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Abstract 
Plants employ sensor-helper pairs of NLR immune receptors to recognize pathogen effectors 
and activate immune responses. Yet the subcellular localization of NLRs pre- and post-
activation during pathogen infection remains poorly known. Here we show that NRC4, from 
the ‘NRC’ solanaceous helper NLR family, undergoes dynamic changes in subcellular 
localization by shuttling to and from the plant-pathogen haustorium interface established 
during infection by the Irish potato famine pathogen Phytophthora infestans. Specifically, 
prior to activation, NRC4 accumulates at the extra-haustorial membrane (EHM), presumably 
to mediate response to perihaustorial effectors, that are recognized by NRC4-dependent 
sensor NLRs. However not all NLRs accumulate at the EHM, as the closely related helper NRC2, 
and the distantly related ZAR1, did not accumulate at the EHM. NRC4 required an intact N-
terminal coiled coil domain to accumulate at the EHM, whereas the functionally conserved 
MADA motif implicated in cell death activation and membrane insertion was dispensable for 
this process.  Strikingly, a constitutively autoactive NRC4 mutant did not accumulate at the 
EHM and showed punctate distribution that mainly associated with the plasma membrane, 
suggesting that post-activation, NRC4 probably undergoes a conformation switch to form 
clusters that do not preferentially associate with the EHM. When NRC4 is activated by a 
sensor NLR during infection however, NRC4 formed puncta mainly at the EHM and to a lesser 
extent at the plasma membrane.  We conclude that following activation at the EHM, NRC4 
may spread to other cellular membranes from its primary site of activation to trigger immune 
responses.  
 
Significance statement: 
Plant NLR immune receptors function as intracellular sensors of pathogen virulence factors 
known as effectors. In resting state, NLRs localize to subcellular sites where the effectors they 
sense operate. However, the extent to which NLRs alter their subcellular distribution during 
infection remains elusive. We describe dynamic changes in spatiotemporal localization of an 
NLR protein in infected plant cells. Specifically, the NLR protein accumulates at the newly 
synthesized plant-pathogen interface membrane, where the corresponding effectors are 
deployed. Following immune recognition, the activated receptor re-organizes to form 
punctate structures that target the cell periphery. We propose that NLRs are not necessarily 
stationary immune receptors, but instead may spread to other cellular membranes from the 
primary site of activation to boost immune responses. 
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Introduction 
 
Filamentous pathogens cause devastating diseases on crops, posing a major threat to food 
security. Some oomycete and fungal pathogens produce specialised hyphal extensions called 
haustoria that invade the host cells. Haustoria are critical infection structures implicated in 
delivery of effector proteins and nutrient uptake (1–6). These specialized infection structures 
are accommodated within the plant cells but are excluded from the host cytoplasm through 
a newly synthesized membrane called the extrahaustorial membrane (EHM). An intriguing, 
yet poorly understood, observation is that the EHM is continuous with the host plasma 
membrane but is distinct in lipid and protein composition (7, 8).  Most of the proteins 
embedded in the plasma membrane, such as surface immune receptors, are excluded from 
the EHM (9–11). Despite its critical role as the ultimate interface mediating macromolecule 
exchange between the host and parasite, the mechanisms underlying the biogenesis and 
functions of the EHM are poorly understood (12). 
 
Pathogens deliver effector proteins inside the host cells to neutralize immune responses and 
enable parasitic infection. A well-studied class of effectors delivered via haustorium are the 
RXLR family of effectors secreted by P. infestans (2, 6, 13). RXLR effectors traffic to diverse 
plant cell compartments to suppress host immunity and mediate nutrient uptake. Remarkably, 
several P. infestans RXLR effectors focally accumulate at the haustorium interface and perturb 
cellular defences (7, 13–15). These include AVRblb2 and AVR1, both of which are implicated 
in targeting host defense-related secretory pathways to contribute to pathogen virulence (14, 
16).  Notably, all P. infestans isolates harbour multiple Avrblb2 paralogues (17), which are 
recognized by the broad-spectrum disease resistance gene Rpi-blb2 cloned from the wild 
potato species Solanum bulbocastanum (14, 18, 19). On the other hand AVR1 is sensed by the 
late blight resistance gene R1 which provides race specific resistance to AVR1 carrying P. 
infestans strains (20).  
 
Both Rpi-blb2 and R1 encode nucleotide-binding, leucine-rich repeat proteins (NLR) which 
belong to an NLR network in Solanaceae and other asterid plants known as the NLR REQUIRED 
FOR CELL DEATH (NRC) family. The NRC immune network members form a superclade that 
consists of about one-third of all Solanaceae NLRs, providing disease resistance to nematodes, 
viruses, bacteria, oomycetes and aphids (21). Within the NRC network, sensor NLRs 
specialized to recognize effectors secreted by the pathogens are coupled to helper NLRs 
(NRCs) that translate the defense signal into disease resistance. We recently showed that Rpi-
blb2 and R1  are ‘sensor NLRs’ that require the ‘helper NLR’ NRC4 for the immune-related 
programmed cell death known as the hypersensitive response (HR) and subsequent disease 
resistance (21).  How and where AVRblb2 and AVR1 are recognized by the NRC4 helper-sensor 
pairs, as well as the mechanism that leads to HR and disease resistance following their 
recognition, are unknown. Because AVRblb2 and AVR1 localize to the EHM (13, 14), it is likely 
that the NLR receptor pairs that sense these perihaustorial effectors also accumulate at the 
haustorial interface. So far, live cell imaging of NLRs during infection, which would allow for a 
greater understanding of NLR functions, has not been feasible due to cell death activation. 
However, recently solved structures of activated NLRs uncovered critical residues that can be 
mutated to avoid HR activation without perturbing other NLR functions such as effector 
recognition and self-oligomerization following activation (22–24). Therefore, fluorescent 
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protein fusions of these NLR mutants could be used for cell biology studies to investigate NLR 
activities during infection. 
 
All NLRs in the NRC superclade carry N terminal coiled-coil (CC) domains, a characteristic of 
the CC-NLR type of immune receptors. The recently resolved cryogenic electron microscopy 
(Cryo-EM) structures of activated/non-activated forms of the CC-NLR type of resistance 
protein AtZAR1 (22, 25), which provides resistance to several bacterial species, revealed an 
intriguing model for HR elicitation. Upon activation, AtZAR1 (hereafter ZAR1) oligomerises 
into an inflammasome-like structure, called a ‘resistosome’. The ZAR1 resistosome consists 
of five ZAR1 proteins that assemble into a pentameric structure together with the kinases 
required for ZAR1 activation.  Intriguingly, upon immune activation, the first alpha-helix (a1) 
within the CC domain of ZAR1 is exposed and the five a1 helices of the ZAR1 pentamer 
assemble into a funnel shaped structure. The resistosome is presumed to insert into the 
plasma membrane, forming a pore that could disrupt the cellular integrity or lead to ion flux 
across the membrane leading to an HR (26). This challenged the long-held view that NLRs 
execute HR and resistance through activation of downstream signalling cascades. However, 
the experimental evidence that supports this pore-forming activity and whether this model 
could be applied to other NLRs are still lacking. Furthermore, which cellular membrane the 
ZAR1 resistosome associates with remains to be determined. 
 
We recently made an exciting discovery that an N-terminal motif (“the MADA motif”) 
overlapping ZAR1’s a1 helix, with the consensus sequence MADAxVSFxVxKLxxLLxxEx exists in 
~20% of CC-NLRs from monocot and dicot species. Remarkably, this motif is preserved in all 
NRC helpers but not in their sensor mates. Intriguingly, the first 29 amino acids of NRC4 
containing the MADA motif elicited HR when fused to YFP on its C-terminus, but not when it 
is tagged with the YFP mutant that cannot oligomerize. These results indicated that the N-
terminus of NRC4 relies on a scaffold such as YFP or the rest of NRC4, to form oligomers and 
trigger cell death. Notably, we previously showed that a chimeric NRC4 construct carrying 
ZAR1’s a1 helix is functional for triggering HR and confers disease resistance when co-
expressed with Rpi-blb2 in lines lacking NRC4 (23), indicating that the proposed ZAR1 mode 
of action could be applied to NRC helpers.  
 
Although recent structural studies greatly improved our understanding of the NLR mediated 
immunity and provide unprecedented insights into NLR mode of action, subcellular 
distribution of NLRs during infection with relevant pathogens is unknown. In the absence of 
infection, NLRs have been shown to localize to various cellular compartments such as 
cytoplasm, plasma membrane, nucleus and tonoplast etc (27–31). However, determining the 
subcellular localization of NLRs during infection has not been feasible due to activation of HR 
when the corresponding effector is present. Nevertheless, it is possible to monitor the 
distribution of the NRC helpers in plants that lack the sensor NLRs specialized to recognize 
the pathogen.  The solanaceous model plant Nicotiana benthamiana is an excellent system 
to study the functioning of the Rpi-blb2-NRC4 pair as it contains a functional NRC4 but lacks 
specialized sensor NLRs that can recognize P. infestans, whereas transgenic plants carrying 
Rpi-blb2 are fully resistant to P. infestans (14, 18, 19) 
 
Here we describe the dynamic changes in spatiotemporal localization of NRC4 in response to 
infection by P. infestans. NRC4 accumulates at the newly synthesized EHM, where the 
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corresponding effectors AVRblb2 and AVR1 are deployed (13, 14). Following immune 
recognition, the activated receptor re-organizes to form punctate structures that target the 
cell periphery. Our results indicate that NLRs are not necessarily stationary immune receptors, 
but instead can alter their localisations during infection and may further spread to other 
cellular membranes from the primary site of activation to boost immune responses. 
 
Results 
 
Unlike NRC2 and ZAR1, non-activated NRC4 accumulates at the EHM during Phytophthora 
infestans infection 
It has not been possible to investigate NLR subcellular localisation during infection with 
relevant microbes due to HR cell death. However, it is feasible to monitor helper NLRs during 
infection in the absence of sensor NLRs.  N. benthamiana-P. infestans pathosystem offers 
excellent tools to investigate helper NLR functions because N. benthamiana lacks sensor NLRs 
that can prevent infection by P. infestans. N. benthamiana contains two alleles of NRC4 helper 
(NRC4a/b) which can pair with the sensor NLR Rpi-blb2 or R1 to recognize P. infestans effector 
protein AVRblb2 and R1  (14, 18, 19, 21, 23). Since both AVRblb2 and AVR1 accumulate at the 
haustorium interface (7, 13, 14), we reasoned that the corresponding sensors-helper pairs 
may be positioned at the EHM to detect these effectors.  
 
Unfortunately, the sensor NLRs Rpi-blb2 and R1 produced too low fluorescence to accurately 
monitor during infection, and produced cell death under endogenous conditions – i.e. when 
NRC4 was present. Thus, we decided to investigate the localization of fluorescently tagged 
helper NRC4 in N. benthamiana during P. infestans infection. Strikingly, consistent with the 
localization pattern of the perihaustorial AVR effectors, both N- and C-terminal fusions of 
NRC4 accumulated around the haustorium when transiently expressed (Fig 1A & B). GFP 
fusions of NRC4 produced bright fluorescent signal around the haustorium but not 
throughout the cell,  whereas in uninfected cells NRC4 showed mainly a cytoplasmic 
distribution much like the GFP control, except that NRC4 was excluded from the nucleus (Fig 
1C & E-G). We then confirmed accumulation of NRC4 around the haustorium by infection 
microscopy assays in stable transgenic 35S::NRC4-GFP N. benthamiana lines (Fig 1D & H). To 
further illustrate that NRC4’s perihaustorial accumulation pattern is not an optical artefact, 
we next co-expressed NRC4 C-terminally fused to orange fluorescent tag mKOk with GFP 
control and performed infection microscopy. In agreement with the results obtained when 
NRC4-GFP was expressed alone (Figure 1A), NRC4-mKOk produced a sharp fluorescence signal 
around the haustorium, unlike GFP control which displayed a uniform distribution pattern 
throughout the cell (Figure 1I & Movie S1). These results strongly suggest that NRC4 shifts its 
localization from cytosol to haustorium interface during infection. 
 
In many cases, fluorescent fusions of NLRs lead to inactivity. Therefore, we next determined 
whether GFP fusions of NRC4 are functional. To do this we generated CRISPR/Cas9 mutants 
of NRC4a/b in the Rpi-blb2 transgenic background (hereafter Rpi-blb2nrc4a/b) and employed a 
HR complementation assay by co-expressing AVRblb2 with GFP fusions of NRC4 or an EV:GFP 
control in mutant plants. Infiltrated leaf patches on Rpi-blb2nrc4a/b plants produced clear HR 
symptoms with C-terminally tagged NRC4 (NRC4-GFP) (n=30 plants, 100%) but not with 
EV:GFP (n=30 plants, 0%) or N-terminally tagged NRC4 (GFP-NRC4) (n=30 plants, 0%) (Fig 1J), 
showing that only the C terminal GFP fusion is functional. This was not due to reduced stability 
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of GFP-NRC4 as this construct produced a stronger protein band compared to NRC4-GFP (Fig 
S1). We further validated that NRC4-GFP but not GFP-NRC4 or EV:GFP could genetically 
complement Rpi-blb2nrc4a/b plants and provide resistance to P. infestans, (Fig 1K-N). These 
results are consistent with the finding that an N-terminal tag on ZAR1 inhibits its cell death 
function (32), possibly by blocking the a1 helix insertion into the membrane. 
 
To determine if other NLRs can also accumulate around haustoria, or if this phenomenon is 
specific to NRC4, we investigated the localization of two other MADA motif containing NLRs 
NRC2 and ZAR1.  We co-expressed NRC4-mKOk with GFP fusions of either the closely related 
helper NLR, NRC2, or the model CC-NLR, ZAR1 and performed infection microscopy. NRC2-
GFP formed unusual filaments throughout the cell, some of which associated with the EHM, 
but did not focally accumulate (Fig 1N-Q and Fig S1). Likewise, ZAR1 did not accumulate 
around the haustorium but rather showed diffuse cytoplasmic distribution in haustoriated 
cells much like the GFP control (Fig 1R-U and Fig S1). These results demonstrate that not all 
NLRs accumulate at the haustorium interface like NRC4 and that NRC4 must have unique 
features or interactors governing haustorium targeting.  
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(A-C) Single plane confocal micrographs showing Agrobacterium mediated expression of 
NRC4-GFP and GFP-NRC4 but not EV-GFP, accumulates around P. infestans haustorium. (D) 
Transgenic 35S::NRC4-GFP focally accumulates around pathogen haustoria. (E-G) 
Agrobacterium mediated expression of NRC4-GFP, GFP-NRC4 and EV-GFP all localise to the 
cytoplasm in uninfected cells. (H) Transgenic 35S::NRC4-GFP also cytoplasmic in uninfected 
cells. (I) Single plane images transiently expressing EV-GFP with NRC4-mKOk during infection 
with P. infestans showing EV-GFP does not focally accumulate around haustoria but localises 

Figure 1. NRC4, but not NRC2 or ZAR1, accumulates at the EHM 
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to cytoplasm throughout the cell, including around haustoria, whereas NRC4-mKOk 
accumulates around haustoria. Cartoons (right) describe this result further. (J-N) NRC4-GFP 
but not GFP-NRC4 or EV-GFP genetically complement CRISPR/Cas9 mutation of NRC4a/b in 
Rpi-blb2 transgenic background by triggering (J) HR when co-expressed with AVRblb2 and (K-
N) resistance when expressed alone and infected 1 day post agroinfiltration (dpai). (J) The 
result was replicated in 30 leaves, over three independent biological reps where N > 6 leaves 
per rep. Images were taken at 8 dpai. (K-N) Points in scatter violin plot (N) represent the area 
(mm2) occupied by infection spots measured on white light images, where each construct had 
N > 116 infection spots. The mean and standard error are shown as point and bars 
respectively. Four independent biological reps were conducted. UV (shown) and white light 
images were taken at 8 days post infection (dpi). Unpaired Wilcoxon tests gave p-values of 
3.74x10-33 for NRC4-GFP to GFP-NRC4, 1.18 x 10-37 for NRC4-GFP to EV-GFP and 5.99 x 10-3 for 
GFP-NRC4 to EV-GFP. (O-P) Single plane images transiently expressing NRC2-GFP with NRC4-
mKOk during infection with P. infestans showing NRC2 does not focally accumulate around 
haustoria but localises to disperse filaments. (Q) Z-projection of 10 z-slices. (R-T) Single plane 
images transiently expressing ZAR1-GFP with NRC4-mKOk during infection with P. infestans 
showing ZAR1 does not focally accumulate around haustoria, but is diffuse in the cytoplasm. 
(U) Z-projection of 11 z-slices. All scale bars are 10 μm.   

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.15.435521doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.435521
http://creativecommons.org/licenses/by-nc/4.0/


NRC4 localizes to EHM microdomain(s)  
The haustorium interface consists of several closely positioned compartments, namely: the 
plant cytoplasm, the EHM and the extrahaustorial matrix (EHMX) (12). To determine which 
haustorial interface compartment NRC4 localises to, we co-expressed NRC4 with various 
established marker proteins. We first co-expressed NRC4-mKOk together with GFP control in 
haustoriated cells. NRC4 fluorescence showed a sharp peak consistent with the EHM 
enveloping the pathogen haustorium (Fig 2A), unlike the GFP control which remained diffuse 
in the cytoplasm that surrounds the EHM, indicating that NRC4 accumulates at the EHM. The 
EHM consists of micro-domains and has a distinct protein and lipid composition from the 
plasma membrane (7, 8). We therefore co-expressed NRC4 with the plasma membrane 
marker protein RFP-Remorin1.3 (RFP-Rem1.3) which was reported to localize to EHM 
subdomains during infection by P. infestans (7). RFP-Rem1.3 partially but not fully co-localised 
with NRC4-GFP at the EHM, indicating NRC4 accumulates at EHM sub-domains. Meanwhile, 
we found that NRC2-GFP localised to dispersed filaments some of which contacted the EHM 
labelled by RFP-Rem1.3 (Fig S2A, Movie S2), and ZAR1-GFP showed exclusion from the EHM, 
instead localising to the cytoplasm surrounding the EHM (Fig S2B).  
 
Because the Arabidopsis atypical resistance protein RESISTANCE TO POWDERY MILDEW8.2 
(RPW8.2) was shown to accumulate at the EHM enveloping both powdery mildew fungi and 
the oomycete pathogen Hyaloperonospora arabidopsidis (33), we next checked its 
localization with regards to NRC4. RPW8.2-BFP showed a high degree of co-localisation with 
RFP-Rem1.3, and to a lower extent with NRC4 (Fig 2C) at the EHM during P. infestans infection 
of N. benthamiana. In addition, we also noted RPW8.2 mobile vesicle-like structures around 
the haustorium which are considered to be important for the transport of  RPW8.2 to the 
EHM (34) (Movie S3). However, NRC4 did not localise to these RPW8.2-positive vesicles (Fig 
2D arrowheads), suggesting that NRC4 might have a different transport route to accumulate 
at the EHM. Consistent with this, NRC4 is not predicted to have a secretion signal or 
transmembrane domain, unlike RPW8.2 which was reported to carry a predicted N-terminal 
transmembrane domain (35).  
 
The endoplasmic reticulum (ER) surrounds the haustorium and associates with the EHM 
during fungal infections (11). Therefore, to rule out potential ER localization of NRC4, we co-
expressed NRC4-GFP with the ER maker SP-RFP-HDEL. Although the SP-RFP-HDEL tightly 
wrapped around the P. infestans haustorium as reported during fungal infections, NRC4 did 
not co-localise with SP-RFP-HDEL (Fig S2C), excluding the possibility that NRC4 localizes to ER 
surrounding the EHM. Intriguingly, ER often appeared as puncta around the EHM (Fig 2E & 
S2D), resembling the swollen tubes of ER revealed around the fungal EHM (11). However, 
NRC4 was clearly excluded from these ER foci surrounding the EHM labelled by SP-RFP-HDEL 
(Fig 2E). In addition, we did not find a substantial overlap between fluorescence signals 
produced by NRC4-mKOk and Synaptotagmin1 (GFP-SYT1), a plasma membrane and ER 
associated protein which also accumulates at the EHM (Fig 2F). Collectively, these results 
show that NRC4 displays an uneven localization pattern across the EHM and is enriched in 
certain EHM microdomain(s).  
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Figure 2: NRC4 localises to an EHM microdomain. (A) Peak NRC4-mKOk perihaustorial 
fluorescence does not overlap with the cytoplasmic marker EV-GFP.  (B) NRC4-GFP shows a 
similar but not identical localisation to the PM and EHM marker Solanum tuberosum StRFP-
Remorin1.3 (RFP-Rem1.3). (C) NRC4-mKOk shows a perihaustorial localisation partially 
overlapping that of EHM markers RPW8.2-BFP and RFP-Rem1.3. Line profile shown below 
merge image. (D) Some vesicles of RPW8.2-YFP are not labelled by NRC4, including one at the 
EHM (arrowhead). (E) NRC4-GFP perihaustorial signal is mutually exclusive to that of the ER 
marker SP-RFP-HDEL. (F) NRC4-mKOk shows a perihaustorial localisation mostly exclusive to 
that of GFP-SYT1. C was taken with Leica SP8, others SP5. Scale bars = 10 μm.  
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N-terminal a1 helix of NRC4 does not determine focal accumulation to the EHM 
Accumulation of NRC4 but not closely related helper NLR NRC2 or the more distantly related 
MADA-containing NLR ZAR1 at the pathogen interface prompted us to study what part(s) of 
NRC4’s structure is required for EHM trafficking. To determine this, we first investigated the 
N-terminus of NRC4 as the a1 of ZAR1 that covers the MADA motif was reported to facilitate 
membrane association and act as a death-switch (22). We swapped NRC4’s a1 onto ZAR1 to 
see if ZAR1 could gain NRC4’s focal accumulation. However, ZAR1NRC4a1-GFP remained diffuse 
throughout the cytoplasm (Fig 3A) like WT ZAR1 (Fig 1R-U). Next, we performed the reciprocal 
swap, incorporating the a1 of ZAR1 to NRC4. Previously we named this chimera ZAR11-17-
NRC4 (23), hereafter named NRC4ZAR1a1-GFP. This chimera retained NRC4’s ability to 
accumulate at the EHM (Fig 3B), revealing that the first alpha helix does not determine NRC4’s 
EHM targeting. We confirmed our previous finding that this chimera was functional for HR 
and disease resistance (23), this time with Rpi-blb2nrc4a/b plants (Fig 3C). Given the 
functionality of the chimeric NRC4, we hypothesised a shared mode of action of the a1 of 
ZAR1 and NRC4. We therefore built a model of NRC4 function based on ZAR1’s (Fig 3D-F). We 
suggest that NRC4 remains as a monomer or dimer in its resting state, adopting a closed 
inactive conformation in which the a1 helix remains unexposed as revealed by ZAR1 Cryo-EM 
structure. Following activation, NRC4 also probably oligomerizes and forms a resistosome, 
and the a1 helix flips out as in the case of activated ZAR1. Considering that the a1 helix is 
predicted to be buried in the coiled-coil domain (Fig 3D), this model is in agreement with our 
finding that the a1 helix does not determine the EHM localisation (Fig 3B). If this model is 
accurate, a1 would only be accessible for membrane association/protein interaction in the 
active state, but NRC4 accumulates to the EHM in the absence of a sensor NLR (Fig 1A), i.e. 
the inactive state. 
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Figure 3 The first alpha helix of ZAR1 is functional in NRC4 and does not alter its localisation. 
(A) Single plane confocal micrograph showing ZAR1NRC4a1-GFP does not focally accumulate at 
EHM but is cytoplasmically localised. (B) Single plane confocal micrograph showing 
NRC4ZAR1a1-GFP focally accumulates at EHM with RFP-Rem1.3. Model depicts the chimeras of 
NRC4ZAR1a1. (C) NRC4 chimera with the N-terminal 17 amino acids from ZAR1, and NRC4-GFP 
but not EV-GFP genetically complements Rpi-blb2nrc4a/b background by triggering HR when co-
expressed with AVRblb2 and resistance when expressed alone and infected 1 dpai. The HR 
assay was repeated with the same results in 28 leaves, over two independent biological reps 
where N > 11 leaves. Images were taken at 8 dpai. Scattered points in scatter violin plot 
represent the area (mm2) occupied by infection spots measured on white light images, where 
each construct had N > 88 infection spots. The mean and standard error are shown as point 
and bars respectively. Three independent biological reps were conducted as indicated by 
colour of dots. UV (shown) and white light imaging was taken at 8 dpi. Unpaired Wilcoxon 
tests gave p-values of 1.33 x10-10 for NRC4-GFP to NRC4ZAR1a1-GFP, 1.84 x 10-29 for NRC4ZAR1a1-
GFP to GUS-GFP and 6.99 x 10-27 for NRC4-GFP to GUS-GFP. (D-F) Homology model of NRC4 
based on ZAR1 in the (D) inactive ADP-bound state (possibly monomeric), (E) newly active 
ATP-bound state (possibly monomeric) and (E) where five copies of NRC4 oligomerise into a 
pentameric resistosome and the five a1  helices insert into the membrane. CC domain (pink) 
consists of region 1-140 amino acids (aa), 141-157 is a disordered linker region, NB-ARC 
domain (green) 158-495 aa, LRR (blue) 496-843 aa. 
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NRC4 requires a CC domain to accumulate at the EHM 
We were able to use the homology model to determine precise domain boundaries and 
secondary structure boundaries of NRC4. We therefore investigated the intramolecular 
determinants of NRC4’s focal accumulation by truncating the N-terminus to remove the CC 
domain of NRC4 (NRC4∆CC-GFP; NRC4∆1-148-GFP). NRC4∆CC-GFP lost its focal accumulation, 
but in some instances NRC4∆CC-GFP formed puncta in the cytoplasm (Fig S3A). We quantified 
the enrichment of NRC4∆CC-GFP at the EHM marker RFP-Rem1.3 versus the cytoplasmic 
marker EV-BFP, using image analysis (see methods). This revealed that NRC4∆CC-GFP was not 
enriched at the EHM, unlike the full-length NRC4-GFP which produced a strong fluorescent 
signal spiking at the EHM (Fig 4). This indicated that NRC4 requires the CC domain for 
accumulation at the EHM. However, expression of NRC4’s CC domain alone (4CC hereafter; 
1-148aa) fused to GFP did not show EHM accumulation (4CC-GFP), suggesting that the CC 
domain is necessary but not sufficient enough for haustorium targeting of NRC4 (Fig 4 & S3B). 
This finding also hinted that NRC4 carries additional features governing haustorium trafficking. 
We next swapped NRC4’s CC domain for NRC2’s and ZAR1’s. Both NRC42CC-GFP and NRC4Z1CC-
GFP accumulated at the EHM (Fig 4 & Fig S3C-D), suggesting NRC4 requires a coiled-coil 
domain but not necessarily its own.  
 
Next, to see if NRC4’s CC domain could confer EHM targeting to ZAR1 or NRC2, we generated 
chimeras of these NLRs containing the CC domain of NRC4. A ZAR1-GFP construct carrying 
NRC4’s CC domain  (ZAR14CC-GFP) did not accumulate at the EHM (Fig 4 & S3E). In contrast, 
introduction of NRC4’s CC domain to the more closely related helper NLR NRC2 resulted in 
gain of function regarding EHM accumulation, as the NRC24CC-GFP chimera displayed a clear 
EHM enrichment profile (Fig 4 & Fig S3F).  This was an unexpected outcome given the results 
that NRC4’s CC domain alone cannot mediate haustorium enrichment when fused to GFP (CC-
GFP) or introduced into ZAR1 (ZAR14CC-GFP) backbone. However, these results further 
support our view that NRCs could carry additional structural features that mediate potential 
interactions with regulatory components for membrane trafficking.  
 
We next investigated whether any specific region within NRC4’s CC domain (4CC) could 
mediate EHM  accumulation when introduced into NRC2. Structural prediction revealed that 
NRC4’s CC domain encodes four a-helices.  The first half of NRC4’s CC domain comprises a1-
3 helices (amino acids 1-83), and the second half of 4CC (amino acids 84-148) comprises a4 
and a long, disordered region. We first made intra-domain swaps of approximately half of 4CC 
onto NRC2 backbone. NRC24CCa4-GFP gained NRC4’s focal accumulation at the EHM (Fig 4 & 
Fig S3G), whereas NRC42CCa1-3-GFP did not (Fig 4 & Fig S3H). Although these findings implicate 
NRC4’s a4 helix in EHM enrichment, this data may seem counterintuitive given the EHM 
accumulation of NRC4 chimera carrying the CC domain of NRC2 (Fig 4 & S3C). However, since 
NRC2 is able to associate with the EHM to an extent (Fig 1O & Fig S3I), but does not 
accumulate (Fig 4), it is plausible that in addition to the CC domain NRCs foster multiple 
signatures  that determine plasma membrane versus EHM localization.  The balance between 
the activities of these different regions could determine subsequent membrane positioning 
of NRCs during infection.   

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.15.435521doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.435521
http://creativecommons.org/licenses/by-nc/4.0/


 
Figure 4: NRC4 requires a CC domain to accumulate to the EHM. 
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NRC4, NRC2 and ZAR1 C-terminally fused GFP chimeras were co-expressed with plasma 
membrane and EHM marker RFP-Rem1.3 and cytoplasmic marker BFP-EV, and silencing 
suppressor P19 to boost expression. Leaves were infected and after three days were imaged 
with a Leica SP8 microscope. Single-plane micrographs were captured with the names of the 
constructs blinded to reduce acquisition bias, the image names were also randomised to 
reduce bias during quantification. A custom ImageJ/FIJI macro was made (see materials & 
methods) which allowed us to quantify the GFP signal at the peak RFP position (EHM) and 
divide it by the GFP signal at the peak BFP position. This is the EHM enrichment, and a number 
of 1 is no enrichment and a number of more than one is enrichment at the EHM. BFP and RFP 
channels are available in Fig S3.  
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Activated NRC4 forms puncta that associate with both the EHM and plasma membrane  
We next set to determine the fate of activated NRC4 in infected cells and compare it to the 
clear EHM accumulation of inactivated NRC4. To do this we needed to use an NRC4 mutant 
which can get activated but is unable to trigger cell death.  Considering the first alpha helix of 
NRC4 is not involved in EHM targeting, we reasoned we could mutate this region to suppress 
HR without compromising NRC4’s ability to traffic to the EHM. The L9E mutant is predicted to 
interfere with a1’s ability to insert in the membrane and thus prevent HR (22, 23). Previously 
we showed that NRC4L9E mutation suppresses HR and does not provide Rpi-blb2-mediated 
resistance during transient co-expression with Rpi-blb2 (23). We confirmed these 
observations in Rpi-blb2nrc4a/b plants (Fig 5A), and also found that the L9E mutation did not 
compromise NRC4’s ability to traffic to the EHM (Fig 5B-C).  
 

 
Figure 5: NRC4L9E is non-functional for HR and Phytophthora infestans resistance but still 
focally accumulate at the EHM  

(A) NRC4-GFP, but not NRC4L9E mutant or EV-GFP genetically complements CRISPR/Cas 
mutation of Rpi-blb2nrc4a/b plants by triggering HR when co-expressed with AVRblb2 and 
resistance when expressed alone and infected 1 dpai. The HR assay was repeated with the 
same results in 34 leaves, over two independent biological reps where N > 11. Images were 
taken at 3 dpai. Scattered points in scatter violin plot represent the area (mm2) occupied by 
infection spots measured on white light images, where each construct had N > 35 infection 
spots. Three independent biological reps were conducted as indicated by colour of dots. UV 
(representative images for three constructs) and white light imaging was taken at 8 dpi. 
Wilcoxon unpaired tests gave p-values of 5.00 x 10-15 for NRC4L9E-GFP to NRC4-GFP, 0.272 for 
NRC4L9E-GFP to GUS-GFP, and 1.46 x 10-14 for NRC4-GFP to GUS-GFP. (B-C) Single plane 
confocal micrographs showing NRC4L9E-GFP focally accumulates at EHM with RFP-Rem1.3, but 
not the EV-GFP control which remains cytoplasmic. Scale bars are all 10 μm.  
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Considering this mutant is functional in terms of its localisation (Fig 5B), we hypothesised that 
the L9E mutation renders the NLR defective in triggering HR but is otherwise functional. To 
simplify the study of NRC4’s active and inactive states we first investigated it in the absence 
of P. infestans infection. When in its inactive, resting state NRC4L9E-GFP localised to the 
cytoplasm in Rpi-blb2nrc4a/b plants (Fig 6A). We next investigated the fate of NRC4L9E-GFP in its 
activated state, in the presence of an effector. To do this we co-expressed it with AVRblb2∆8, 
a truncate of the AVRblb2 that has lost its virulence function, but can still trigger HR (14). In 
the presence of BFP-AVRblb2∆8, activated NRC4L9E-GFP predominantly localised to puncta 
which frequently associated with the plasma membrane marked by RFP-Rem1.3 (Fig 6B).  
 
As an alternative to effector activation of NRC4, we used an autoimmune mutant of NRC4 by 
adding the D478V MHD mutation to the L9E HR suppressor mutant, in cis (NRC4L9E/D478V). In 
NRC4L9E/D478V, D478V renders NRC4 autoactive, but the L9E suppresses the cell death (23). We 
found that NRC4L9E/D478V-GFP localised to puncta in areas of the cell labelled by the membrane 
marker alone and areas of the cell where the cytoplasmic marker and membrane marker were 
present (Fig 6D-E). To validate these observations we performed membrane enrichment 
experiments in non-denaturing conditions, followed by SDS-PAGE (Fig 6F). We found that 
NRC4L9E was present mostly in the soluble fraction, whereas NRC4L9E/D478V was preferentially 
found in the membrane-enriched fraction. Lower protein levels of NRC4L9E/D478V overall could 
be due to increased degradation of active NLRs as reported for RPM1 (31, 36). These 
biochemical findings that autoactive NRC4 associates more with membranes are in 
agreement with our microscopy that active NRC4 forms puncta which are mostly associated 
with the plasma membrane. It is possible that these punctate structures represent the 
oligomerized state of activated NRC4. However, it is unclear whether these are indeed NRC4 
resistosomes, or perhaps groups of resistosomes enriched in membrane microdomains and 
further research is needed to clarify their nature. 
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Figure 6: Activated NRC4 forms puncta associated with the plasma membrane in the 
absence of Phytophthora infestans infection.  
(A-E) Single-plane confocal micrographs showing the localisation of active and inactive 
variants of NRC4, with plasma membrane marker RFP-Rem1.3 and cytoplasmic BFP marker. 
All scale bars are 10 µm. (A) NRC4L9E-GFP is localized to the cytoplasm in Rpi-blb2nrc4a/b plants 
when co-expressed with BFP-EV (B) NRC4L9E-GFP forms puncta associated with the plasma 
membrane when co-expressed with effector protein truncate BFP-AVRblb2∆8. (C) NRC4L9E-
GFP is localized to the cytoplasm when co-expressed with BFP-EV and RFP-Rem in nrc4a/b 
plants (D-E) Autoactive NRC4L9E/D478V-GFP forms puncta associated with the plasma 
membrane and patches of the cell labelled by both the cytoplasmic marker and membrane 
marker (F) Membrane enrichment confirms inactive NRC4L9E-GFP is mostly localized to the 
soluble (cytoplasmic) fraction, whereas autoactive NRC4L9E/D478V-GFP is more associated with 
the membrane fraction. T= total, S = soluble, M = membrane, PS = ponceau stain. 
 
 
Next, we investigated the subcellular dynamics of NRC4 when it is activated via the sensor 
NLR Rpi-blb2 upon recognition of AVRblb2, presumably secreted during P. infestans infection. 
To overcome HR cell death that could limit live cell imaging, we expressed NRC4L9E mutant in 
Rpi-blb2nrc4a/b plants or nrc4a/b control plants that do not express Rpi-blb2. Remarkably, 
NRC4L9E-GFP accumulated around haustoria both in Rpi-blb2 and control plants. However, in 
the presence of Rpi-blb2, NRC4L9E-GFP formed punctate structures across the EHM (Fig 7A-B 
& S4A). Additionally, in haustoriated Rpi-blb2nrc4a/b plants, NRC4L9E-GFP often displayed clear 
labelling of the plasma membrane and puncta that is located at the plasma membrane (Fig 
7A, S4A & Movie S4). In other cases, NRC4L9E-GFP did not accumulate at the EHM in Rpi-
blb2nrc4a/b plants, but instead there was equal labelling of the EHM and plasma membrane, 
and puncta localised at both the EHM and plasma membrane (Fig S4B). These results reveal 
that activated NRC4 does not exclusively accumulate at the haustorium, showing plasma 
membrane localization to an extent, and forms puncta that mainly remain associated with 
the EHM but also localise at the plasma membrane. Remarkably, autoactive NRC4L9E/D478V-GFP 
did not accumulate at the EHM at all, but instead produced fluorescent signal scattered 
throughout the infected cell similar to the EV-GFP control (Fig 7C-D). However, unlike GFP 
control, NRC4L9E/D478V-GFP mainly labelled the plasma membrane and frequently produced 
puncta that were mostly associated with the plasma membrane but also with the EHM to 
some degree (Fig 7C-D), indicating that activated NRC4 could redefine its membrane targeting 
route.  
 
Based on these findings, we propose a model (EHM release model – Fig 7E) in which the non-
activated NRC4 accumulates at the haustorium interface, positioning itself at effector delivery 
sites, possibly to improve its activation potential and to accelerate the deployment of the 
immune response. While activated NRC4 forms puncta associated with the EHM, some of the 
activated NRC4 is released from this initial site of activation to target the plasma membrane, 
possibly to propagate immune signalling and enhance the HR cell death response. Activated 
NRC4 could potentially form oligomers as illustrated by activated ZAR1 model, forming 
resistosomes that target the EHM and plasma membrane (Fig 7E).     
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Figure 7: NRC4 is activated by Rpi-blb2 during infection and forms puncta that associate 
with the EHM and plasma membrane.  
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(A-D) Single-plane confocal micrographs showing the localisation of active and inactive 
variants of NRC4, with plasma membrane marker RFP-Rem1.3 during infection with P. 
infestans. All scale bars are 10 µm. (A) NRC4L9E-GFP forms puncta associated with the EHM 
and plasma membrane in Rpi-blb2nrc4a/b plants, and partially but not fully accumulates at the 
EHM. (B) NRC4L9E-GFP focally accumulates to the EHM in nrc4a/b plants. (C) NRC4L9E/D478V-GFP 
does not focally accumulate at the EHM, but instead forms puncta on the plasma membrane 
and EHM in nrc4a/b plants. (D) EV-GFP does not focally accumulate or form puncta in nrc4a/b 
plants. (E) Model depicting possible modes of action of NRC4 where NRC4 gets activated via 
sensor NLRs (not shown) at the EHM, by detecting perihaustorial effectors. NRC4 then 
oligomerises into a resistosome and targets the EHM, but a population of resistosomes 
dissociates from the extra haustorial membrane (EHM) to target the plasma membrane (PM). 
These resistosomes insert into the membrane to cause programmed cell death. 
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Discussion 
 
Here, we identified an immune mechanism in which an NLR undergoes dynamic changes in 
its subcellular localization during infection, positioning itself at the specialized plant-pathogen 
interface where the corresponding pathogen effectors are deployed. Strikingly, following 
immune recognition, the activated NLR further re-organizes to form punctate structures not 
only at the pathogen interface membrane but also at the distant plasma membrane, 
suggesting that activated NLRs could possibly propagate from the primary site of activation 
to distant membrane interfaces. We report that NLRs are not necessarily stationary immune 
receptors, but instead can have inactive and active states shuttling to and from effector 
delivery sites.  
 
Whether there is immune signalling at the EHM is currently unknown. In this work we 
uncovered that the inactive form of the helper NLR, NRC4 accumulates at the EHM 
surrounding the P. infestans haustorium. Considering the prominent roles of the EHM in 
facilitating effector translocation and nutrient uptake by the pathogen, as well as secretion 
of plant-defence compounds, it is not surprising that the pathogen deploys effectors to this 
site or that the plant deploys NLRs guarding it. Conceivably, positioning of receptors where 
their ligands accumulate would enhance their chances of recognition. Consistent with this 
view, two P. infestans effectors that accumulate at the haustorium interface, AVRblb2 and 
AVR1, are recognized by NRC4 dependent sensor NLRs Rpi-blb2 and R1 respectively (13, 14, 
21). Intriguingly, both AVRblb2 and AVR1 are implicated in interfering with defense-related 
secretion (13, 14, 16). AVRblb2 interferes with secretion of an immune protease via an 
unknown mechanism, whereas AVR1 targets a key member of the secretory pathway, Sec5 
of the exocyst complex at the EHM (13, 16). Therefore, we speculate that NRC4 could be 
guarding components of vesicle trafficking and fusion at the EHM by pairing with various 
sensor NLRs to monitor potential manipulation by effectors.  
 
These findings implicate NLRs in plant focal immune responses. P. infestans is a useful model 
for studying focal immunity because of the large haustorial interface which allows clear 
identification of focal responses due to the substantial changes that occur upon haustorium 
penetration. However, focal immunity is not just restricted to haustoria forming pathogens 
(37–41). Therefore, our findings could also be relevant to non-haustoria forming pathogens 
and pests such as bacteria, nematodes, insects and viruses. Consistent with this view, NRC4 
also pairs with sensor NLRs that recognize nematodes, insects, bacteria and viruses (21). Each 
has an interface with the host which can be targeted by plant focal immunity, and it would be 
interesting to determine if NLRs are repositioned in these pathosystems.  
 
Here, we discovered that NRC4 but not closely related helper NLR NRC2 or the distantly 
related MADA NLR ZAR1 accumulates at the EHM (Fig 1O-P). Intriguingly, NRC2 formed fibril 
like structures some of which associate with the EHM, but overall it did not show 
accumulation like NRC4 (Fig 1O & S2A). Thus, to our knowledge, NRC4 represents the first 
case of a full length NLR that can target and accumulate at the specialized pathogen interface 
membrane, in plant or animal systems. Whether this could be applied to other NLRs remains 
to be determined. The atypical plant resistance protein RPW8.2 which lacks NBD or LRR 
domains was shown to localize to the EHM (33). However, how it contributes to immunity is 
still unknown. Some NLRs contain an RPW8-like N-terminal domain instead of a CC or TIR 
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domain. These CCR’s include ADR1 and NRG1 which are now known to be helper NLRs for 
multiple TNLs and CC-NLRs (42–44). In addition, ADR1 and NRG1 are known to be required 
for resistance to several haustoria-forming pathogens (42, 44). Whether these helper NLRs 
also target the EHM would be interesting to determine. It could be that focal accumulation of 
NLRs to the EHM is a common resistance mechanism against haustoria forming oomycetes 
and fungi. 
 
Considering our finding that NRC2 and ZAR1 do not focally accumulate at the EHM (Fig 1O-P), 
it draws into question how NRC4 achieves this feat. We found that NRC4 relies on a coiled-
coil domain to enable focal accumulation at the haustorium interface, but that its coiled-coil 
domain alone is not enough for this process (Fig 4 & S3A-B). However, NRC2 gained focal 
accumulation from transfer of NRC4’s CC domain or even the second half of the CC domain 
(Fig 4 & S3F-G). This indicates that the a4 and/or the disordered region at the end of the CC 
domain contains one signature that determines focal accumulation. However, it’s likely 
another signature is required for focal accumulation and that this is found in NRCs but not all 
NLRs, as ZAR1 did not gain focal accumulation upon transfer of NRC4’s CC domain (Fig 4 & 
S3E). The requirement for an EHM targeting signature found in the nucleotide binding (NB) 
domain or a leucine rich repeat (LRR) domain fits our hypothesis that NRC4 does not traffic 
to the EHM via the same pathway as RPW8.2, bearing in mind that RPW8.2 doesn’t require a 
NB or LRR domain for EHM localisation. The EHM-targeting signatures of NRC4 may be 
structural or sequence specific and involve inter-molecular associations with  trafficking 
pathways targeted to the EHM.  
 
Intriguingly, we found that not only the pre-activated NRC4 but also the activated NRC4 shifts 
it localization pattern in response to infection. During infection of plants that carry the sensor 
NLR Rpi-blb2, we noticed perturbations in NRC4 accumulation at the EHM (Fig 7A & S4A-B), 
as we noticed additional NRC4-GFP signal at the plasma membrane. We recapitulated these 
findings using an autoactive mutant form of NRC4 which did not exclusively accumulate at 
the EHM, but instead mainly labelling the plasma membrane (Fig 7C). We also confirmed, with 
membrane enrichment experiments that NRC4 can increase its association with membranes 
upon activation (Fig 6F). These results revealed that activated NRC4 does not accumulate at 
the EHM, possibly because it could undergo conformational changes upon activation, leading 
to its dissociation from the EHM. Such a conformational change was reported for the MADA 
CC-NLR ZAR1, which assembles into a pentameric resistosome implicated in membrane 
targeting (22, 23). Whether ZAR1 mode of action could be applied to other MADA CC-NLRs 
still remains to be addressed. However, our previous and current work suggest that NRC4 
mediated HR cell death and resistance can be maintained in NRC4 chimeras carrying the N-
terminal a1 region of ZAR1 that was suggested to make membrane pores (Fig 3C) (23). 
 
Strikingly, we discovered that activated NRC4-GFP forms puncta that associate with the PM 
in uninfected cells (Fig 6B & D-E). In agreement with our model of activation then EHM release, 
activation of NRC4 via a sensor NLR during infection also leads to formation of NRC4 puncta 
that associate with the EHM and plasma membrane (Fig 7A & S4A-B). These NRC4 puncta 
could emerge at and remain associated with the EHM following effector recognition,  whereas 
some could be released from this primary site of activation to target the plasma membrane 
throughout the cell. Alternatively, activated NRC4 monomers could also disassociate from the 
EHM, get enriched at the PM and form puncta there, possibly to propagate immune responses 
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throughout the cell and enhance the HR.  Such repositioning of an NLR protein have also been 
reported following activation of the mammalian NLRP3 receptor. Prior to its activation, NLRP3 
remains in the endoplasmic reticulum (ER) and cytosol, whereas activated NLRP3 assembles 
into inflammasome targeting various organelles, presumably to enhance perception of 
danger signals and enhance inflammasome assembly (45). 
 
But what are these NRC4 puncta? One plausible explanation is that these are oligomers of 
NRC4 that assemble into resistosome like ZAR1. Whether the puncta presented here 
represent resistosomes or clusters of resistosomes remains to be determined. A recent 
preprint showed that autoactive NRG1.1 forms similar puncta when expressed in N. 
benthamiana. The authors correlated these puncta with pore formation and calcium influx, 
leading to cell death (46). These data would indicate that the active-NLR associated puncta 
are resistosomes, or at least groups of resistosomes. If validated, this method for identifying 
resistosomes by expressing HR-suppressed variants by mutation of their MADA-motif, 
coupled with live cell confocal microscopy, can be a quick and easy way to monitor 
resistosome formation, instead of challenging techniques such as Blue-Native PAGE, which is 
also not truly in vivo.  
 
Here we introduced a cell biology dimension to study NLR function during live cell infection. 
So far, this has not been feasible due to cell suicide following NLR activation. We have 
established methods and tools to overcome this limitation (NRC mutant plants and point 
mutants that prevent HR but not trafficking) to employ live cell infection imaging of NLRs in 
haustoriated cells. Particularly, by investigating the trafficking of NRC4, a helper NLR that 
accumulates at the haustorium interface in a unique fashion, we provide novel insights into 
dynamics of NLR activation in infected cells. Dissecting the functional principles of plant NLRs 
and their cellular dynamics during infection are not only critical basic mechanistic studies but 
also will guide future studies to design synthetic NLRs that can boost immune activation at 
the pathogen interface. 
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Materials & Methods 
 
Growth and maintenance of plants 
Wild type, mutant and transgenic Nicotiana benthamiana plants were grown in a controlled growth chamber at 
25˚C, in a mixture of 3:1 soil and vermiculite. Plants were kept under a high light intensity in long day conditions 
of 16 h light, 8 h night. Plants 3-4 week old plants were used for microscopy experiments, and 4-5 week old 
plants were used for infection assays.  
 
Phytophthora infestans growth, maintenance and infection of plants 
P. infestans 88069 isolate was grown on rye sucrose agar media as previously described [Song 2009], in the dark 
at 18˚C for 10-19 days before harvesting zoospores. Experiments assessing the susceptibility of leaf tissue under 
certain gene expression conditions, i.e. infection assays, were carried out on the abaxial (underside) of detached 
leaves as described previously (Song et al., 2009; Saunders et al., 2012). Infection of leaf material for the purpose 
of microscopy was carried out on the adaxial (topside) of leaves intact to the body of the plant, in humid 
conditions at 18°C. For all experiments, approximately 500-700 motile zoospores were used to inoculate the 
leaves, in cold water droplets of 10 µl per infection spots.   
 
Confocal microscopy 
Leaf tissue was prepared for imaging by sectioning of desired area surrounding an infection spot using a cork 
borer size 4, and were mounted, live, in wells containing dH2O made in Carolina Observation Gel to enable 
diffusion of gasses. The underside of the leaf tissue was imaged, where stated, using a 63x water immersion 
objective lens on a Leica TCS SP5 resonant inverted confocal microscope or, where stated, a Leica SP8 with 40x 
water immersion objective.  Laser excitations for fluorescent proteins on SP5 and SP8 are presented in Table S1 
below. Z-stack and single plane images were later exported to Fiji (ImageJ) image analysis software (47) for 
image analysis and processing of contrast & brightness. Images shown are representative of more than one 
experiment and observations are from multiple cells and more than one leaf.  
 
Table S1: Laser excitations on Leica SP5 and SP8 microscopes 

 SP8 (40x water objective) SP5 (63x water objective) 
GFP 488 nm (Argon) 488 nm (Argon)  
RFP 561/594 nm (Diode) 543 nm (He-Ne) 
BFP 405 nm (Diode) 405 nm (Diode) 
mKOk 514 nm (Argon) 543 nm (He-Ne) 

 
Quantification of enrichment at EHM by image analysis 
NRC4, NRC2 and ZAR1 C-terminally fused GFP chimeras were co-expressed with plasma membrane and EHM 
marker RFP-Rem1.3 and cytoplasmic marker BFP-EV, and silencing suppressor P19 to boost expression. Leaves 
were infected and after three days were imaged with a Leica SP8 microscope. Single-plane micrographs were 
captured with same laser (2%) and gain (100 V) settings for GFP constructs and same zoom factor (6.34), format 
1024 x 1024, speed 200, line average 4. These settings were optimised to match the light microscopy resolution 
limit of ~200 nm. We oversampled with a pixel size of ~45 nm to visualise small objects clearly. The names of 
the constructs were blinded to reduce acquisition bias, the image names were also randomised to reduce bias 
during quantification (https://imagej.nih.gov/ij/macros/Filename_Randomizer.txt ; Tiego Ferreira, 2009). A 
custom ImageJ/FIJI macro was made (attached) which allowed us to quantify the GFP signal at the peak RFP 
position (EHM) and the GFP signal at the peak BFP position. This was carried out by drawing a line (width 20) 
from the perihaustorial cytoplasm, across the EHM at a perpendicular angle to the EHM. These numbers were 
copied from ImageJ/FIJI to a spreadsheet and then the GFP signal at peak BFP position was divided by the GFP 
signal at peak RFP position to give the EHM enrichment. A number of 1 is no enrichment and a number of more 
than one is enrichment at the EHM.  
 
Transient gene expression and HR assays  
Transient gene expression was achieved using agroinfiltration as described by Bos et al. (2006). Agrobacterium 
tumefaciens containing the desired plasmid was washed in water and resuspended in infiltration buffer (10 mM 
MES, 10 mM MgCl2 and pH5.6) and infiltrated into 4 week old  Rpi-blb2nrc4a/b N. benthamiana plants using 
needleless syringes. The optical density of the bacteria was OD600 = 0.3 for NRC4-related constructs and OD600 = 
0.05 for 3xHA-AVRblb2. Images were taken 8 days post infiltration.  
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Infection assays 
Infection assays were carried out as described by (Song et al., 2009). Half leaves of NRC4a/b mutant in Rpi-blb2 
transgenic N. benthamiana plants were infiltrated with OD600 = 0.3. Leaves were detached and infected 24h later 
and imaged 8 days post infection UV light. Quantification was carried out with the FIJI/ImageJ software (47) by 
measuring the area of the necrotic lesion of the pathogen. Statistical analysis was performed with R and used 
the ANOVA and Tukey test to assess significance. UV imaging of infection assays: Leaves were placed under 
direct illumination of two strong UV lamps as evenly as possible, in a dark room. A yellow coloured filter was 
attached to the camera lens and images were taken with long exposure of 2 seconds, F8.0 and ISO 400.  
 
Molecular cloning techniques 
Molecular cloning into pK7WGF2 or pH7WGR2 derivatives was carried out as described previously (48). Briefly, 
plasmids were constructed with Gibson Assembly using the primers in Table S2 below, transformed into DH5a 
chemically competent E. coli cells by heat shock. Plasmids were amplified in E. coli and extracted by Promega 
Wizard Miniprep columns before being electroporated into Agrobacterium tumefaciens GV3101 
electrocompetant cells. LB agar supplemented with Gentamycin and Spectinomycin was used to grow cultures 
carrying pk7WGF2/pH7WGR2. Sequencing was provided by Eurofins. We domesticated the Gibson Assembly 
vectors further by introducing a ccdB selection, which is excised by EcoRV during vector linearlisation.  
To generate NRC4L9E-GFP, NRC4L9E/DV-GFP, ZAR11-17-NRC4-GFP (NRC4ZAR1a1-GFP), NRC2-GFP, ZAR1-GFP and GUS-
GFP expression constructs, pCR8::NRC4L9E, pCR8::NRC4L9E/DV, pCR8::ZAR11-17-NRC4 (Adachi et al., 2019), 
pCR8::NRC2 (Wu et al., 2016), pCR8::AtZAR1 (Harant et al., 2020, addgene no. 158487) and pICSL80016 [β-
glucuronidase (GUS) with two introns, addgene no. 50332] without their stop codon were used as a level 0 
modules for the Golden Gate assembly. The Level 0 plasmids were assembled with pICH85281 [mannopine 
synthase promoter+Ω (MasΩpro), addgene no. 50272], pICSL50034 (eGFP, TSL SynBio) and pICSL60008 
[Arabidopsis heat shock protein terminator (HSPter), TSL SynBio] into the binary vector pICH47742 (addgene no. 
48001).  
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Table S2: Details of new Gibson assembly constructs 

Name of 
construct 

Fragme
nt for 
GA 

Forward Primer 
Name 

Forward Primer 
Sequence 

Reverse Primer 
Name 

Reverse Primer 
Sequence Template 

Vector cloned 
into 

OD600 

infiltr
ated 

NRC4-GFP 

1/1 

NRB1_syn_FWD  
 

AGGCGGCCGCA
CTAGTGATCACC
ATGGCTGACGC
TGTTGTTAACT 

NRC4 Cterm 
linker R 

GCAGATCCAGC
AGATCCGATCT
GTGTGGCCTTG
GATCCAGCTT 

synNRC4: 
Wu et al., 
2017 

pK7FWG2 2nd 
gen cut w/ 
EcoRV 

0.3 

NRC4-mKOk 

1/1 n/a (used 
fragment from 
above) n/a n/a n/a  

pK7 mKOk 
cterm cut w/ 
EcoRV 

0.3 

NRC4∆CC-GFP 

1/1 

NRC4∆CC-GFP-F 

CAGGCGGCCGC
ACTAGTGATGC
CTGCATTGGAG
GATGATGAAGT
TGT 

NRC4 Cterm 
linker R 

GCAGATCCAGC
AGATCCGATCT
GTGTGGCCTTG
GATCCAGCTT 

synNRC4: 
Wu et al., 
2017 

CCDB C term 
GFP 

0.3 

4CC-GFP 

1/1 

NRB1_syn_FWD  
 

AGGCGGCCGCA
CTAGTGATCACC
ATGGCTGACGC
TGTTGTTAACT   

synNRC4: 
Wu et al., 
2017 

CCDB C term 
GFP 

0.05 

BFP-AVRblb2∆8 

1/1 

GA-35S-F 

CGTTCCAACCAC
GTCTTCAAAGC
AAG RD40delta8AA_R 

GCAGATCCAGC
AGATCCGATTCA
CTTCTTGGCCGC
CTCGATAA 

PK7 BFP-
AVRblb2 
synthesize
d same as 
(14) 
PITG_2030
0 minus SP 
and RXLR 

pK7 BFP nterm 
w/ EcoRV 

0.1 

RPW8-BFP 

1/1 

RPW8.2-F 

CAGGCGGCCGC
ACTAGTGATGA
TTGCTGAGGTT
GCCG RPW8.2-R 

GCAGATCCAGC
AGATCCGATAG
AATCATCACTGC
AGAACGTAAA 

RPW8.2-
YFP 

pK7 BFP cterm 
w/ EcoRV 

0.2 

NRC4-2CC-GFP 

1/2 

NRC2-F 

CAGGCGGCCGC
ACTAGTGATGG
CTAATGTGGCT
GTTGAGTTCC 

NRC2_CC-
R_4oh_reorder 

tcatcatcctccaatg
caggCGGAGGCT
TTCTCTCCTGCA pICH NRC2 

CCDB C term 
GFP 

0.3 

 
2/2 

NRC4_ NBD-F 
CCTGCATTGGA
GGATGATGA Pk7 GFP Rev 

AAGTCGTGCTG
CTTCATGTG 

synNRC4-
linker-GFP  

 

NRC2-4CC-GFP 

1/2 

GA35SF 

CGTTCCAACCAC
GTCTTCAAAGC
AAG 

NRC4_CC-GFP-
NB_R 

ACCCTGCTGAG
TTGTTTCC NRC4-GFP 

pK7FWG2 2nd 
gen cut w/ 
EcoRV 

0.3 

 

2/2 

NRC2_NBD-
F_4oh 

cggaaacaactcag
cagggtGTGGTA
GAGGAAGATGA
TGTGG NRC2 Cterm Rev1  

gcagatccagcaga
tccgatGAGATCG
GGAGGGAATAT
AGAGAGC pICH NRC2  

 

NRC2-4CC83n-
GFP 

1/2 

GA_35S_F 

CGTTCCAACCAC
GTCTTCAAAGC
AAG NRC4_cc.249_R 

AGCTTGCACAA
CGAATTTGTCC NRC4-GFP  

0.3 

 

2/2 

NRC2_cc.249_F 

aaattcgttgtgcaa
gctAAATTGCAT
AAAGATAAGGG
CG NRC2 Cterm Rev1 

gcagatccagcaga
tccgatGAGATCG
GGAGGGAATAT
AGAGAGC pICH NRC2  
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NRC2-4CC83c-
GFP 

1/2 

NRC2-NBD-F 
4oh 

cggaaacaactcag
cagggtGTGGTA
GAGGAAGATGA
TGTGG Pk7GFP R 

AAGTCGTGCTG
CTTCATGTG 

NRC2-
4CC83n-
GFP 

CCDB C term 
GFP 

0.3 

 

2/2 

GA35SF 

CGTTCCAACCAC
GTCTTCAAAGC
AAG 

NRC4_CC-GFP-
NBD_R 

ACCCTGCTGAG
TTGTTTCC 

NRC4-
2CC83n-
GFP  

 

ZAR14CCa1-GFP 

1/2 n/a used 
synthetic 
sequence 
genewiz - - - - - 

0.3 

 

2/2 

ZAR1_17_F 

GAAGAAAAAGG
CCGAACCGTAT
CGG ZAR1_R_oh lnkr 

gcagatccagcaga
tccgatGGTTCTG
TGCAATGGTGT
TTTCATCC ZAR1-GFP 

GA_3rd Gen C-
term GFP 

 

ZAR1_4CC_GFP 

1/2 n/a used 
synthetic 
sequence - - - - - 

0.3 

 

2/2 

ZAR1_NBD_F 

GAAGAGATAAT
GGAACTGATCG
GTGGAG ZAR1_R_oh lnkr 

gcagatccagcaga
tccgatGGTTCTG
TGCAATGGTGT
TTTCATCC ZAR1-GFP 

GA_3rd Gen C-
term GFP 

 

NRC4Z1CC-GFP 

1/2 AtZar1-F_cfus caggcggccgcact
agtgatATGGTG
GACGCTGTTGT
AAC 

AtZar1-CC-
R_4NBDoh 

tcatcatcctccaatg
caggCGGCGTTA
TGAATTCGAAA
TAAG ZAR1-GFP 

GA_3rd Gen C-
term GFP 

0.3 

 

2/2 

NRC4_ NBD-F 
CCTGCATTGGA
GGATGATGA 

NRC4 Cterm 
linker R 

GCAGATCCAGC
AGATCCGATCT
GTGTGGCCTTG
GATCCAGCTT 

synNRC4: 
Wu et al., 
2017 - 

- 

         

 
Table S3: Details of published constructs 

Name of construct Vector Reference OD600 infiltrated 
RFP-Rem1.3 PK7WGR2 (7) 0.2 
GFP-SYT1 PK7WGF2 (7) 0.2 
EV-GFP PK7WGF2 (Dagdas et al., 2016) 0.1 
EV-3xHA PK7 derivative (Dagdas et a., 2018) 0.1 
BFP-EV PK7 derivative (Dagdas et a., 2018) 0.1 
RPW8.2-YFP pPZPYFP (33) 0.2 
SP-RFP-HDEL Vector unknown (Kan 

selection in bacteria) 
(51) 0.2 

 
Structure homology modelling 
We used the cryo-EM structures of inactive and activated ZAR1 (25, 32) as template to generate homology 
models of inactive and activated NRC4. The amino acid sequence of NRC4 was submitted to Protein Homology 
Recognition Engine V2.0 (Phyre2) for modelling (49). The coordinates of inactive ZAR1 structure (6J5W) and 
activated ZAR1 resistosome (6J5T) were retrieved from the Protein Data Bank and assigned as modelling 
template by using Phyre2 Expert Mode. The resulting model of NRC4 comprised amino acids Val-5 to Glu-843 
and was illustrated in CCP4MG software (50). 
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Accession Numbers  
The NRC4 sequences from this study are in the Solanaceae Genomics Network (SGN) or GenBank/EMBL 
databases with the following accession numbers: NbNRC4 (NbNRC4, MK692737; NbNRC4a, NbS00002971; 
NbNRC4b, NbS00016103).  
 
Membrane enrichment 
Leaf tissue was collected and  600 mg per sample was frozen with liquid nitrogen then homogenised into a fine 
powder as with extraction for co-immunoprecipitation. Next, 2000 µl ice-cold sucrose extraction buffer was 
added (0.33 M sucrose, 20 mM Tris-HCL (pH 8), 1 mM EDTA) supplemented with 5 mM DTT, 1% Sigma Plant 
Protease Inhibitor and 0.5% PVPP. Samples were vortexed until they were liquid and well mixed. The lysate was 
cleared by centrifugation at 2000 x g for 5 min at 4˚C to remove debris. Supernatant was filtered with two layers 
of Miracloth (carefully ensuring not too much of the extract was lost to the Miracloth due to absorption). An 
aliquot of this (50 µl) of this was separated into a new tube as the total fraction (T). The rest was spun at 21,000 
x g (unless otherwise stated) for 1 h at 4˚C, this was sufficient to enrich the membranes as despite popular belief, 
ultracentrifugation is not needed to enrich membranes if small sample volumes are used and the initial clearance 
is carried out at lower speeds than standard as to not pellet the heavy domains of membranes (52). The resulting 
supernatant was separated into a new tube and labelled as the soluble fraction (S). The pellet was resuspended 
with extraction buffer (minus the PVPP) in 3 times less volume than the soluble fraction (unless otherwise 
stated). The resulting fraction was labelled as the 3x membrane-enriched/microsomal fraction (M). Proteins 
fractions were run on SDS-PAGE gels as with western blotting, but with no water added to the loading buffer.  
 
Crude protein extraction and western blotting 
Protein extraction, SDS-PAGE and western blotting was conducted as previously described (Dagdas et al., 2016). 
Whole or half-leaves were Agro-Infiltrated. Plants were incubated for 3 days at standard growth conditions to 
allow protein expression. Leaves were detached and 6 leaf disks were cut using cork borer tool size 4, and snap-
frozen in 1.5 ml Eppendorf tubes in liquid nitrogen. Disks were stored at -80˚C until protein extraction. SDS-PAGE 
gel preparation: Bio-Rad gel moulds were assembled and 1 mL autoclaved dH2O added to determine if there 
were any leaks. Water was removed by carefully tipping and air drying. The separating gel of 7.5% BIS-
Acrylamide was prepared. 
 
The separating gel was carefully pipetted into the mould, leaving 2-2.5cm space for the stacking gel. Isopropanol 
(0.5 ml) was added to remove any bubbles and the gel left to polymerise for an hour and before removing the 
isopropanol by carefully pouring and air drying. For gradient gels, 2.2 ml of 4% gel was aspirated into a 5 ml 
serological pipette followed by 2.2 ml of 16% gel. An air bubble was drawn up through the two gels and the 
mixture quickly pipetted into the glass mould. The stacking gel was then prepared using the following recipe for 
two gels: 1.25 ml 0.5 M Tris pH 6.8, 0.375 ml 40% acrylamide, 3.3 ml glass distilled water, 0.05 ml 10% SDS, 0.05 
ml 10% APS, 0.005 ml TEMED. The stacking gel was pipetted up to the top of the glass plates and the combs 
were added, taking care not to allow any bubbles to be trapped in the wells/under the combs. This was allowed 
to solidify, and after the proteins were extracted the gel was assembled into the gel tank with 1x SDS running 
buffer.  
 
Protein extraction: Tubes were kept in liquid nitrogen and not allowed to defrost throughout the process, until 
the step where extraction buffer was added. Leaf disks were ground to a fine powder evenly with a grinding tool 
and 120 µl extraction buffer added (30 µl Laemmeli sample buffer 4x [Bio-Rad], 24 µl DTT 1 M, 66 µl dH2O). 
Tubes were vigorously vortexed for 90 seconds, ensuring the buffer had reached all the tissue. 
Tubes were centrifuged for the minimum amount of time possible in a microcentrifuge to bring tissue down 
from the sides, followed by denaturation of extracts at 80˚C in preparation for SDS-PAGE. The tubes were 
centrifuged at 16,000 g for 5-10 minutes to pellet the tissue and allow the crude protein extract to remain in the 
supernatant. This supernatant was carefully removed to new tubes, avoiding leaf material and frozen at -20˚C 
or left on ice until gel loading. The volume of protein extract to load depended on the experiment – unless 
otherwise stated in the figure legend, 19 µl was loaded from a 20µl master mix in order to account for pipetting 
error and evaporation. PageRuler Prestained Protein Ladder (4 µl) [Thermo Fisher] was added to one lane. 
Protein samples are carefully loaded and run in Bio-Rad Mini-PROTEAN Tetra Vertical Electrophoresis Cell  using  
Bio-Rad PowerPac basic at 150 V constant until the proteins entered the separating gel, at which point the gel 
was run at 180 V until the ladder was separated enough to resolve the proteins of interest. Western blotting: 
PVDF membranes were activated in methanol for 60 seconds before equilibrating in 1X semi-dry transfer buffer 
[Bio-Rad] with the gel and transfer stacks (two stacks of 6-ply Wypall X60). The Trans-Blot Turbo Transfer System 
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[Bio-Rad] was assembled (transfer stack -> membrane -> gel -> transfer stack) and the transfer machine set at 
1.3 A, 25 V for 13 minutes to ensure transfer of low expressed, high-molecular weight proteins. Detection: 
Membranes were blocked for 1 hour shaking in 3% BSA blocking solution (in TBS), to prevent the primary 
antibody binding non-specifically. Appropriate primary antibody was added to in antibody solution (3% BSA 
solution in TBS supplemented with 0.1% Tween) and incubated shaking at 4˚C overnight. Membranes were then 
washed with 1X TBS supplemented with 1% Tween 5 times for 5 minutes per wash, before adding the 
appropriate secondary antibody for 90 minutes. Blots were then washed as before. Luminol was then added for 
detection by chemiluminescence [ThermoFisher], or 5-bromo-4-chloro-3-indolyl phosphate (BCIP) and nitroblue 
tetrazolium (NBT) for colourimetric detection [Bio-Rad], depending on the conjugation to the particular 
secondary antibody, Horseradish Peroxidase (HRP) or Alkaline Phosphatase (AP) respectively. 
Chemiluminescence was recorded by LI-COR Odyseey Fx. 
 
Generation of transgenic and gene edited plants 
Generation of Rpi-blb2nrc4a/b CRISPR/Cas9 mutated plants was carried out the same as (23), where the same 
guide RNAs were used to target NRC4a/b. A T2 line unresponsive for HR upon transient expression with AVRblb2, 
but capable of complementing HR upon co-expression with NRC4-GFP was used for all experiments.  
Generation of 35S::NRC4-GFP plants was carried out as follows: Five week old WT N. benthamiana were 
infiltrated with Agrobacterium expressing NRC4-GFP supplemented with acetosyringone. At 3 days post 
agroinfiltration (dpai) leaves were collected and cut into 1-2 cm2 squares with a sterile scalpel. The largest veins 
were discarded. Leaf patches were surface sterilised in 70% EtOH for 30 s followed by 1.5% sodium hypochlorite 
solution with 5 drops of Tween20 surfactant per 500 mL solution. After this, the leaf patches were washed in 
sterile water 4 times. Each leaf square was placed adaxial side up in selective media (Table S4 below) and gently 
pressed to increase surface contact with the media. These plates were sealed with micropore tape and 
incubated in a plant transgenesis room at 22˚C. Every two weeks patches were transferred to fresh plates. After 
1 to 2 months shoots formed and were transferred to rooting media. After 4 weeks roots had formed and 
plantlets were transferred to soil in a high humidity chamber. Each day a little humidity was released until the 
T0 plantlets had adjusted to the standard growth chamber conditions. Plants were screened using confocal 
microscopy after a few weeks and those with GFP fluorescence were kept for seed. T1 seed was collected 
separately from their T0 parent. T1 lines with the best fluorescence were kept. T2 seed was collected from 
individual parent plants separately. A T2 line was selected for experiments as being the best expression (tNRC4-
GFP #1.3). 
 
Table S4: Composition of shooting and rooting media 

Selection medium Rooting medium 
1x Murashige and Skoog medium with Gamborg’s B5 
vitamins 

0.5x Murashige and Skoog basal salt 

1% Sucrose 0.5% Sucrose 
0.59 g/L MES 0.25% Gelrite 
0.4% Agargel [Sigma] 0.05 mg/L NAA 
2 mg/L BAP 500 mg/L Cefotaxime or 320 mg/L Timentin 
0.05 mg/L NAA 100 mg/L Kanamycin 
500 mg/L Cefotaxime or 320 mg/L Timentin pH 5.8 
100 mg/L Kanamycin  
pH 5.  
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Supplementary Figures 

 

Fig. S1. Fusion proteins of NLRs are expressed. Western blots showing expression of GFP or mKOk-FLAG tagged 
fusion proteins at 3 days post agroinfiltration (dpai). Top blots are of proteins expressed from pK7WGF2 vectors 
or its derivatives, bottom blot is of pICH47742 vector. RLU is rubisco large subunit stained by alkaline 
phosphatase-mediated colour detection of proteins. Asterisks indicated expected bands. Black arrowheads 
indicate rubisco large subunit, red arrowhead indicates non-specific band from anti-FLAG. 
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Fig. S2. NRC2 and ZAR1 do not accumulate at the EHM with RFP-Rem1.3 and NRC4 does not substantially co-
localise with the ER marker SP-RFP-HDEL. (A-B) Single plane confocal micrographs. (A) NRC2-GFP forms 
filaments throughout the cell, some of which associate with or overlap with the plasma membrane (PM) and 
extrahaustorial membrane (EHM) marker; but NRC2 does not focally accumulate at the EHM. (B) ZAR1-GFP does 
not focally accumulate at the EHM with RFP-Rem1.3, but instead is diffuse throughout the cytoplasm (C-D) Z-
projections of 45 and 61 z-slices respectively. NRC4-GFP perihaustorial signal is mutually exclusive to that of the 
ER marker SP-RFP-HDEL. A-B were taken with Leica SP8, C-D were taken with Zeiss Airyscan. Scale bars = 10 μm. 
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Fig. S3. RFP-Rem1.3, BFP-EV and Merge channels for Figure 4, western blots showing chimeras are expressed. 
Single-plane confocal micrographs of C-terminally tagged GFP constructs of NRC4 truncates, NRC4-NRC2 
chimeras or NRC4-ZAR1 chimeras, co-expressed in nrc4a/b plants with RFP-Rem1.3 and BFP-EV, with P19 for all 
but 4CC-GFP due to its high expression. Leaves were infected 3 hours post infiltration and imaged 3 days later. 
Arrowheads indicate haustoria. (A) NRC4∆CC-GFP localises to the cytoplasm throughout the cell, including 
around the haustorium, but does not accumulate to the EHM; it also forms some (motile) puncta in the 
cytoplasm. (B) 4CC-GFP localises to the cytoplasm throughout the cell, including around the haustorium, but 
does not accumulate to the EHM. (C) NRC42CC-GFP accumulates at the EHM. (D) NRC4Z1CC-GFP accumulates at 
the EHM, particularly around the haustorium neck. (E) ZAR14CC-GFP localises to the cytoplasm throughout the 
cell, including around the haustorium, but does not accumulate to the EHM. (F) NRC24CC-GFP accumulates at the 
EHM. (G) NRC24CCa4-GFP accumulates at the EHM and forms filaments like NRC2, but less frequently. (H) 
NRC24CCa1-3-GFP localises to the cytoplasm throughout the cell, including around the haustorium, shows some 
EHM labelling, but does not accumulate to the EHM. (I) NRC2-GFP localises to filaments dispersed throughout 
the cytoplasm, some of which associate with EHM, but NRC2 does not focally accumulate at the EHM. (J) NRC4-
GFP accumulates at the EHM. (K) Western blotting shows expression of chimeras. Chimeras were expressed in 
nrc4a/b plants for 3 days with P19 to boost expression and 4 leaf disks were collected using #4 size cork borer 
RLU is rubisco large subunit stained by Coomassie Brilliant Blue (CBB) or Ponceau Stain (PS). Chimeras are all 
expected to be approximately 130 kilodaltons (kDa). 
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Fig. S4. NRC4 activated at the EHM by Rpi-blb2 can form puncta at the EHM and plasma membrane (A-B) 
Single-plane confocal micrographs showing the localisation of NRC4, with plasma membrane marker RFP-
Rem1.3 and/or EV-BFP during infection with P. infestans in Rpi-blb2nrc4a/b plants. All scale bars are 10 µm. (A) 
Example where NRC4L9E-GFP accumulates at the EHM but forms puncta on the plasma membrane in Rpi-
blb2nrc4a/b plants. Three Z-slices are shown to display the plasma membrane and EHM association. (B) Example 
where NRC4L9E-GFP does not focally accumulate but labels EHM and plasma membrane to the same degree and 
forms puncta associated with the EHM and plasma membrane in Rpi-blb2nrc4a/b plants. 
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Supplementary Movies 

Movie S1 (separate file): NRC4 accumulates around haustoria, EV-GFP remains cytoplasmic. Z-stack of 14 
slices. Transiently expressing EV-GFP (yellow) with NRC4-mKOk (magenta) during infection with P. infestans. 
Captured with Leica SP5. 

Movie S2 (separate file): NRC2 does not accumulate at the EHM but localises to filaments dispersed 
throughout the cytoplasm, but some of which associate with the EHM. Z-stack of 18 slices. Transient expression 
of NRC2-GFP (yellow) co-expressed with EHM and plasma membrane marker RFP-Rem1.3 (magenta), during 
infection with P. infestans. Captured with Leica SP8. 

Movie S3 (separate file): NRC4 does not travel via RPW8.2 positive puncta implicated in RPW8.2 EHM 
accumulation. Time lapse with frame interval 6 s, 18 frames. NRC4-mKOk (magenta) transiently co-expressed 
with RPW8.2-YFP (yellow) during infection with P. infestans. Captured with Leica SP5. 
 
Movie S4 (separate file): NRC4 associates to the plasma membrane, accumulates at the EHM and forms puncta 
associated with both when expressed in the presence of the sensor Rpi-blb2. Z-stack of 16 slices. Transient 
expression of NRC4-L9E-GFP (yellow) with cytoplasmic marker EV-BFP (cyan) and plasma membrane and EHM 
marker RFP-Rem1.3 (magenta) during infection with P. infestans. Captured with Leica SP8. 
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