30), 20 

correlations were significantly stronger for the experiential models than for the taxonomic and 21 

distributional models. Nowhere did a taxonomic or distributional model perform significantly 22 

better than SM8 or Exp48. Exp48 significantly outperformed SM8 in left ATL, STG, PCG, AG, 23 
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MTG, IFG, FusG, cMFG, and SFG; and in right PCG, AG, SMG, cMFG, and SFG. No 1 

significant differences between the two experiential models were found in the other ROIs.  2 

In the semantic network ROI, Exp48 outperformed all other models when tested across 3 

participants and across words (Figures 3B, left and S6, left), and, in both analyses, it was the 4 

only model that retained explanatory power after controlling for the predictions of all other 5 

models (Figure 3B, center, and S6, center). SM8 also performed significantly better than all non-6 

experiential models, and Categorical outperformed WordNet, word2vec, and GloVe. 7 

Partial correlation RSAs revealed that Exp48 accounted for all the variance explained by the 8 

other models (Figure 3B, center and 3C, left). When Exp48 was left out of the analysis, SM8 and 9 

Categorical together accounted for all the variance explained (Figure 3B, right), with SM8 10 

performing significantly better than Categorical. Confirming the main findings of Study 1, these 11 

results indicate that lexical concepts are encoded in high-level heteromodal cortical areas 12 

primarily in terms of experiential information. 13 

 14 
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Figure 3. Study 2. A. Dissimilarity matrices for the representational spaces tested. Rows and 1 

columns have been grouped according to the Categorical model to reveal taxonomic structure.  2 

B. RSA results across participants for the semantic network ROI. Group mean values of the 3 

correlations between each participant’s neural RDM and the model-based RDMs. Full RSA 4 

correlations (left) and partial correlations with Exp48 included (center) and excluded (right). C. 5 

Pairwise partial correlations, with blue bars representing Exp48 (left) or SM8 (right) while 6 

controlling for its similarity to each of the other models; yellow bars correspond to each of the 7 

other models while controlling for their similarity to the model represented in blue. *** p < 8 

.0005, ** p < .005, * p < .05; solid bar: p < .001; dashed bar p < .05; Wilcoxon signed-rank tests. 9 

All p values are FDR-corrected for multiple comparisons (q = .05). Error bars represent the 10 

standard error of the mean. 11 

  12 
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Figure 4. Results for object concepts (left column) and event concepts (right column) for the 1 

semantic network ROI in Study 2 (across participants). A. RSA results. B. Partial correlations. C. 2 

Pairwise partial correlations for Exp48. D. Partial correlations with Exp48 excluded from the 3 

analysis. E. Pairwise partial correlations for SM8. Color and symbol conventions as in Figure 3. 4 
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Separate analyses for objects and events revealed two main differences between these two 1 

types of concepts (Figures 4, S7-S10). First, RSA correlations were substantially higher for 2 

events than for objects, across all three types of representational models, in almost all ROIs. This 3 

result reflects the higher variability of pairwise similarities for the neural representations of event 4 

concepts, as evidenced by the higher noise ceiling in this condition (mean noise ceiling across 5 

anatomical ROIs, lower bound = 0.17) relative to object concepts (0.14). Inspection of the neural 6 

RDM (Figure S11) reveals a more pronounced categorical structure for events than for objects, 7 

with particularly high pairwise similarities for communication events and social events.  8 

Except for the left AG, WordNet appears to perform worse for events than for objects in all 9 

other ROIs, both in absolute terms and in relation to other models. This is likely due to 10 

taxonomic trees for events being relatively shallower in this model (mean tree depth for objects 11 

and events is 10.6 and 8.1, respectively), resulting in a narrower range of possible pairwise 12 

similarities. Apart from WordNet, the overall profile of relative model performances was similar 13 

across objects and events. For both types of concepts, experiential models achieved the strongest 14 

RSA correlations in most anatomical regions, with no ROIs showing significantly stronger 15 

correlations for any taxonomic or distributional model. Partial correlation RSAs in the semantic 16 

network ROI showed that, for object concepts, Exp48 accounted for all the variance explained 17 

by any other model (Figure 4, B and C). For events, SM8 and GloVe maintained relatively weak 18 

but statistically significant correlations after controlling for Exp48. SM8 was second to Exp48 in 19 

explaining the most variance for both objects and events (Figure 4, D and E). 20 

Discussion 21 

We conducted a quantitative assessment of the degree to which three different kinds of 22 

information are encoded in the neural representations of lexical concepts. We found that Exp48 – 23 
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a representational model based on 48 distinct experiential dimensions grounded in known 1 

neurocognitive systems – consistently outperformed taxonomic and distributional models in 2 

predicting the neural similarity structure of a large number of lexical concepts (524 across both 3 

studies), spanning a wide variety of semantic categories. Additionally, a model based on eight 4 

sensory-motor dimensions, reflecting the relative importance of neural systems dedicated to 5 

vision, hearing, touch, taste, and smell, as well as motor control of the hands, mouth, and feet, 6 

matched or exceeded the performance of the best performing taxonomic and distributional 7 

models in all ROIs associated with concept representation (except for the left IFG in Study 1, 8 

where the Categorical model performed better). These results provide compelling evidence that 9 

experiential information grounded in sensory, motor, spatial, temporal, affective, and reward 10 

neural systems plays a fundamental role in the neural representation of concepts – not only in 11 

sensory-motor cortical areas, as shown in previous studies – but also in high level association 12 

areas. 13 

In both experiments, Exp48 was the only model whose predictions correlated with the neural 14 

similarity structure of the entire concept set when controlling for the predictions of all other 15 

models, and in Study 2 this was also true for object concepts in particular. For event concepts, 16 

SM8 was the only other model that independently accounted for variance in the neural data. The 17 

fact that taxonomic and distributional models did not predict the neural RDM when controlling 18 

for the predictions of Exp48 alone (Figures 2C and 3C, left panel) indicates that those models 19 

provide no measurable additional information about concept similarity structure. This suggests 20 

that taxonomic information, while seemingly central to the organization of conceptual 21 

knowledge, may be represented only indirectly, via its interdependency with experiential 22 

information (34). 23 
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One limitation of the present study is that the representational spaces used to model 1 

experiential information content are relatively coarse. Neural concept representations must 2 

encode detailed information about aspects of the phenomenal experience associated with 3 

different lexical concepts, such as particular colors, shapes, or motor schemas, but Exp48 and 4 

SM8 only encode the relative importance of each kind of experience. In other words, these 5 

models represent information about how much the neural system underlying a particular process 6 

(e.g., color perception, motor control of the hand) contributes to a lexical concept representation, 7 

but it contains no information about the particular representations contributed by each system 8 

(e.g., different hues or different motor schemas). This coarseness, which results from practical 9 

limitations in obtaining participant ratings about fine-grained experiential attributes, imposes 10 

limitations on our ability to detect experiential information in the neural data. Nevertheless, it is 11 

still surprising that these models performed so well compared to some of the most sophisticated 12 

taxonomic and distributional models available, pointing to the development of more detailed 13 

experiential models as a promising direction for future work. 14 

Together, the present results indicate that concept representations in heteromodal cortical 15 

areas primarily encode information about features of phenomenal experience grounded in 16 

sensory-motor, spatiotemporal, affective, and reward systems. While other studies have shown 17 

that areas involved in sensory perception and motor control are activated during concept retrieval 18 

(8, 22, 24), our results imply that information pertaining to these systems is directly encoded in 19 

high-level association areas during concept retrieval. The idea that concepts are neurally 20 

represented as amodal symbols whose representational code is independent of modality-specific 21 

systems has a long history (18, 31); however, the finding that taxonomic and distributional 22 

information did not make any measurable independent contribution to the neural representation 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.16.435524doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435524
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

24 
 

of concepts in high-level cortical areas challenges that view. Instead, it supports a view in which 1 

concept representations emerge from the multimodal integration of signals originating in 2 

modality-specific systems during concept acquisition (9, 24). In this framework, concept 3 

retrieval consists of the transient activation of a neuronal cell assembly distributed across the 4 

heteromodal cortical hubs that make up the semantic network, with possible downstream 5 

activation of the relevant modality-specific assemblies depending on contextual demands. 6 

Further research is required to determine the extent to which different experiential features 7 

contribute to concept representation in different parts of the semantic network, and how their 8 

relative importance varies across ontological categories. 9 

In addition to their implications for the nature of the neural code underlying conceptual 10 

knowledge, the present results are also relevant to computational approaches to natural language 11 

processing in the field of artificial intelligence. They suggest that incorporating experiential 12 

information into computational models of word meaning could lead to more human-like 13 

performance. These findings can also inform the development of brain-machine interface 14 

systems by demonstrating that information about the experiential content of conceptual thought 15 

can be decoded from the spatial distribution of neural activity throughout the cortex. 16 

Materials and Methods 17 

Study 1 18 

Participants: 8 native speakers of English (4 women), ages 19-37 (mean = 28.5) took part in 19 

Study 1. Participants were all right-handed according to the Edinburgh Handedness Scale (44), 20 

had at least a high school education, and had no history of neurological or psychiatric conditions. 21 

All participants provided written informed consent following procedures approved by the 22 

Medical College of Wisconsin Institutional Review Board. 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.16.435524doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435524
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

25 
 

Stimuli: Stimuli included 300 English nouns of various categories, including concrete and 1 

abstract concepts. Nouns were relatively familiar, with mean log-transformed HAL frequency of 2 

8.7 (range 4.0–12.7) and mean age of acquisition of 6.7 years (range 2.7–13.8; English Lexicon 3 

Project  (https://elexicon.wustl.edu) (45); Tables S3-S4). 4 

Task: Participants rated each noun according to how often they encountered the 5 

corresponding entity or event in their daily lives, on a scale from 1 (“rarely or never”) to 3 6 

(“often”). The task was designed to encourage semantic processing of the word stimuli without 7 

emphasizing any particular semantic features or dimensions. Participants indicated their response 8 

by pressing one of three buttons on a response pad with their right hand. On each trial, a noun 9 

was displayed in written form on the center of the screen for 500 ms, followed by a 3.5-second 10 

blank screen. Each trial was followed by a central fixation cross with variable duration between 1 11 

and 4 s (mean = 2 s). The entire stimulus set was presented 6 times over the course of the study. 12 

In each presentation, the order of the stimuli was randomized. Each presentation was split into 3 13 

runs of 100 trials each. The task was performed over the course of 3 scanning sessions on 14 

separate days, with 2 presentations (6 runs) per session. Each run started and ended with an 8-15 

second fixation cross. 16 

Equipment: Scanning was performed on a GE Healthcare Discovery MR750 3T MRI 17 

scanner at the Medical College of Wisconsin’s Center for Imaging Research. Stimulus 18 

presentation and response recording were performed via E-prime 2.0 software running on a 19 

Windows desktop computer and a Psychology Software Tools Serial Response Box. Stimuli 20 

were back-projected on a screen positioned behind the scanner bore and viewed through a mirror 21 

attached to the head coil. 22 
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Scanning protocol: MRI scanning was conducted over 3 separate sessions on different days. 1 

Each session consisted of a structural T1-weighted MPRAGE scan, a structural T2-weighted 2 

CUBE scan, 3 pairs of T2-weighted spin echo echo-planar scans (5 volumes each) acquired with 3 

opposing phase-encoding directions (for correction of geometrical distortions in the functional 4 

images), and 6 gradient echo echo-planar runs using simultaneous multi-slice acquisition (8x 5 

multiband, TR = 1200 ms, TE = 33.5 ms, 512 volumes, flip angle = 65, matrix = 104 x 104, slice 6 

thickness = 2.0 mm, axial acquisition, 72 slices, field-of-view = 208 mm, voxel size = 2 x 2 x 2 7 

mm). 8 

Data analysis: Functional MRI images were pre-processed (slice timing correction, motion 9 

correction, distortion correction, volume alignment) using AFNI (46). Statistical analyses were 10 

conducted in each participant’s original coordinate space. Activation (beta) maps were generated 11 

for each noun relative to the mean signal across all other nouns using AFNI’s 3dDeconvolve. 12 

Response time z scores and head motion parameters were included as regressors of no interest. 13 

Anatomically defined ROIs were created based on the probabilistic Desikan-Killiany parcellation 14 

atlas included in AFNI (TT_desai_dk_mpm). The ATL ROI was created by the union of STG, 15 

MTG, ITG, temporal pole, and entorhinal cortex ROIs, cropped to exclude voxels posterior to y 16 

= -2 (37).  The functionally defined semantic network ROI corresponded to the 1% most 17 

consistently activated voxels in an activation likelihood estimate (ALE) meta-analysis of 120 18 

neuroimaging studies of semantic language processing (36) (main text Figure 1D). All ROI 19 

masks were created in MNI coordinate space and non-linearly aligned to each participant’s 20 

anatomical scan using AFNI’s 3dQwarp. Neural RDMs were computed for each ROI as the 21 

Spearman correlation distance (1 – rho) for all pairs of concepts. A group-averaged neural RDM 22 

was computed by averaging the neural RDMs of all participants. A model-based RDM was 23 
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computed from each model (except WordNet) as the cosine distance (1 – cosine) for all pairs of 1 

concept vectors. The WordNet RDM was based on the Wu & Palmer similarity metric (WPsim), 2 

which relies on the depth of the two synsets in the taxonomic tree and that of their Least 3 

Common Subsumer (LCS, i.e., their most specific common hypernym): 4 

 5 

We used the package Natural Language Toolkit (NLTK 3.4.5; https://www.nltk.org) to 6 

compute WPsim; WordNet dissimilarity was computed as 1 – WPsim.  7 

The RSAs computed the Spearman correlation between the group-averaged neural RDMs 8 

and each model-based RDM. Statistical significance was tested using the Mantel test with 10,000 9 

permutations. Differences in RSA correlations between models were assessed for significance 10 

via permutation tests. Significance was controlled for multiple comparisons via false discovery 11 

rate (FDR) with q = .05. Since the model-based RDMs can be strongly correlated between 12 

models (Table S1), these analyses were supplemented with partial correlation analyses to reveal 13 

the unique contribution of each model after controlling for other models. 14 

Study 2 15 

Participants: 36 native speakers of English (21 women), ages 20-41 (mean = 28.7) took part 16 

in Study 2. Participants were all right-handed according to the Edinburgh Handedness Scale (44), 17 

had at least a high school education, and had no history of neurological or psychiatric conditions. 18 

None of the participants took part in Study 1. 19 

Stimuli: Stimuli included 160 object nouns (animals, foods, tools, and vehicles – 40 of each) 20 

and 160 event nouns (social events, verbal communication events, non-verbal sound events, 21 
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negative events – 40 of each) (Tables S5-S6). Of the 320 concepts included in Study 2, 62 1 

objects and 34 events were also used in Study 1. 2 

Task: Task instructions were identical to Study 1. On each trial, a noun was displayed in 3 

written form on the center of the screen for 500 ms, followed by a 2.5-second blank screen. Each 4 

trial was followed by a central fixation cross with variable duration between 1 and 3 s (mean = 5 

1.5 s). The entire stimulus set was presented 6 times over the course of the study in randomized 6 

order. Each presentation was split into 4 runs of 80 trials each. The task was performed over the 7 

course of 3 scanning sessions on separate days, with 2 presentations (8 runs) per session. Each 8 

run started and ended with an 8-second fixation cross. 9 

Equipment: Scanning was performed on a GE Healthcare Premier 3T MRI scanner at the 10 

Medical College of Wisconsin’s Center for Imaging Research. Stimulus presentation and 11 

response recording were performed with Psychopy 3 software (47) running on a Windows 12 

desktop computer and a Celeritas fiber optic response system (Psychology Software Tools, Inc.). 13 

Stimuli were displayed on an MRI-compatible LCD screen positioned behind the scanner bore 14 

and viewed through a mirror attached to the head coil. 15 

Scanning protocol: MRI scanning was conducted on 3 separate visits. Each session 16 

consisted of a structural T1-weighted MPRAGE scan, a structural T2-weighted CUBE scan, 3 17 

pairs of T2-weighted spin echo echo-planar scans (5 volumes each) acquired with opposing 18 

phase-encoding directions, and 8 gradient echo echo-planar functional scans (4x multiband, TR = 19 

1500 ms, TE = 23 ms, 512 volumes, flip angle = 50, matrix = 104 x 104, slice thickness = 2.0 20 

mm, axial acquisition, 72 slices, field-of-view = 208 mm, voxel size = 2 x 2 x 2 mm).  21 
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Data analysis: Data preprocessing and statistical analysis were performed as described in 1 

Study 1. RDMs for the models tested in Study 2 are depicted in Figure 3 (main text), and inter-2 

model correlations are displayed in Table S1.  3 

RSAs were conducted in two ways. In the analysis across stimuli (i.e., words), voxel-based 4 

RDMs from all participants were combined into a group-averaged neural RDM, and, for each 5 

model, a single correlation was computed between this RDM and the model-based RDM. These 6 

correlations were tested for significance via the Mantel test with 10,000 permutations. In the 7 

analysis across participants, a correlation was computed, for each model, between each 8 

participant’s neural RDM and the model-based RDM. The Fisher Z-transformed correlation 9 

coefficients were then averaged across participants to compute the group mean rho, and 10 

significance tested via Wilcoxon’s Signed Rank test. 11 

Differences in RSA correlations between models were tested across words via permutation 12 

test (Mantel) and across participants via Wilcoxon’s Signed-Rank test. Significance was 13 

controlled for multiple comparisons via false discovery rate (FDR) with q = .05. 14 
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