1	Title:
2	Alternative LC-MS/MS Platforms and Data Acquisition Strategies for Proteomic Genotyping of Human
3	Hair Shafts
4	
5	Authors:
6	Zachary C. Goecker ¹ , Kevin M. Legg ² , Michelle R. Salemi ³ , Anthony W. Herren ³ , Brett S. Phinney ³ ,
7	Heather E. McKiernan ² , Glendon J. Parker ^{1,*}
8	¹ Department of Environmental Toxicology, University of California, Davis, CA, USA
9	² The Center for Forensic Science Research and Education, Willow Grove, PA, USA
10	³ Proteomics Core Facility, University of California, Davis, CA, USA
11	* Corresponding author.
12	Glendon Parker PhD
13	Department of Environmental Toxicology
14	University of California – Davis
15	One Shields Ave. Davis, California 95616
16	p. (530) 752 9870
17	e. gjparker@ucdavis.edu
18	
19	Running Title: Alternative Platforms for Proteomic Genotyping
20	
21	
22	
23	
24	

Alternative Platforms for Proteomic Genotyping

25 Highlights:

- Test four mass spectrometry configurations to optimize detection of genetically
- 27 variant peptides
- Technology transfer of proteomic genotyping assays
- Improved sensitivity results in higher level of forensic discrimination for human
- 30 identification using multiple reaction monitoring
- 31
- 32 **Graphical Abstract:**
- 33

35

- 36
- 50

Alternative Platforms for Proteomic Genotyping

38 Abstract:

39 Protein is a major component of all biological evidence. Proteomic genotyping is the use of genetically 40 variant peptides that contain single amino acid polymorphisms to infer the genotype of matching non-41 synonymous single nucleotide polymorphisms for the individual who originated the protein sample. This 42 can be used to statistically associate an individual to evidence found at a crime scene. The utility of the 43 inferred genotype increases as the detection of genetically variant peptides increases, which is the direct 44 result of technology transfer to mass spectrometry platforms typically available. Digests of single (2 cm) 45 human hair shafts from three European and two African subjects were analyzed using data dependent acquisition on a Q-Exactive[™] Plus Hybrid Quadrupole-Orbitrap[™] system, data independent acquisition 46 47 and a variant of parallel reaction monitoring on a Orbitrap Fusion™ Lumos™ Tribrid™ system, and 48 multiple reaction monitoring on an Agilent 6495 triple quadrupole system. In our hands, average 49 genetically variant peptide detection from a selected 24 genetically variant peptide panel increased 50 from 6.5 \pm 1.1 and 3.1 \pm 0.8 using data dependent and independent acquisition to 9.5 \pm 0.7 and 11.7 \pm 51 1.7 using parallel reaction monitoring and multiple reaction monitoring (p < 0.05). Parallel reaction 52 monitoring resulted in a 1.3-fold increase in detection sensitivity, and multiple reaction monitoring 53 resulted in a 1.6-fold increase in detection sensitivity. This increase in biomarker detection has a 54 functional impact on the statistical association of a protein sample and an individual. Increased 55 biomarker sensitivity, using Markov Chain Monte Carlo modeling, produced a median estimated random 56 match probability of over 1 in 10 trillion from a single hair using targeted proteomics. For parallel 57 reaction monitoring and multiple reaction monitoring, detected genetically variant peptides were 58 validated by the inclusion of stable isotope labeled peptides in each sample, which served also as a 59 detection trigger. This research accomplishes two aims: the demonstration of utility for alternative 60 analytical platforms in proteomic genotyping, and the establishment of validation methods for the 61 evaluation of inferred genotypes.

Alternative Platforms for Proteomic Genotyping

62	Abbreviations: DDA, data dependent acquisition; DIA, data independent acquisition; GVP, genetically
63	variant peptide; HID, human identification; MRM, multiple reaction monitoring; PRM, parallel reaction
64	monitoring; QD, QuanDirect; QQQ, triple quadrupole; RMP, random match probability; SAP, single
65	amino acid polymorphism; SIL, stable isotope labeled; SNP, single nucleotide polymorphism
66	
67	Keywords: Hair, Forensic Proteomics, Genetically Variant Peptides, Human Identification, Proteomic
68	Genotyping
69	
70	1. Introduction
71	Proteomics has many promising applications in a legal context, with recent advances being
72	made in body fluid identification, drug interactions, sex estimation, and human identification (HID) [1–
73	6]. Proteomic genotyping is the analysis of protein sequence variants, termed single amino acid
74	polymorphisms (SAPs), to infer single nucleotide polymorphism (SNP) alleles. SNPs can be inherited and
75	subsequently detected in peptides from digested protein [3]. These peptides, termed genetically variant
76	peptides (GVPs), are especially useful in samples where DNA may be absent or highly degraded, such as
77	is often the case with hair, fingermarks, and bone [7, 8]. Currently, mitochondrial DNA is the mainstay in
78	HID for highly degraded samples and archaeological remains due to its multiplicity in each cell, rapid
79	evolution, and familial information [9, 10]. Proteomic genotyping offers intrinsic advantages compared
80	to other DNA-based genetic analyses. Protein, much like mitochondrial DNA, has many copies per cell.
81	Processing of protein does not involve an amplification step or preliminary knowledge of the sequence,
82	as is the case for DNA primer design. The peptide bond is chemically stable and common chemical
83	modifications are predictable and accommodated by spectral matching algorithms [11, 12]. Protein has
84	proven to outlast DNA due to degradation effects for archaeological sex estimation from teeth [6].
85	Tryptic peptides average only 14 residues, which reduces the probability of random cleavage and

Alternative Platforms for Proteomic Genotyping

information loss [13]. The stoichiometry of protein copy number is greater than DNA by up to 7 orders
of magnitude with a median increase of 5 orders of magnitude, allowing for detection and analysis
without amplification [14–16].

89 Initial development of proteomic genotyping has focused on hair shafts as a source of protein-90 based genetic information. Over 400 genetically variant peptides from hair have been identified that can 91 predict the corresponding SNP allele [17]. Optimization to this point has focused on chemical processing 92 to maximize peptide production from a single hair shaft [17–19]. Aside from a shift to more modern 93 mass spectrometry instruments for data dependent acquisition, relatively little has been done to 94 optimize data acquisition at the mass spectrometry level. Another side effect of the current focus on 95 data dependent acquisition for proteomic genotyping is the dependence on peptide spectral matching 96 for detection of genetically variant peptides. Peptide spectral matches, depending on the algorithm, 97 come with a statistical expectation score or other measures of confidence [11, 12, 20–22]. For most 98 proteomic applications this is not functional, since multiple peptides are often identified for each gene 99 product and the level of uncertainty can be miniscule [22]. Proteomic genotyping, however, relies on 100 single peptides to infer SNP alleles. Validation of the inferred SNPs are therefore necessary and most 101 easily provided by direct confirmation of genotype by DNA sequencing. Validation is also possible to 102 confirm peptide identification through the addition of stable isotope labelled (SIL) synthetic peptides 103 into a sample digest. These standards, equivalent in sequence and chemistry to the matching 104 endogenous peptides, behave identically to matching endogenous peptides, and do not interfere with 105 endogenous peptide detection. The use of SIL peptides is a standard feature of targeted mass 106 spectrometry platforms for use in triggering endogenous peptide detection and quantification [23]. 107 For proteomic genotyping to be readily available to forensic investigators, it also needs to be 108 conducted on platforms that are widely accessible to investigators. Targeted mass spectrometry using 109 triple quadrupole systems is commonly used for many forensic toxicology analyses. It is also affordable,

Alternative Platforms for Proteomic Genotyping

110	robust, and reproducible for both chromatography and mass spectrometry. Use of targeted methods of
111	mass spectrometry potentially improves sensitivity and bolsters analyte identification confidence,
112	helping to fulfill the guidelines in forensic analyte identification. Guidelines set by the scientific working
113	group for forensic toxicology (SWGTOX) [24], European Commission (directive 96/23/EC) [25], and
114	World Anti-Doping Agency (WADA) [26] all list a minimum number of identification points to confirm the
115	presence of a drug or other analyte. These identification points are derived from retention time
116	windows, peak shape, and transitions and may not be satisfied using standard proteomic discovery
117	techniques such as data dependent acquisition (DDA) alone without DNA-based verification. Currently,
118	proteomic genotyping in forensic science has focused on the optimization of peptide production in
119	sample preparation, and expansion to other forensically relevant tissue sources [17, 19]. These studies
120	have relied on shotgun mass spectrometry and nano liquid chromatography coupled with orbitrap mass
121	spectrometry and are yet to exploit useful alternative instrumental strategies available [17, 27, 28].
122	Here, we propose spiking SIL GVPs into hair protein digests as a means of peptide identification
123	validation and as a mass trigger for data acquisition. This technique has typically been used for the
124	quantification of other peptide targets [29]. A standard will elute chromatographically and be analyzed
125	in the same time window as its corresponding endogenous GVP. Therefore, the standard and expected
126	endogenous peptides can be directly compared in terms of retention time and ion ratios (Figures S1 and
127	S2) providing a means for real time validation.

This study explores the capability and utility of alternative mass spectrometry platforms and data acquisition strategies using a panel of GVPs. Instead of a direct comparison of the platforms and acquisition methods which would involve an in-depth evaluation of instrument components, a proof of concept and evaluation of performance was studied for proteomic genotyping purposes only. Two approaches are first assessed: shotgun proteomics (DDA) on a Q Exactive[™] Plus Hybrid Quadrupole-Orbitrap[™] Mass Spectrometer, and data independent acquisition (DIA) on a Orbitrap Fusion[™] Lumos[™]

Alternative Platforms for Proteomic Genotyping

134	Tribrid [™] Mass Spectrometer [30, 31]. Two other approaches were also tested in the presence of
135	matching synthetic SIL peptide standards. These include a variant of parallel reaction monitoring (PRM),
136	called QuanDirect™ (QD) [32] conducted on the tribrid system that uses detection of SIL standard
137	peptides to trigger data acquisition in the mass window of the corresponding endogenous peptide, and
138	multiple-reaction monitoring (MRM) conducted on an coupled Agilent 1290/6495 triple quadrupole
139	system [33–37]. To provide a direct comparison in the performance of genetically variant peptide (GVP)
140	detection between the four acquisition methods, hair from European-American (n = 3) and African-
141	American (n = 2) subjects was tested in three biological replicates. Results reported here are limited by
142	the procedures as performed using standard mass spectrometry platforms and protocols within the
143	range of what is considered best practice for each method. The noted enhancements, based on a panel
144	of 24 standard peptides, have the potential to dramatically increase both the discriminatory power of
145	proteomic genotyping and the applicability of the method since it uses instruments and analyte
146	detection criteria commonly found in toxicology laboratories.

147

148 **2. Experimental Section**

149 2.1 General Experimental Design

150 Hair shafts were collected from 5 individuals who are representative of two populous ancestral 151 backgrounds in of the United States: European and African. The number of individuals needed for this 152 study was minimal since this was a novel proof of concept study to demonstrate the usage of targeted 153 proteomics for proteomic genotyping. Enough donors were used to assess reproducibility and calculate 154 standard deviation. Three single hairs from each individual, 2 cm in length, were processed separately 155 using a previously developed method, with a total of 15 hair digests. A blank with trypsin and without 156 trypsin were also processed in parallel with all other digests. 24 stable isotope labeled (SIL) standard 157 genetically variant peptides (GVPs) were spiked into the hair digests for parallel reaction monitoring and

Alternative Platforms for Proteomic Genotyping

158	multiple reaction monitoring (Table S1). Raw mass spectral data were processed using the Skyline
159	software for the 24 GVPs of interest and their corresponding heavy-isotope peptide standards. 24
160	peptides were chosen to adequately represent the diversity of the full set of 408 currently identified
161	GVPs in terms of detection sensitivity, length, and composition. Basic statistical analyses were
162	conducted such as standard deviation, random match probability, false discovery rate (FP/(FP+TP)), and
163	detection sensitivity (TP/(TP+FN)) to compare the three analytical methodologies. Random match
164	probability calculations were estimated using the procedure outlined in Parker et al [3].
165	
166	2.2 Hair Collection and Processing
167	Samples used in this study were prepared as part of an earlier study [17]. Briefly, five individuals

168 were analyzed: three subjects of European (Davis, CA) and two subjects of African genetic background, 169 respectively (Sorenson Forensics LLC, Salt Lake City, UT). Hair and saliva were collected using protocols 170 compliant with the Institutional Review Board at the University of California, Davis (IRB# 832726). Hairs 171 were collected by cutting a few inches inward from the distal end, therefore excluding the roots. The length of hair on the head before cutting was roughly 10 cm. Hair shafts were further cut to a length of 172 173 20 mm before continuing with protein extraction [17]. The African hair samples weighed almost half of 174 the weight of the European hair samples due to differences in hair shaft width and shape (data not 175 shown). Hair shafts were biochemically processed using an optimized processing protocol as part of an 176 earlier study [17]. After initial preparation and use of the samples to generate the data-dependent 177 acquisition datasets used in the cited study, the remaining supernatants were stored at -20°C. Prior to 178 mass spectrometric analysis, the samples were again centrifuged to minimize insoluble particulates in 179 the supernatant.

180

181 2.3 Selection of a Panel of Stable Isotope Labeled Genetically Variant Peptides

Alternative Platforms for Proteomic Genotyping

182	A panel of 24 highly characterized GVPs from 12 loci was selected to represent a wide range of
183	potential sensitivities, from rarely to frequently detected, and were well characterized over a range of
184	studies and laboratory groups [3, 17, 19, 27, 38]. The peptides selected range from 8 to 21 amino acids
185	in length and were all modified with stable isotopes at the C-terminal lysine (+8 Da) or arginine (+10 Da)
186	(JPT peptide technologies, Acton, MA) (Table 1). The peptides (14 nmol/well) were subsequently
187	suspended in 4 μL of 70% formic acid and 136 μL of 0.1% trifluoroacetic acid. 10 μL of each standard
188	were pooled to make a concentration of 4.16 pmol/ μL per standard. The pooled sample was then
189	purified using a silica C18 macrospin column with loading capacity of 30-300 μg of peptide material (The
190	Nest Group, Southborough, MA). Briefly, the peptide digests were loaded onto the column and spun,
191	the column was washed with 0.1% trifluoroacetic acid and spun three times, and the peptides were
192	eluted using 80% acetonitrile 0.5% formic acid and spinning and were subsequently dried down. This
193	pool was then injected into four hair digests from two individuals at 1 and 2 fmol/ μ L. A second pool was
194	then created, with normalization based on peak area to make a final spike mixture (Table S1). This final
195	spike solution consisted of a total of 433 nmol of peptides in 1 mL final volume (433 pmol/uL). The final
196	mixture (1 fmol) was included in each sample injection for QuanDirect analysis and 73 pmol of the final
197	mixture was injected into each sample for MRM analysis on the triple quadrupole (QQQ) platform.

198

199 2.4 Instrumental Analysis

Before applying the samples to LC-MS/MS, solubilized tryptic peptides were quantified using the
Pierce[™] Quantitative Fluorometric Peptide Assay (ThermoFisher) as reported in previous work [17].
Resulting data were used to determine how much material to apply to the instrument. For the Q
Exactive Plus and Fusion Lumos, this amounted to 0.75 µg of peptide digest material. Digest injection
volume was held constant on the QQQ platform, but volumes varied based on concentration for the
other three platforms.

Alternative Platforms for Proteomic Genotyping

206	Three instruments were used to conduct four data acquisition methods (Figure 1). The first
207	analysis method (QE+) was conducted on a Q Exactive Plus nLC-MS/MS platform which employed data
208	dependent acquisition (DDA). This method was established as part of an earlier study [17]. For the
209	second analysis (Lumos-DIA), samples were analyzed on a Thermo Scientific Fusion Lumos mass
210	spectrometer and was connected to a Dionex nano Ultimate 3000 (Thermo Scientific) with a Thermo
211	Easy-Spray source. The acquisition method was set to data independent acquisition (DIA). For this
212	method, peptides were trapped and separated on a 100 μ m x 250 mm C18 column with 3 μ m particle
213	size PepMap Easy-Spray (Thermo Scientific) using a Dionex Ultimate 3000 nUPLC at 200nl/min. Peptides
214	were eluted using a 90 min gradient of 0.1% formic acid (A) and 80% acetonitrile (B). Gradient conditions
215	include 2% B to 50% B over 60 minutes, followed by a 50%-99% B in 6 minutes and then held for 3
216	minutes, then 99% B to 2% B in 2 minutes. The mass spectrometer was run in DIA mode using a collision
217	energy of 35, resolution of 30K, maximum inject time of 54 ms and an automatic gain control (AGC)
218	target of 50,000. Each individual sample was run in DIA mode with staggered isolation
219	windows of 12 Da in the range 400-1000 m/z. For each analytic sample, the individual sample was run in
220	DIA mode using the same settings as the chromatogram library runs except using staggered isolation
221	windows of 8 Da in the m/z range 400-1000 m/z.
222	The third analysis method (Lumos-QD) was conducted on the same instrument as the Lumos-
223	DIA method, except QuanDirect™ (QD) parallel reaction monitoring acquisition was employed. For this
224	method, the digested peptides were reconstituted in 2% acetonitrile/0.1% trifluoroacetic acid and 1 μg
225	in 5 μ l of each sample was loaded onto a 75 μ m x 20 mm PepMap 100Å 3U trap (Thermo Fisher
226	Scientific) where they were desalted online before being separated on a 50 μ m x 150 mm 100 Å 2U
227	PepMap EasySpray column (Thermo Fisher Scientific). Peptides were eluted using a 90 min gradient of
228	0.1% formic acid (A) and 80% acetonitrile (B) with a flow rate of 200nL/min. Gradient conditions include
229	2% to 50% B over 66 min, 50% to 99% B over 2 min, and then held at 99% B for 4 min, followed by 99%

Alternative Platforms for Proteomic Genotyping

230	to 2% B over 2 min. Targeted precursors were interrogated for a maximum 3 sec cycle. The target list
231	consisted of the m/z ratios and charge states of the heavy peptides (Table 1) only since no retention
232	time info was required. The QuanDirect™ method of targeted mass spectrometry was used to search for
233	endogenous GVPs [32, 39]. To trigger a data-dependent scan, the precursor must match the expected
234	charge state and the m/z within 10 ppm. These precursors were interrogated with a short SRM scan
235	(MS ² IT HCD) of the predicted y_1 fragment ion region for the expected heavy R (180-190 <i>m/z</i>) or heavy K
236	(150-160 m/z) peptides. The y ₁ fragment in proteomics determines the C-terminus ending and is more
237	easily identifiable in a mass spectrum due to its monomeric independence. The ultra-fast SRM scans
238	were performed using a 10 <i>m/z</i> mass range, rapid ion trap scan rate, HCD NCE 40%, 0.7 <i>m/z</i> isolation
239	window, AGC target 1E4, and a max IT of 10 ms. The y_1 ion in the SRM scan must be above an intensity
240	threshold of 1000 and within 1 Da of the expected m/z . If the expected heavy y_1 fragment ion was
241	detected in the SRM scan, 185.1 (heavy R) or 155.1 (heavy K), then full HRAM HCD MS/MS scans were
242	triggered on the spiked-in heavy peptide as well as the endogenous form (Table S2). These scans use the
243	following parameters: scan range 150-1500 m/z, 60K resolution, 30% NCE HCD, AGC target 2e5, and max
244	IT of 110 ms. To trigger on the endogenous peptide, an <i>m</i> / <i>z</i> offset of -5 or -4 U was used for the R and K
245	peptides, respectively.

246 For the fourth analysis (QQQ), samples were analyzed via multiple reaction monitoring acquisition using an Agilent 1290 Infinity series HPLC system, coupled to an Agilent 6495 triple 247 248 quadrupole mass spectrometer with an Agilent Jet Stream source. 10 μ L of a 1:10 spike:digest (v/v) ratio 249 (~15 μg digested material and 291 pg of spike) was loaded on a 2.1 mm × 100 mm, 2.7 μm AdvanceBio 250 Peptide Map fused-core silica column (Agilent), and separated over a 15 min gradient at 400 µL/min. 251 The solvent gradient for the elution of peptides began with 5% ACN and increased to 35% ACN at 11 252 min, 65% ACN at 12.5 min, and 90% ACN at 13 min and held for 2 min, and then reduced to 5% for 5 min 253 to re-equilibrate the column. Source conditions included a gas temperature at 150°C at a flow rate of 11

Alternative Platforms for Proteomic Genotyping

254	l/min, nebulizer pressure of 30 psi, sheath gas temperature of 150°C at 10 l/min, and a capillary voltage
255	of 3500 V. Collision energies were calculated based on precursor m/z and charge state in Skyline
256	software, and were not fully optimized. Data were acquired in positive dynamic MRM mode (dMRM)
257	with an MS ¹ resolution set to wide and MS ² resolution to unit, retention time window of 30 sec, and a
258	cycle time of 500 ms. Three transitions were selected for the detection of each standard and
259	endogenous peptide (Table S3).

260

261 2.5 Software Analysis

To make the resulting QuanDirect[™] PRM datafiles amenable with Skyline software, spectra from 262 the linear ion trap were excised using the FT RecalOffline tool from Xcalibur™ (ThermoFisher Inc.). This 263 264 treatment does not interfere with spectrum interpretation since this was only a part of the internal 265 decision tree. Raw files were manually loaded and the external slicer was called, under Rawfile 266 Functions, from within RecalOffline to remove any masses below 200 m/z using a mass filter from 200 267 m/z to 2000 m/z. Since only low mass y₁ fragments of 185 and 155 m/z with scan range < 200 m/z were searched for, the filter removed all of the ion trap data from the file. The resulting file only contained 268 269 MS¹ and MS² orbitrap data which was used to analyze endogenous and standard peptides.

270 Skyline software [40] (version 20.1) was used to visualize endogenous peptide data and SIL 271 peptide data simultaneously and to extract only mass transitions of interest (Tables S2 and S3). Positive 272 peptide identification required a s/n ratio > 3, peak intensity of ion targets > 20 counts, and an ion ratio 273 between quantifier and qualifier ions within 25% of the target. These parameters were chosen to meet 274 minimum identification points from common forensic guidelines [24–26]. For the analysis performed 275 here, samples were analyzed in batches based on the instrumentation on which they were run. For 276 samples analyzed on the QE+ using DDA, full-scan transition settings for MS¹ filtering were set to include 277 count isotope peaks, orbitrap precursor mass analyzer, with 3 peaks and a resolving power set to 60,000

Alternative Platforms for Proteomic Genotyping

278	at 400 m/z. MS/MS filtering settings were set to DDA as the acquisition method, orbitrap product mass
279	analyzer, no isolation scheme, a resolving power set to 60,000 at 400 m/z . All other settings were set to
280	default. For samples analyzed using Lumos-DIA, the same settings were used as DDA with the exception
281	of 70,000 MS ¹ resolving power, DIA as the acquisition method, results only as the isolation scheme, and
282	17,500 as the MS/MS resolving power. For samples analyzed using Lumos-QD, the same settings were
283	used as Lumos-DIA except for no isotope peaks, MS/MS filtering settings were set to targeted as the
284	acquisition method, and no isolation scheme. For samples analyzed using QQQ with MRM, the same
285	settings were used as PRM except for MS ¹ filtering were set to include count isotope peaks. One
286	precursor and 3 transitions were chosen for MRM analysis, while one precursor and 10-24 transitions
287	were chosen for the PRM analysis and DDA analysis. These are both above the minimum standard
288	guideline for the number of ions required for a positive identification [25, 26].

289 Positive peptide identifications were called from the Skyline software based on precursor and 290 transition signal to noise ratio, retention time, transition masses, and ion ratios. For retention time, this 291 identification criteria included having a GVP retention time within 2% or ± 0.1 min of the labeled 292 standard. For the DIA and DDA approaches, comparison of retention time to a labeled standard was not 293 used. In terms of signal to noise ratio, a minimum ratio of 3:1 was used as the threshold for data from all 294 platforms. Transitions used for identification for the targeted approaches were taken from the most 295 abundant transitions for the labeled standard peptides. The untargeted methods utilized the Prosit 296 library [41] to compare both transitions for identification and ion ratios. For all acquisition 297 methodologies, ion ratio maximum tolerance windows were set to be within 10% of the relative 298 abundance of the compared ion, so long as the peak is at least 50% of the base peak [26]. The PRM and 299 MRM methods used the labeled standard peptides as a reference and the DDA and DIA methods used 300 the Prosit library as the reference for ion ratios.

301

Alternative Platforms for Proteomic Genotyping

302 2.6 Statistical Analysis

303 GVP Finder (v1.2) (https://www.parkerlab.ucdavis.edu) was used to estimate random match 304 probabilities (RMPs). This is an excel spreadsheet compatible with X!Tandem output developed in 305 previous work [17]. In short, RMP was calculated using the product rule [3, 42] by simply multiplying 306 independent genotypic frequencies based on observations on individual genotypes from the major 307 populations in the 1000 Genome Project Consortium [43]. To account for linkage disequilibrium, it was 308 assumed that there was complete linkage for GVPs shared within an open reading frame and complete 309 independence between each open reading frame [3]. For GVPs that were determined to be genetically 310 linked within an open reading frame, a cumulative genotypic frequency was calculated by counting the 311 number of individuals in the consortium who have the same gene specific GVP profile as was obtained 312 from the sample and dividing by the total number of individuals in the population. Genetic validation 313 was performed to assign trueness of positive and negative detections. Genomic DNA was extracted and 314 sequenced as reported in previous work [17].

315 To estimate random match probability of a profile that would result from a targeted QQQ 316 analysis using all known GVPs, and assuming equivalent detection sensitivity obtained from the panel, a 317 Markov Chain Monte Carlo (MCMC) model was developed. MCMC is an algorithm that simulates 318 stochastic processes such as sampling from a probability distribution [44, 45]. This method of sampling 319 allows an estimation of true population probability distributions by randomly sampling from 320 probabilistic data. For this study, MCMC was developed as a function of GVP number and validated by 321 superimposing actual RMP values from previous studies. The probability distributions were taken from 322 actual genotype frequencies from the 408 GVPs that have been identified. A theoretical genotype of 323 non-synonymous SNP alleles was generated based on randomly selecting known GVPs and randomly 324 determining if a theoretical genotype would include that GVP based off its genotype frequency. One 325 hundred iterations were included in this model. Minimum, maximum, and median theoretical RMP

Alternative Platforms for Proteomic Genotyping

326	values were estimated based on which theoretical GVPs were randomly chosen in the model. The model
327	assumes one GVP locus per open reading frame. The resulting modelled genotypes were randomly
328	selected in each iteration as a function of prior probability based on the genotype frequency chosen
329	randomly here, rather than favoring GVPs of historically higher detection. Therefore, this model is not
330	biased towards specific GVPs and does not mimic biological GVP profile distributions.
331	
332	2.7 Data Reporting and Availability
333	All RAW data files containing detected endogenous peptides and SIL GVPs from hair digests
334	mentioned in this work, including from the supplemental section, are publicly available on
335	ProteomeXchange (PXD024651) [46]. A complete list of datafiles is also available (Table S4). Files from
336	QE+ are comprehensive and include all detected ions, whereas the Lumos-QD and QQQ files are limited
337	to ions corresponding to GVPs from the panel. Lumos-QD data are modified to exclude linear ion trap
338	data. Skyline files for data obtained from the four analytical platforms are publicly available at
339	https://panoramaweb.org/TargetedGVP.url [47].
340	
341	3. Results and Discussion
342	Studies optimizing the detection of genetically variant peptides (GVPs) have done so by focusing
343	on the chemical release of tryptic peptides from the hair matrix, or by applying the resulting peptide
344	mixtures to more sensitive instrumentation. In this study different mass spectrometry data acquisition
345	methods were tested to evaluate additional options for increased GVP detection and therefore further
346	increase the utility of proteomic genotyping in forensic investigation. Accordingly, mass spectrometry
347	data acquisition using Data Independent Acquisition (DIA), Parallel Reaction Monitoring (PRM) and
348	Multiple Reaction Monitoring (MRM) were all tested on instruments with configurations that are
349	standard for each method. Acquired data from all three platforms, as well as existing data using a

Alternative Platforms for Proteomic Genotyping

350	shotgun proteomics Data Dependent Acquisition (DDA) approach, were screened for detection of a
351	panel of 24 endogenous GVPs in replicate trypsin digests using a common bioinformatic workflow in
352	Skyline (Figures 2, 3, and S1). The cumulative inferred non-synonymous SNP genotypes were directly
353	validated using the exome of each subject (Figure 3) to determine basic metrics such as true positive,
354	false positive, true negative, and false negative rates, along with sensitivity (TP/(TP+FN)) and false
355	discovery rates (FP/(FP+TP)). Besides this binary classification process, other metrics such as signal to
356	noise, peak shape, ion ratio, peptide ionization efficiency, retention time, and abundant transitions were
357	also measured. In the case of the PRM and MRM acquisition methods, the evaluation was facilitated by
358	using a panel of exogenous stable isotope labeled peptides. While each data acquisition approach was
359	within the range of normal best practice, no systematic optimization occurred beyond establishing basic
360	acquisition and chromatographic parameters. The results therefore reflect different chromatographic,
361	ionization, and mass spectrometer systems and configurations for each acquisition method. While direct
362	comparisons could not be made, the performance of each method could be individually evaluated in
363	comparison to previously acquired data using shotgun proteomics (DDA).

364

365 3.1 Analysis of Performance for the QE+ Platform

366 Data previously acquired on a nano-LC / Q Exactive Plus (QE+) platform with data dependent 367 acquisition (DDA) was reanalyzed using Skyline software (version 20.1) to provide a benchmark for other 368 data acquisition strategies and instrument configurations [17, 40]. The percentage of true positive 369 shotgun proteomic identifications for the QE+ platform was 26.4% and the detection sensitivity 370 (TP/(TP+FN)) was 43.2% (Figure 3). The false discovery rate (FP/(FP+TP)) was the lowest for the QE+ 371 platform at 2.6% and the average GVP detection from the 24-GVP panel was 6.5 ± 1.1 (Figure 3). Ten of 372 the 24 endogenous peptides were not detected at all using this platform. These peptides include 373 GILVDTSR, ALETVQER, ALETLQER, EWSTFAVGPGHCLQLNDR, GVALSNVIHK, and GVALSNVVHK from

Alternative Platforms for Proteomic Genotyping

374 proteins HEXB, GSDMA, NEU2, and SERPINB5 (Figures 3 and S3). These peptides may not have been 375 observed due to low protein abundance in the hair sample digests, whereas keratin proteins are very 376 abundant [48]. No peptides were observed using this method that were not also observed in the other 377 methods. Four endogenous peptides were not detected at all in this study regardless of the platform 378 used: VSAMYSSSSCKLPSLSPVAR, VSAMYSSSPCKLPSLSPVAR, EHCSACGPLSQLLVK, and 379 EWSTFAVGPGHCLQLHDR. These longer peptides may be more challenging to detect based on their 380 length and residue composition [49]. For a positive detection, the average signal to noise ratio was 381 higher than 1:3 (Figure 2, S5), defined as the variance of amplitude of the baseline and signal was the 382 amplitude of the peak as measured from the apex to the average baseline, which meets the minimum 383 requirements in toxicology scientific working group guidelines [24–26]. The nanoflow chromatography / 384 Q-Exactive configuration used in this analysis was sensitive [50], requiring only 1 µg of the roughly 100 µg protein present in 2 cm of a single hair shaft [51]. This acquisition method can be used for GVP 385 386 discovery and provide a resource for retrospective analysis of GVPs, although the analysis was limited to 387 the 24 GVPs and associated ions in the SIL-peptide panel. In terms of the peak shape for the QE+ 388 analytical platform, the overall form differs from the three other platforms due to differences in 389 chromatography (Figure 2). Complex chromatography patterns due to internal prolines were detected 390 [52, 53].

391

392 *3.2 Analysis of Performance for the Lumos-DIA Platform*

For Data Independent Acquisition (DIA), samples were applied to a Dionex nano Ultimate 3000
 coupled to an Orbitrap Fusion[™] Lumos[™] Tribrid[™] Mass Spectrometer and data acquired using SWATH MS (DIA) (Figure 1). Overall, Lumos-DIA peaks appear sharp with peak intensities averaging at 1 x 10³
 and the average signal to noise ratio was also above 1:10 (Figure 2). The resulting percentage of true
 positive identifications for Lumos-DIA was 13.2% and the false discovery rate was 5.0% (Figure 3).

Alternative Platforms for Proteomic Genotyping

398	Average GVP detection from the 24-GVP panel was rather low, at 3.1 ± 0.8 and therefore detection
399	sensitivity (TP/(TP+FN)) was also low, at 21.6% (Figure 3 and S3) which is less than half the sensitivity we
400	typically achieve using standard DDA methodologies on the QE+. Overall, this method did not detect 15
401	of the 20 peptides that were detected using the other methodologies. Seven of these 15 missing
402	peptides were found in all three other methodologies, which include peptides DSQECILmETEAR,
403	LEGEINmRY, EHCSACGPLSR, DLNMDCmVAEIK, DLNMDCIVAEIK, GAFLYEPCGVSTPVLSTGVLR, and
404	GAFLYdPCGVSTPVLSTGVLR from KRT39, KRT32, KRT39, KRT83, and KRT82 (Figures 3 and S3). Only one
405	peptide was observed using the Lumos-DIA methods that was not observed in either PRM or MRM
406	method for the same donor; AKPLEQAVAAIVCTFQEYAGR.
407	DIA requires little method optimization [30, 54], and may be used for GVP scouting or
408	retrospective use. Unbiased detection of peptides, uniquely for DIA, allows for proteins of low
409	abundance to be detected [31]. This precludes the need for an exclusion list or other mass filtering
410	parameter optimizations. The data is highly reproduceable [31] and so running evidence samples
411	alongside exemplars would be more consistent and would result in less variance due to protein
412	abundance levels [55]. The main challenge in DIA interpretation, at least in our hands, was
413	deconvolution of MS ² spectra. In this data false positive identification occurred in four peptides that
414	were not explained by instrument carry-over or genetics. Due to the nature of SWATH mass
415	spectrometry, an MS ² mass spectrum may contain product ions from multiple precursor ions, which may
416	lead to convoluted MS ² extracted ion chromatograms. This may be problematic in a courtroom setting,
417	although the use of the internal standard SIL peptides would have significantly aided MS2
418	interpretation. The sensitivity of this analysis may also be improved with better precursor validation,
419	library match validation, and staggered SWATH windows [56].
420	

421 3.3 Analysis of Performance for the Lumos-QD Platform

Alternative Platforms for Proteomic Genotyping

422	Targeted parallel reaction monitoring (PRM) was evaluated by analysis of replicate digests using
423	an analytical variant called QuanDirect™ (QD) (Figure 1) [32]. This method differs from classical PRM by
424	triggering data acquisition using detection of the y_1 SIL amino acid instead of characterized retention
425	times. The resulting percentage of true positive identifications for Lumos-QD was 33.3% and the false
426	discovery rate was also highest, at 12.7% (Figure 3). The high false discovery rate was due to higher
427	levels of carry-over of the peptides GVALSNVIHK, GVALSNVVHK, and DLNMDCMVAEIK, including in the
428	blanks. Average GVP detection from the 24-GVP panel was 9.5 \pm 0.7 and detection sensitivity
429	(TP/(TP+FN)) was 54.5% (Figure 3 and S3). Overall, the methodologies we applied to the Lumos-QD
430	platform revealed a 1.3-fold increase in detection sensitivity in comparison to the traditional
431	methodologies we applied to the QE+ platform (Figure 3). However, the peptides
432	ARPLEQAVAAIVCTFQEYAGR and AKPLEQAVAAIVCTFQEYAGR were both detected inconsistently in the
433	Lumos-QD series when compared to the three other methods.
434	Overall, Lumos-QD peaks appear sharp and symmetrical with peak intensities that averaged at
435	three orders of magnitude and an ion current signal to noise ratio above 1:10 (Figure 2). As expected,
436	peaks identified using Lumos-QD were less stable in retention time. Standard peptide peaks drifted
437	between runs by an average variance of 20 sec (or 0.4% of total run time), which is longer than the
438	average peak width of 15 sec (or 0.3% total run time) (Figure S2). Peak variance was on average 1.5x
439	larger for the Lumos-QD method compared to the QQQ method, described below. Peak drift between a
440	standard peptide and its corresponding endogenous peptide in each run was minimal for both PRM and
441	MRM analyses (Figure S2B/C).
442	The QuanDirect method addresses a major weakness of PRM, namely retention time variability
443	that results from low flow chromatography. The more recent SureQuant methodology [57] continues
444	this mass triggering approach by searching for the internal standard precursor ion in a fast and low-
445	resolution watch mode and switches to a high-resolution quantitative mode when the isotope-labeled

Alternative Platforms for Proteomic Genotyping

446	precursor ion is detected [57]. For QD, not having to pre-determine strict elution windows saves time
447	and effort. However, the traditional PRM methodology when it is optimized, and takes full advantages of
448	SIL characteristics and instrument cycle windows, and may be more sensitive and optimized. The PRM
449	acquisition method is easier to establish since it is not limited by prior identification of targeted
450	transitions. Of course, targeted acquisition only acquires limited information and therefore cannot be
451	used retrospectively.

452

453 *3.4 Analysis of Performance for the QQQ Platform*

Multiple reaction monitoring (MRM) was conducted using an Agilent 1290 Infinity series HPLC 454 455 system coupled to an Agilent 6495 triple quadrupole mass spectrometer (Figure 1). In this targeted 456 acquisition experiment, a panel of 24 SIL GVPs (Table 1, Figure S4) was added to provide a direct 457 comparison of transition signals and retention times for endogenous GVPs. The resulting percentage of 458 true positive identification was 42.4% and the false discovery rate (FP/(FP+TP)) was 4.7% (Figure 3). 459 Average GVP detection from the 24-GVP panel was 11.7 ± 1.7 and detection sensitivity (TP/(TP+FN)) 460 increased to 69.3% (Figure 3 and S3). Overall, the methodologies we applied to the QQQ platform 461 revealed a 1.6-fold increase in detection sensitivity in comparison to the traditional methodology we applied to the QE+ platform. Peak shape was more uniform in the QQQ run where retention time drifted 462 463 between runs by an average variance of 1.5 sec, which is shorter than the average peak width (4.8 sec) 464 (Figure S2A). Peak drift between a standard peptide and its corresponding endogenous peptide in each 465 run was minimal (Figure S2B/C). The average signal to noise ratio for QQQ was lower and the overall 466 detected peak intensities were lower by an average of 3 orders of magnitude.

The QQQ method resulted in noisier peaks due to the smaller number of transitions selected,
lower mass accuracy, and shorter run times that may have resulted in overlap with extraneous ions.

Alternative Platforms for Proteomic Genotyping

469 However, the QQQ system provided the greatest increase in sensitivity. In terms of method 470 development, MRM on a QQQ system requires more development to deal with limited selection of 471 transition masses, detection parameters and manual optimization of acquisition parameters such as 472 collision energy, retention windows, dwell time, duty cycle, and cycle time. In terms of input material, 473 the QE+, Lumos-DIA, and Lumos-QD methods are all the same, with 1 μ g of material injected due to 474 their use of nano-LC. However, the QQQ system used a volume of 10 μ L, which averaged to ~15 μ g of digested peptide material. This is a 15-fold increase in starting material, but still only 10 to 20% of a 475 476 protein digest from a single hair shaft (20 mm). The MRM method depends on a limited number of transitions for identification. The performance of each transition therefore needs to be individually 477 478 evaluated and alternative transitions selected as necessary. Selection of the target GVP for a given non-479 synonymous SNP is also a major consideration. The current approach to proteomic genotyping is based 480 on shotgun proteomics that allows genotype inference to occur from several chemical variants, or 481 'peptidoforms', of a GVP [31, 58, 59]. These result from expected but variable environmental chemical 482 modifications such as deaminidation, methionine oxidation and N-terminal acetylation. Selection of a 483 representative peptide will ideally occur from the peptidoform with the highest signal from samples 484 derived from a range of real-world contexts.

The false positives identified in this study have three potential causes. The first category is 485 486 genetic. This class of false positive is demonstrated by the peptide in K32 protein containing the SAP 487 T395M. An uncommon variant in K40 (W390R) results in the same genetically variant peptide sequence, 488 which was positively identified in subject E2. As described earlier, the second class of false positive 489 detection is due to instrument carry-over. SerpinB5 and K83 found in Lumos-QD may exemplify this 490 since these were also found in the method blanks and not in reagent blanks. These most likely reflect 491 instrument carry-over and not reagent contamination due to the low peptide abundance. The 492 associated peaks are smaller than that observed in other true positive hair shaft digests by more than

Alternative Platforms for Proteomic Genotyping

493	two orders of magnitude (data not shown). The degree of carry-over for any peptide marker can be
494	factored into appropriate thresholds during the development process for designating a positive
495	detection of endogenous GVP [24–26]. Assessment of inter-sample blanks is a crucial step which must
496	be included. Caution should be used to avoid a third category of false positive detection involving data
497	interpretation.
498	The presence of false positive assignments, or potential assignments, raises the issue of peptide
499	validation and what constitutes a positive determination. In targeted proteomics, positive determination
500	is more straightforward. If the retention time, precursor ion ratios, product ion ratios, and mass errors
501	are consistent to those of the SIL standard within a certain range, then the peptide is positively assigned.
502	If one of these aspects is missing, then it is still possible to validate through the other measures. For
503	example, precursor ions are missing for many GVPs in the Lumos-QD analysis including HEXB 207I,
504	GSDMA 128L, and K39 456R. However, other measurements such as product ion ratios (data not shown)
505	and retention times (Figure S2) are consistent with the standard. Therefore, these are considered
506	positive assignments. Without the use of SIL standards, as we see with the QE+ and Lumos-DIA methods,
507	this is not a straightforward task. As a first step of validation, a library may be used to compare
508	precursor and product ions. In this analysis, we use Prosit [41] as a guideline for ion ratio comparison.
509	Traditional QQQ platforms differ significantly from research mass spectrometry platforms in
510	chromatography and ionization. The QQQ platform used here employs an analytical column with
511	dimensions of 2.1 mm x 100 mm and a flowrate of 400 $\mu\text{L/min}.$ This platform also employs an Agilent jet
512	stream ion source, which offers improved instrumental sensitivity, but is not as sensitive as nanospray
513	sources. This is in comparison to the nano-LC systems of QE+ and Lumos which used column dimensions
514	of sub-100 μm diameter and 150-250 mm lengths and a flow rates of 200-300 nL/min. These smaller
515	diameter columns with slower flow rates offer enhanced instrumental sensitivity due to entering the
516	column in a more concentrated band, therefore lessening radial dilution [50]. Using nanoflow columns,

Alternative Platforms for Proteomic Genotyping

ion suppression effects and scan rate limitations are reduced, and the system is more responsive to
temperature changes. When considering time efficiency, analytical columns offer the advantage of 15minute proteomic runs while the nanoflow systems offer around 90 minute runs. In a non-research
environment where time is crucial, and especially when dealing with forensic samples, the difference of
six to nine samples run in 90 minutes versus one sample in 90 minutes can make a large difference in
time efficiency and dramatically reduce the instrumentation costs per sample. Instrument downtime
due to maintenance and complications is also typically lower for QQQ systems.

524 Meeting the requirements of the forensic science community is an important challenge in this 525 research. The Daubert standard requires forensic evidence to meet five major milestones including 526 testing in real-world scenarios, publication and peer review, known error rates, standards to control the 527 technique's operation, and general acceptance within the forensic science community [60]. SWGDAM 528 developmental validation guidelines for genetic studies are similar, with objectives including 529 characterization of genetic markers, species specificity, sensitivity studies, stability studies, precision and 530 accuracy, case-type samples, and population studies [61]. SWGTOX gives even further guidelines on 531 mass spectrometry standards including assessments on bias and precision, calibration models, 532 instrument carry-over, inference studies, ionization suppression and enhancement, limit of detection, 533 and limit of quantitation [24]. The proposed methods in this research meet both practical and legal 534 standards. In terms of meeting the Daubert standard, GVP analysis has also undergone testing and 535 validation studies using real-world scenarios, such as pigmentation status, body site origin and time in 536 storage, peer review, and reported error [3, 17, 27, 62, 63]. This research contributes further by 537 establishing the use of peptide standards as an additional validation option to investigators [3, 17, 19, 538 27, 38, 64, 65]. To meet the SWGDAM developmental guidelines, GVP DNA markers have been 539 characterized, species specificity is checked, sensitivity is currently being studied, stability of peptides 540 has been demonstrated, precision and accuracy are reported in proteomic datasets, and population

Alternative Platforms for Proteomic Genotyping

541 studies are currently being conducted [3, 19, 27, 38, 65]. Of the targeted mass spectrometry approaches 542 taken, the QQQ mass selection windows for primary and transition ions are broader and less selective 543 than those used in parallel reaction monitoring. However, any broadening of specificity is more than 544 compensated for by the consistency of retention time, particularly in the presence of stable isotope 545 labelled (SIL) peptides. To meet SWGTOX guidelines calibration verifications, proteomic calibration 546 models, instrument carry-over criteria are being assessed and in development, or are in place. Likewise, the use of exogenous SIL peptides for inference of endogenous GVPs using transition ion and signal to 547 548 noise ratios can be reported and available for replication (Figures S1 and S5). Additional levels of 549 validation such as establishing limits of detection and quantification are currently under investigation. 550

551 3.5 Extrapolation of Random Match Probability

552 Random match probabilities for the 24 peptide panel do not exceed 1 in 1000, which is to be 553 expected of a small panel. However, random match probabilities have been reported to reach up to 1 in 554 624 million from 77 detected GVPs from a single hair shaft [17]. To model what RMP estimates could be 555 if more sensitive targeted methods were applied, inferred genotypes were modeled as a function of 556 increasing detection of GVPs. The modeled genotype frequencies of each allele were randomly selected 557 from existing GVP genotype frequencies in the European reference population of the 1000 Genomes 558 Project Consortium for 10 to 300 possible GVP detections [43]. One hundred iterations were completed 559 and minimum, median, and maximum 1/RMP estimates were plotted for increasing GVP levels (Figure 560 4). Previous data from single hair and 4mg hair digests were overlaid to validate a portion of the model 561 [17]. The model demonstrates wide variation in potential 1/RMP values and different numbers of 562 observed GVPs that reflect the stochastic nature of inferred genotypes from randomized alleles; not 563 every genotype contains an allele, and genotype frequencies can vary widely. Not all of the actual 564 overlaid 1/RMP values were within the minimum and maximum boundaries for estimated RMP, which

Alternative Platforms for Proteomic Genotyping

565	reflects a higher number of GVPs occurring within an open reading frame, and therefore were treated as
566	a single locus when processing actual GVP profiles [3]. The contingency of multiple GVPs in an open
567	reading frame were not incorporated into the model. Likewise, heterozygosity was also not
568	incorporated into the model, although the resulting product of genotype frequencies of two alleles ($gf_{\scriptscriptstyle AB}$
569	= $gf_A \ge gf_B$) closely approximates and is slightly more conservative than the actual genotype frequency
570	(gf_{AB} = 2AB) (Figure S6). The maximum difference between the two equations was only 6.25% at an
571	allelic frequency of 0.5 (Figure S6). Expected 1/RMP values from a projected 1.6-fold increase in
572	detection sensitivity was indicated on the model as was observed in MRM. For an estimated 130 GVP
573	detections, projected values would range from an estimated maximum of 1 in 10 ¹⁸ (1 in 1 quintillion), to
574	a minimum of 1 in 10 ¹⁰ (1 in 10 billion), with a median of 1 in 10 ¹³ (1 in 10 trillion). For a 1.3-fold increase
575	in sensitivity, as observed using the QuanDirect variant of PRM, the roughly 100 GVP detections. This
576	was a significant improvement to current standards in proteomic genotyping and predicts that
577	individualization can routinely be obtained using a single human hair shaft. Based on 20 repeated
578	iterations there was an increase in median RMP of an order of magnitude per 8.8 \pm 0.9 GVP detections.
579	Many assumptions were made in this model, which elicit broad estimates of RMP. The model
580	used does not perfectly reflect the method actually used to determine RMP from detected GVPs. GVPs
581	from the hair shaft are often clustered in the same gene product and effects of linkage disequilibrium,
582	accommodated in actual RMP estimates, were not taken into consideration. These differences may help
583	to explain deviations between modelled RMPs and actual values. Actual values of RMP shown in the
584	MCMC model are from previously published data that incorporate linkage disequilibrium into the RMP
585	calculation [17]. The panel of 24 synthetic stable isotope labeled (SIL) GVPs used in this study were
586	selected to represent a range of relative abundances from very frequently to rarely observed. This was
587	to ensure that changes in detection sensitivity would be reflected in the data. They are not a random
588	selection from the more than 400 validated GVPs identified to date and the observed 1.6-fold increase

Alternative Platforms for Proteomic Genotyping

589	in sensitivity therefore is contingent. The increase in detection sensitivity was associated with an
590	increase in false discovery rate, a scenario that is common in analytical chemistry. Since the panel of 24
591	GVPs chosen does not accurately represent the full set of 408 GVPs, a bias towards more discriminating
592	RMPs may exist. Mitigation of this effect was attempted by choosing GVPs that vary in detection
593	sensitivity, length, and detection. Heterozygosity also was not incorporated into the model, and since
594	this results in a slightly more conservative RMP estimates, this may account for some of the actual
595	1/RMP values being more discriminating than the model.

596

597 4. Conclusion

This work demonstrates the utility for alternative analytical platforms in proteomic genotyping 598 599 and establishes validation methods for the evaluation of inferred genotypes. Sample limitation, a lack of 600 opportunity for reproducibility, and more stringent criteria for peptide identification are all relevant 601 when interpreting data and communicating findings in a legal context. Maximizing relevant peptide 602 signals is critical. Previous proteomic optimization has occurred at the level of sample processing to 603 increase the release of detectable peptides from the hair matrix [17]. This study further optimized the 604 detection of genetically variant peptides by focusing on the analytical framework. A range of three basic 605 mass spectrometry approaches were utilized and associated to a reanalysis of GVP detection using 606 standard shotgun proteomics [17]. These approaches included data dependent acquisition (DDA), 607 systematic data independent acquisition (DIA), parallel reaction monitoring (PRM), and multiple reaction 608 monitoring (MRM). PRM and MRM methods of acquisition also included the addition of a panel of 24 609 stable isotope-labeled peptides to facilitate and validate GVP detection. While each method was 610 conducted on mass spectrometry platforms with suitable configurations for each method, additional 611 optimizations could still be conducted for each approach, particularly DIA. Nevertheless, the MRM 612 method performed best in terms of GVP detection, with an overall increase in detection sensitivity of

Alternative Platforms for Proteomic Genotyping

613	1.6x when compared to the traditional data dependent acquisition approach on a QE+ platform. This
614	platform incorporated more robust analytical column chromatography and triple quadrupole mass
615	spectrometry. In addition to increased sensitivity and a simplified analytical process, the ease of
616	explanation in a legal setting, and use of preestablished methods and accreditation standards currently
617	used in forensic toxicology should facilitate incorporation into the forensic community. In this study,
618	targeted methods applied to GVP detection enhanced the use of hair protein as a source of human
619	individualization, with a projected random match probability of 1 in 10 trillion if this method were
620	applied to all 408 currently identified GVPs. Detection of human- or fluid-identifying peptides currently
621	relies on MRM on triple quadrupole mass spectrometry platforms. An expansion of this targeted
622	approach to include GVPs has the potential to dramatically improve the accessibility of proteomic
623	genotyping, reducing costs and simplifying interpretation. Increased detection sensitivity will increase
624	the discrimination and therefore utility of resulting random match probabilities. The use of targeted
625	mass spectrometry may well place proteomic genotyping as a more accessible, quantitative, and legally
626	explainable tool.

627

628 Funding

629 This study was supported by the National Institute of Justice, Office of Justice Programs, U.S.

630 Department of Justice (Awards 2015-DN-BX-K065 and 2019-R2-CX-0051). The findings, statements, and

- opinions expressed in this manuscript are those of the authors and do not necessarily represent the
- 632 opinions of the U.S. Department of Justice.

633

634 Ethical Approval

635 All procedures performed in studies involving human participants were in accordance with the ethical

636 standards of the institutional and/or national research committee and with the 1964 Helsinki

Alternative Platforms for Proteomic Genotyping

- 637 declaration and its later amendments or comparable ethical standards. All samples were collected
- 638 following the guidelines provided by the Institutional Review Board (IRB# 832726) and Institutional
- 639 Biosafety Committee (IBC) of the University of California, Davis, CA.
- 640

Conflict of Interest 641

642 The authors have declared no conflict of interest, with the exception of GJP who has a patent based on

- 643 the use of genetically variant peptides for human identification (US 8,877,455 B2, Australian Patent
- 644 2011229918, Canadian Patent CA 2794248, and European Patent EP11759843.3). The patent is owned
- 645 by Parker Proteomics LLC. Protein-Based Identification Technologies LLC (PBIT) has an exclusive license
- 646 to develop the intellectual property and is co-owned by Utah Valley University and GJP. This ownership
- 647 of PBIT and associated intellectual property does not alter policies on sharing data and materials. These
- 648 financial conflicts of interest are administered by the Research Integrity and Compliance Office, Office of
- 649 Research at the University of California, Davis to ensure compliance with University of California Policy.
- 650

651 Acknowledgments

652 The authors thank Dr. Bob Rice, Dr. Blythe Durbin-Johnson, Dr. Ben Moeller, and Dr. John Newman for 653 their advice. This publication was made possible, in part, with support from the UC Davis Genome 654 Center Bioinformatics Core Facility. The sequencing was carried out at the DNA Technologies and 655 Expression Analysis Cores at the UC Davis Genome Center, LC-MS/MS was supported by NIH Shared 656 Instrumentation Grant 1S10OD010786-01. We specifically acknowledge the assistance of Jie Li, Emily 657 Kumimoto, Siranoosh Ashtari, Vanessa K Rashbrook, and Lutz Froenicke. 658

- 659
- 660
- 661 662

References 663 664 665 [1] K. M. Legg, R. Powell, N. Reisdorph, R. Reisdorph, and P. B. Danielson, "Discovery of highly specific protein markers for the identification of biological stains," Electrophoresis, 666 vol. 35, no. 21–22, pp. 3069–3078, 2014, doi: 10.1002/elps.201400125. 667 A. Tailor, J. C. Waddington, X. Meng, and B. K. Park, "Mass Spectrometric and Functional [2] 668 Aspects of Drug-Protein Conjugation," Chem. Res. Toxicol., vol. 29, no. 12, pp. 1912-669 1935, 2016, doi: 10.1021/acs.chemrestox.6b00147. 670 [3] G. J. Parker et al., "Demonstration of protein-based human identification using the hair 671 shaft proteome," *PLoS One*, vol. 11, no. 9, pp. 1–26, 2016, doi: 672 10.1371/journal.pone.0160653. 673 [4] H. Yang, B. Zhou, M. Prinz, and D. Siegel, "Proteomic analysis of menstrual blood," Mol. 674 Cell. Proteomics, vol. 11, no. 10, pp. 1024–1035, 2012, doi: 10.1074/mcp.M112.018390. 675 676 [5] K. M. Legg, L. M. Labay, S. S. Aiken, and B. K. Logan, "Validation of a Fully Automated Immunoaffinity Workflow for the Detection and Quantification of Insulin Analogs by LC-677 MS-MS in Postmortem Vitreous Humor," J. Anal. Toxicol., vol. 43, no. 7, pp. 505–511, 678 2019, doi: 10.1093/jat/bkz014. 679 [6] T. Buonasera et al., "A comparison of proteomic, genomic, and osteological methods of 680 archaeological sex estimation," Sci. Rep., vol. 10, no. 1, pp. 1–15, 2020, doi: 681 10.1038/s41598-020-68550-w. 682 L. Eckhart, S. Lippens, E. Tschachler, and W. Declercq, "Cell death by cornification," 683 [7] Biochim. Biophys. Acta - Mol. Cell Res., vol. 1833, no. 12, pp. 3471–3480, 2013, doi: 684 685 10.1016/j.bbamcr.2013.06.010. M. E. Allentoft et al., "The half-life of DNA in bone: Measuring decay kinetics in 158 dated 686 [8] fossils," Proc. R. Soc. B Biol. Sci., vol. 279, no. 1748, pp. 4724–4733, 2012, doi: 687 10.1098/rspb.2012.1745. 688 M. M. Holland *et al.*, "Mitochondrial DNA Sequence Analysis of Human Skeletal Remains: 689 [9] Identification of Remains from the Vietnam War," J. Forensic Sci., vol. 38, no. 3, p. 690 13439J, 1993, doi: 10.1520/jfs13439j. 691 692 [10] C. Ginther, L. Issel-Tarver, and M. C. King, "Identifying individuals by sequencing mitochondrial DNA from teeth," Nat. Genet., vol. 2, no. 2, pp. 135–138, 1992, doi: 693 10.1038/ng1092-135. 694 D. Fenyö and R. C. Beavis, "A method for assessing the statistical significance of mass 695 [11] spectrometry-based protein identifications using general scoring schemes," Anal. Chem., 696 vol. 75, no. 4, pp. 768–774, 2003, doi: 10.1021/ac0258709. 697 [12] D. Fenyö, J. Eriksson, and R. Beavis, "Mass Spectrometric Protein Identification Using the 698 Global Proteome Machine," in *Methods in Molecular Biology*, no. 10, 2010, pp. 189–202. 699

700 701 702	[13]	F. Meier <i>et al.</i> , "Online parallel accumulation–serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer," <i>Mol. Cell. Proteomics</i> , vol. 17, no. 12, pp. 2534–2545, 2018, doi: 10.1074/mcp.TIR118.000900.
703 704 705	[14]	M. Pla-Roca <i>et al.,</i> "Antibody colocalization microarray: A scalable technology for multiplex protein analysis in complex samples," <i>Mol. Cell. Proteomics,</i> vol. 11, no. 4, pp. 1–12, 2012, doi: 10.1074/mcp.M111.011460.
706 707	[15]	N. Nagaraj <i>et al.,</i> "Deep proteome and transcriptome mapping of a human cancer cell line," <i>Mol. Syst. Biol.</i> , vol. 7, no. 548, pp. 1–8, 2011, doi: 10.1038/msb.2011.81.
708 709 710	[16]	T. Geiger, A. Wehner, C. Schaab, J. Cox, and M. Mann, "Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins," <i>Mol. Cell. Proteomics</i> , vol. 11, no. 3, pp. 1–11, 2012, doi: 10.1074/mcp.M111.014050.
711 712 713	[17]	Z. C. Goecker, M. R. Salemi, N. Karim, B. S. Phinney, R. H. Rice, and G. J. Parker, "Optimal processing for proteomic genotyping of single human hairs," <i>Forensic Sci. Int. Genet.</i> , vol. 47, no. December 2019, p. 102314, 2020, doi: 10.1016/j.fsigen.2020.102314.
714 715 716	[18]	K. E. Mason, P. H. Paul, F. Chu, D. S. Anex, and B. R. Hart, "Development of a Protein- based Human Identification Capability from a Single Hair," <i>J. Forensic Sci.</i> , vol. 64, no. 4, pp. 1152–1159, 2019, doi: 10.1111/1556-4029.13995.
717 718 719	[19]	Z. Zhang <i>et al.,</i> "Sensitive Method for the Confident Identification of Genetically Variant Peptides in Human Hair Keratin," <i>J. Forensic Sci.</i> , vol. 65, no. 2, pp. 406–420, 2020, doi: 10.1111/1556-4029.14229.
720 721 722	[20]	M. J. MacCoss, C. C. Wu, and J. R. Yates, "Probability based validation of protein identifications using a modified SEQUEST algorithm," <i>Anal. Chem.</i> , vol. 74, no. 21, pp. 5593–5599, 2002, doi: 10.1021/ac025826t.
723 724 725	[21]	J. Zhang <i>et al.</i> , "PEAKS DB: De novo sequencing assisted database search for sensitive and accurate peptide identification," <i>Mol. Cell. Proteomics</i> , vol. 11, no. 4, pp. 1–8, 2012, doi: 10.1074/mcp.M111.010587.
726 727	[22]	J. S. Cottrell, "Protein identification using MS/MS data," <i>J. Proteomics</i> , vol. 74, no. 10, pp. 1842–1851, 2011, doi: 10.1016/j.jprot.2011.05.014.
728 729 730	[23]	H. Zhu, S. Pan, S. Gu, E. Morton Bradbury, and X. Chen, "Amino acid residue specific stable isotope labeling for quantitative proteomics," <i>Rapid Commun. Mass Spectrom.</i> , vol. 16, no. 22, pp. 2115–2123, 2002, doi: 10.1002/rcm.831.
731 732 733	[24]	Scientific Working Group for Forensic Toxicology (SWGTOX), "Scientific working group for forensic toxicology (SWGTOX) standard practices for method validation in forensic toxicology," <i>J. Anal. Toxicol.</i> , vol. 37, no. 7, pp. 452–474, 2013, doi: 10.1093/jat/bkt054.
734 735 736	[25]	European Parliament and the Council of the European Union, "96/23/EC COMMISSION DECISION of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (notified under

737 738		document number C(2002) 3044)(Text withEEA relevance) (2002/657/EC)," <i>Off. J. Eur. communities</i> , no. L 221/8, pp. 8–36, 2002, doi: 10.1017/CBO9781107415324.004.
739 740 741	[26]	World Anti-Doping Agency (WADA), "Identification criteria for qualitative assays incorporating column chromatography and mass spectrometry," <i>WADA Tech. Doc TD2010IDCR</i> , pp. 1–9, 2010, doi: TD2010IDCR.
742 743 744	[27]	J. A. Milan <i>et al.</i> , "Comparison of protein expression levels and proteomically-inferred genotypes using human hair from different body sites," <i>Forensic Sci. Int. Genet.</i> , vol. 41, no. March, pp. 19–23, 2019, doi: 10.1016/j.fsigen.2019.03.009.
745 746 747 748	[28]	R. N. Franklin, N. Karim, Z. C. Goecker, B. P. Durbin-Johnson, R. H. Rice, and G. J. Parker, "Proteomic genotyping: Using mass spectrometry to infer SNP genotypes in pigmented and non-pigmented hair," <i>Forensic Sci. Int.</i> , vol. 310, 2020, doi: 10.1016/j.forsciint.2020.110200.
749 750 751	[29]	S. Gallien, E. Duriez, C. Crone, M. Kellmann, T. Moehring, and B. Domon, "Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer," <i>Mol. Cell. Proteomics</i> , vol. 11, no. 12, pp. 1709–1723, 2012, doi: 10.1074/mcp.O112.019802.
752 753 754	[30]	L. C. Gillet <i>et al.</i> , "Targeted data extraction of the MS/MS spectra generated by data- independent acquisition: A new concept for consistent and accurate proteome analysis," <i>Mol. Cell. Proteomics</i> , vol. 11, no. 6, pp. 1–17, 2012, doi: 10.1074/mcp.0111.016717.
755 756 757	[31]	C. Ludwig, L. Gillet, G. Rosenberger, S. Amon, B. C. Collins, and R. Aebersold, "Data- independent acquisition-based SWATH - MS for quantitative proteomics: a tutorial ," <i>Mol. Syst. Biol.</i> , vol. 14, no. 8, pp. 1–23, 2018, doi: 10.15252/msb.20178126.
758 759	[32]	G. McAlister, S. Eliuk, and R. Huguet, QuanDirect: A simplified approach to fast and accurate, high throughput targeted MS2 quantitation using internal standards
760 761 762 763	[33]	D. Remane, D. K. Wissenbach, and F. T. Peters, "Recent advances of liquid chromatography–(tandem) mass spectrometry in clinical and forensic toxicology — An update," <i>Clin. Biochem.</i> , vol. 49, no. 13–14, pp. 1051–1071, 2016, doi: 10.1016/j.clinbiochem.2016.07.010.
764 765	[34]	M. M. Mbughuni, P. J. Jannetto, and L. J. Langman, "Mass spectrometry applications for toxicology," <i>J. Int. Fed. Clin. Chem. Lab. Med.</i> , vol. 27, no. 4, pp. 2016–2043, 2016.
766 767 768 769	[35]	J. Maublanc, S. Dulaurent, J. Morichon, G. Lachâtre, and J. michel Gaulier, "Identification and quantification of 35 psychotropic drugs and metabolites in hair by LC-MS/MS: application in forensic toxicology," <i>Int. J. Legal Med.</i> , vol. 129, no. 2, pp. 259–268, 2015, doi: 10.1007/s00414-014-1005-1.
770 771 772 773	[36]	I. Shah, A. Petroczi, M. Uvacsek, M. Ránky, and D. P. Naughton, "Hair-based rapid analyses for multiple drugs in forensics and doping: Application of dynamic multiple reaction monitoring with LC-MS/MS," <i>Chem. Cent. J.</i> , vol. 8, no. 1, pp. 1–10, 2014, doi: 10.1186/s13065-014-0073-0.

774 775 776	[37]	U. Garg and Y. V Zhang, "Mass Spectrometry in Clinical Laboratory: Applications in Therapeutic Drug Monitoring and Toxicology," <i>Clin. Appl. Mass Spectrom. Drug Anal.</i> , vol. 1383, pp. 241–246, 2016, doi: 10.1007/978-1-4939-3252-8.
777 778 779	[38]	K. F. Jones, T. L. Carlson, B. A. Eckenrode, and J. Donfack, "Assessing protein sequencing in human single hair shafts of decreasing lengths," <i>Forensic Sci. Int. Genet.</i> , vol. 44, no. September 2019, p. 102145, 2020, doi: 10.1016/j.fsigen.2019.102145.
780 781 782	[39]	R. Huguet, S. Eliuk, M. Blank, V. Zabrouskov, and G. McAlister, "A simplified approach to fast and accurate, high throughput targeted MS2 quantitation using internal standard," 2016.
783 784 785	[40]	B. MacLean <i>et al.</i> , "Skyline: An open source document editor for creating and analyzing targeted proteomics experiments," <i>Bioinformatics</i> , vol. 26, no. 7, pp. 966–968, 2010, doi: 10.1093/bioinformatics/btq054.
786 787 788	[41]	S. Gessulat <i>et al.</i> , "Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning," <i>Nat. Methods</i> , vol. 16, no. 6, pp. 509–518, 2019, doi: 10.1038/s41592-019-0426-7.
789 790	[42]	I. W. Evett and B. Weir, Interpreting DNA evidence: statistical genetics for forensic scientists. Sunderland MA: Sinauer Associates Sunderland MA, 1998.
791 792	[43]	A. Auton <i>et al.,</i> "A global reference for human genetic variation," <i>Nature,</i> vol. 526, no. 7571, pp. 68–74, 2015, doi: 10.1038/nature15393.
793 794 795	[44]	N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of State Calculations by Fast Computing Machines," <i>J. Chem. Phys.</i> , vol. 21, no. 6, pp. 1087–1092, 1953.
796 797	[45]	W. K. Hastings, "Monte carlo sampling methods using Markov chains and their applications," <i>Biometrika</i> , vol. 57, no. 1, pp. 97–109, 1970, doi: 10.1093/biomet/57.1.97.
798 799 800 801	[46]	Y. Perez-Riverol <i>et al.</i> , "PRIDE inspector toolsuite: Moving toward a universal visualization tool for proteomics data standard formats and quality assessment of proteomexchange datasets," <i>Mol. Cell. Proteomics</i> , vol. 15, no. 1, pp. 305–317, 2016, doi: 10.1074/mcp.O115.050229.
802 803	[47]	V. Sharma <i>et al.</i> , "Panorama: A targeted proteomics knowledge base," <i>J. Proteome Res.</i> , vol. 13, no. 9, pp. 4205–4210, 2014, doi: 10.1021/pr5006636.
804 805 806	[48]	Y. J. Lee, R. H. Rice, and Y. M. Lee, "Proteome analysis of human hair shaft: From protein identification to posttranslational modification," <i>Mol. Cell. Proteomics</i> , vol. 5, no. 5, pp. 789–800, 2006, doi: 10.1074/mcp.M500278-MCP200.
807 808 809	[49]	L. D. Fricker, "Limitations of Mass Spectrometry-Based Peptidomic Approaches," J. Am. Soc. Mass Spectrom., vol. 26, no. 12, pp. 1981–1991, 2015, doi: 10.1007/s13361-015- 1231-x.
810	[50]	S. R. Wilson, T. Vehus, H. S. Berg, and E. Lundanes, "Nano-LC in proteomics: Recent

- 811advances and approaches," *Bioanalysis*, vol. 7, no. 14, pp. 1799–1815, 2015, doi:81210.4155/bio.15.92.
- [51] H. Henry, H. R. Sobhi, O. Scheibner, M. Bromirski, S. B. Nimkar, and B. Rochat,
 "Comparison between a high-resolution single-stage Orbitrap and a triple quadrupole
 mass spectrometer for quantitative analyses of drugs," *Rapid Commun. Mass Spectrom.*,
 vol. 26, no. 5, pp. 499–509, 2012, doi: 10.1002/rcm.6121.
- E. V Moskovets and A. R. Ivanov, "Comparative studies of peak intensities and chromatographic separation of proteolytic digests, PTMs, and intact proteins obtained by nanoLC-ESI MS analysis at room and elevated temperatures," *Anal. Bioanal. Chem.*, pp. 3953–3968, 2016, doi: 10.1007/s00216-016-9386-2.
- [53] J. C. Gesquiere, E. Diesis, M. T. Cung, and A. Tartar, "Slow isomerization of some prolinecontaining peptides inducing peak splitting during reversed-phase high-performance liquid chromatography," *J. Chromatogr. A*, vol. 478, no. C, pp. 121–129, 1989, doi: 10.1016/0021-9673(89)90010-1.
- F. Zhang, W. Ge, G. Ruan, X. Cai, and T. Guo, "Data-Independent Acquisition Mass
 Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020," *Proteomics*,
 vol. 1900276, pp. 1–12, 2020, doi: 10.1002/pmic.201900276.
- 828 [55] A. Wolf-Yadlin, A. Hu, and W. S. Noble, "Technical advances in proteomics: New
 829 developments in data-independent acquisition," *F1000Research*, vol. 5, no. 0, pp. 1–12,
 830 2016, doi: 10.12688/f1000research.7042.1.
- [56] L. K. Pino, S. C. Just, M. J. MacCoss, and B. C. Searle, "Acquiring and Analyzing Data
 Independent Acquisition Proteomics Experiments without Spectrum Libraries," *Mol. Cell. Proteomics*, vol. 19, no. 7, pp. 1088–1103, 2020, doi: 10.1074/mcp.P119.001913.
- L. Stopfer *et al.*, "High-density, targeted monitoring of tyrosine phosphorylation reveals
 activated signaling networks in human tumors," *bioRxiv*, 2020, doi:
 10.1101/2020.06.01.127787.
- L. M. Smith and N. L. Kelleher, "Proteoform: A single term describing protein
 complexity," *Nat. Methods*, vol. 10, no. 3, pp. 186–187, 2013, doi: 10.1038/nmeth.2369.
- [59] G. Rosenberger *et al.*, "Inference and quantification of peptidoforms in large sample
 cohorts by SWATH-MS," *Nat. Biotechnol.*, vol. 35, no. 8, pp. 781–788, 2017, doi:
 10.1038/nbt.3908.
- 842 [60] M. G. Farrell, "Daubert v Merrell Dow Pharmaceutircals, Inc: Epistemiology and Legal
 843 Process," *Cardozo Law Rev.*, vol. 15, pp. 2183–2217, 2014.
- 844 [61] Scientific Working Group on DNA Analysis Methods (SWGDAM), "Validation Guidelines
 845 for DNA Analysis Methods," no. December 2016. pp. 1–13, 2016, [Online]. Available:
 846 www.swgdam.org.
- 847 [62] T. Borja *et al.*, "Proteomic genotyping of fingermark donors with genetically variant

848 849	peptides," <i>Forensic Sci. Int. Genet.,</i> vol. 42, no. March, pp. 21–30, 2019, doi: 10.1016/j.fsigen.2019.05.005.
850 [63] 851 852	G. Parker <i>et al.</i> , "Proteomic genotyping: Using mass spectrometry to infer SNP genotypes in a forensic context," <i>Forensic Sci. Int. Genet. Suppl. Ser.</i> , vol. 7, no. 1, pp. 664–666, 2019, doi: 10.1016/j.fsigss.2019.10.130.
853 [64] 854	Z. C. Goecker, "Forensic proteomics: extracting identifying information from problematic evidence types," 2019.
855 [65] 856 857	L. A. Catlin <i>et al.</i> , "Demonstration of a mitochondrial DNA-compatible workflow for genetically variant peptide identification from human hair samples," <i>Forensic Sci. Int. Genet.</i> , vol. 43, no. June, 2019, doi: 10.1016/j.fsigen.2019.102148.
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 874 875 876 877 878 877 878 879 880 881 882 883 881 882 883 884 885 886 887 888 889 890 891	

Alternative Platforms for Proteomic Genotyping

892 **Figures**

893

	Peptide Informa	SNP information			
Standard Peptide Sequence		MW (average)	Gene	RSID	SAP
	DSQECILTETEAR	1561.56	KRT39	rs17843021_G	T341M
	DSQECILMETEAR	1591.65	KRT39	rs17843021_A	T341M
	GILIDTSR	883.92	HEXB	rs10805890_A	1207V
	GILVDTSR	869.90	HEXB	rs10805890_G	1207V
	ALETVQER	954.96	GSDMA	rs7212938_G	V128L
	ALETLQER	968.98	GSDMA	rs7212938_T	V128L
	LEGEINTYR	1104.10	KRT32	rs2071563_G	T395M
	LEGEINMYR	1134.20	KRT32	rs2071563_A	T395M
	YISLIYTNYEAGKDDYVK	2163.30	GSTP1	rs1695_A	I105V
	YVSLIYTNYEAGKDDYVK	2149.27	GSTP1	rs1695_G	I105V
	VSAMYSSS <mark>S</mark> CKLPSLSPVAR	2137.37	KRT35	rs743686_A	S36P
	VSAMYSSSPCKLPSLSPVAR	2147.41	KRT35	rs743686_G	S36P
	EHCSACGPLSR	1283.33	KRT39	rs7213256_C	R456Q
	EHCSACGPLSQLLVK	1706.90	KRT39	rs7213256_T	R456Q
	EWSTFAVGPGHCLQLNDR	2097.20	NEU2	rs2233391_A	H168N
	EWSTFAVGPGHCLQLHDR	2120.24	NEU2	rs2233391_C	H168N
	GVALSNVIHK	1045.16	SERPINB5	rs1455555_A	I319V
	GVALSNV <mark>V</mark> HK	1031.13	SERPINB5	rs1455555_G	I319V
	DLNMDCMVAEIK	1446.63	KRT83	rs2852464_C	1279M
	DLNMDCIVAEIK	1428.59	KRT83	rs2852464_G	1279M
	GAFLYEPCGVSTPVLSTGVLR	2233.48	KRT82	rs1732263_C	E452D
	GAFLYDPCGVSTPVLSTGVLR	2219.45	KRT82	rs1732263_G	E452D
	A*RPLEQAVAAIVCTFQEYAGR	2402.62	S100A3	rs36022742_C	R3K
	A*KPLEQAVAAIVCTFQEYAGR	2374.60	S100A3	rs36022742_T	R3K

894

Table 1. Genetically variant peptide standards. These peptides were obtained from JPT Peptide
Technologies and were pooled and spiked into 17 matrices from five subjects. These were spiked only
into fractions being analyzed via PRM and MRM. Red amino acids indicate the SAP location per GVP, and
indicates acetylation. All cysteines (C) are carbamidomethylated (+57), and all C-terminal amino acids
are isotopically labeled. R contains 6 x ¹³C and 4 x ¹⁵N (+10 Da) and K contains 6 x ¹³C and 2 x ¹⁵N (+8 Da).

Alternative Platforms for Proteomic Genotyping

902

903 Figure 1. A summary of mass spectrometry data acquisition methods. 2 cm of scalp hair was digested. 904 This peptide mixture was then analyzed using four different LC-MS/MS data acquisition methods; two 905 methods of untargeted mass spectrometry (data-dependent acquisition on the Q Exactive plus, QE+, 906 data independent acquisition on the Fusion Lumos, Lumos-DIA) and two methods of targeted mass 907 spectrometry (parallel reaction monitoring on the Fusion Lumos, Lumos-QD, multiple reaction 908 monitoring on a triple quadrupole Agilent 6495, QQQ). For the targeted methods, an isotope-labeled 909 peptide mix was spiked into the hair digest. Both the isotope labeled peptide and endogenous peptide 910 elute together and their MS² spectra were compared to confirm the presence of the light isotope 911 endogenous peptide.

912

913

Alternative Platforms for Proteomic Genotyping

916 Figure 2. Performance of four analytical platforms. This figure demonstrates the usefulness of targeted

917 proteomic methods for three of the 24 GVP peptides analyzed. All peptides are expected to be present

918 in the sample as confirmed by genotyping. However, the first peptide (DSQECILMETEAR) is missing in the

Lumos-DIA, the second peptide (GILIDTSR) is missing in the QE+, and the third peptide (LEGEINMYR) is

920 missing in both QE+ and Lumos-QD.

Alternative Platforms for Proteomic Genotyping

				QE+			Lumos-DIA			Lumos-QD			QQQ		
Gene	RSID	SAP	Sequence	EUR	AFR	В	EUR	AFR E	3	EUR	AFR I	3	EUR	AFR	В
KRT39	rs17843021_G	T341M	DSQECILTETEAR												
KRT39	rs17843021_A	T341M	DSQECILMETEAR												
HEXB	rs10805890_A	1207V	GILIDTSR												
HEXB	rs10805890_G	1207V	GILvDTSR												
GSDMA	rs7212938_G	V128L	ALETVQER												
GSDMA	rs7212938_T	V128L	ALETIQER												
KRT32	rs2071563_G	T395M	LEGEINTYR												
KRT32	rs2071563_A	T395M	LEGEINmYR												
GSTP1	rs1695_A	1105V	YISLIYTNYEAGKDDYVK												
GSTP1	rs1695_G	1105V	YvSLIYTNYEAGKDDYVK												
KRT35	rs743686_A	S36P	VSAMYSSS <mark>S</mark> CKLPSLSPVAR												
KRT35	rs743686_G	\$36P	VSAMYSSSpCKLPSLSPVAR												
KRT39	rs7213256_C	R456Q	EHCSACGPLSR												
KRT39	rs7213256_T	R456Q	EHCSACGPLSqLLVK												
NEU2	rs2233391_A	H168N	EWSTFAVGPGHCLQLnDR												
NEU2	rs2233391_C	H168N	EWSTFAVGPGHCLQLHDR												
SERPINB5	rs1455555_A	1319V	GVALSNVIHK												
SERPINB5	rs1455555_G	1319V	GVALSNVvHK												
KRT83	rs2852464_C	1279M	DLNMDCmVAEIK												
KRT83	rs2852464_G	1279M	DLNMDCIVAEIK												
KRT82	rs1732263_C	E452D	GAFLYEPCGVSTPVLSTGVLR												
KRT82	rs1732263_G	E452D	GAFLYdPCGVSTPVLSTGVLR												
\$100A3	rs36022742_C	R3K	ARPLEQAVAAIVCTFQEYAGR												
S100A3	rs36022742_T	R3K	AkPLEQAVAAIVCTFQEYAGR												
QE+	Lumos-DIA		Lumos-DIA	Lumo		s-QD			QQQ						
26.4% 34.7		%	13.2% 47.9	9%	3	33.3	3%	27.8%	27.8%		42.4%		18.8%		

FDR = 2.6% Sensitivity = 43.2% FDR = 5.0% Sensitivity = 21.6%

38.2%

0.7%

923 Figure 3. **GVP matrix evaluating four analytical methods.** This matrix represents GVPs that have been

4.9%

FDR = 12.7% Sensitivity = 54.5%

34.0%

2.1%

36.8%

FDR = 4.7% Sensitivity = 69.3%

38.2%

verified via whole exome sequencing. Each row is a variant peptide and each column is an accumulated

925 GVP profile from three replicates. QE+, data dependent acquisition on Q Exactive+; Lumos-DIA, data

926 independent acquisition on the Fusion Lumos; Lumos-QD, QuanDirect on Fusion Lumos; QQQ, multiple

927 reaction monitoring on Agilent 6495; EUR, three European subjects; AFR, two African subjects; TP, true

928 positive; FN, false negative; FP, false positive; TN, true negative; FDR, false discovery rate.

0.7%

Alternative Platforms for Proteomic Genotyping

930

931 Figure 4. MCMC model for RMP extrapolation. A Markov Chain Monte Carlo model was developed to

estimate random match probability as a function of GVP detection. After 100 iterations, the maximum,

933 minimum, and median values were obtained. RMP values were validated from digests of 2 cm of hair

shaft. QQQ detection is estimated to increase GVP detection by 1.6-fold and QuanDirect[™] detection is
 estimated to increase GVP detection by 1.3-fold.