1	
2	
3	An integrative transcriptional logic model of hepatic insulin resistance
4	
5	Takumi Kitamoto ¹ *, Taiyi Kuo ¹ , Atsushi Okabe ² , Atsushi Kaneda ² , Domenico Accili ¹
6	
7	
8	
9	¹ Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and
10	Surgeons, Columbia University, New York, NY, 10032 ² Department of Molecular Oncology,
11	Graduate School of Medicine, Chiba University, Chiba, Japan, 260-8677
12	
13	
14	
15	
16	
17	
18	
19	* Corresponding Author: Takumi Kitamoto, MD, PhD
20	Phone: +1-2128515332 E-mail: tk2752@cumc.columbia.edu
21	

- 22 Total number of Figures: 7
- 23 Supplementary Table: 6
- 24 Supplementary Figures: 8
- 25 Highlights
- Foxo1 regulates liver metabolism through active enhancers, and hepatocyte
- 27 maintenance through core promoters
- Foxo1 regulates glucose genes through fasting-dependent intergenic enhancers
- Bipartite intron regulation of lipid genes is partly fasting-independent
- **30** Pparα contributes to the transcriptional resiliency of Foxo1 metabolic targets
- Insulin resistance causes de novo recruitment of Foxo1 to active enhancers
- A stepwise model of insulin resistance

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

33 ABSTRACT

34 Abnormalities of lipid/lipoprotein and glucose metabolism are hallmarks of hepatic insulin 35 resistance in type 2 diabetes. The former antedate the latter, but the latter become progressively 36 refractory to treatment and contribute to therapeutic failures. It's unclear whether the two processes 37 share a common pathogenesis and what underlies their progressive nature. In this study, we 38 investigated the hypothesis that genes in the lipid/lipoprotein pathway and those in the glucose 39 metabolic pathway are governed by different transcriptional logics that affect their response to 40 physiologic (fasting/refeeding) as well as pathophysiologic cues (insulin resistance and 41 hyperglycemia). To this end, we obtained genomic and transcriptomic maps of the key insulin-42 regulated transcription factor, FoxO1, and integrated them with those of CREB, PPARa, and 43 glucocorticoid receptor. We found an enrichment of glucose metabolic genes among those 44 regulated by intergenic and promoter enhancers in a fasting-dependent manner, while lipid genes 45 were enriched among fasting-dependent intron enhancers and fasting-independent enhancer-less 46 introns. Glucose genes also showed a remarkable transcriptional resiliency, i.e., an enrichment of 47 active marks at shared PPARa/FoxO1 regulatory elements when FoxO1 was inactivated. 48 Surprisingly, the main features associated with insulin resistance and hyperglycemia were a 49 "spreading" of FoxO1 binding to enhancers, and the emergence of target sites unique to this 50 condition. We surmise that this unusual pattern correlates with the progressively intractable nature 51 of hepatic insulin resistance. This transcriptional logic provides an integrated model to interpret 52 the combined lipid and glucose abnormalities of type 2 diabetes.

53

54

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

56 Significance Statement

57 The liver is a source of excess lipid, atherogenic lipoproteins, and glucose in patients with type 2 58 diabetes. These factors predispose to micro- and macrovascular complications. The underlying 59 pathophysiology is not well understood, and mechanistic insight into it may provide better tools 60 to prevent, treat, and reverse the disease. Here we propose an alternative explanation for this 61 pathophysiologic conundrum by illustrating a transcriptional "logic" underlying the regulation of 62 different classes of genes. These findings can be interpreted to provide an integrated stepwise 63 model for the coexistence of lipid and glucose abnormalities in hepatic insulin resistance.

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

64 Main Text

65 INTRODUCTION

An impairment of the physiologic response to insulin, or insulin resistance, remains the central 66 67 cause of type 2 diabetes together with declining insulin secretory capacity, and its principal 68 unmet treatment need (1). The pleiotropic nature of insulin resistance poses a therapeutic 69 challenge by having different effects on different organs, and different biological consequences 70 within the same cell type, not to mention evidence of genetic heterogeneity (2). Nowhere is this 71 challenge more apparent than at the liver, a central organ in the pathogenesis of two key 72 abnormalities in diabetes: increased production of atherogenic lipoproteins that increase the 73 diabetic's susceptibility to heart disease (1); and increased glucose production, predisposing to 74 microvascular complications (3). In addition, the progressive nature of the latter defect (4), 75 together with declining β -cell function (5), likely underlies the therapeutic failure of antidiabetic 76 drugs (6). Among drugs directly targeting hepatic glucose production, the diabetic pharmacopeia 77 remains woefully limited to metformin (7). 78 Understanding whether the two central defects of hepatic insulin resistance harken back 79 to a shared mechanism, or arise independently, has obvious implications for the discovery of new 80 treatments (8). A useful conceptualization that has gained some consensus separates insulin 81 signaling into FoxO1-dependent and Srebp1c-dependent branches, the former emanating from

82 activation of Akt and allied kinases to regulate glucose metabolism, and the latter being relayed

83 through mTOR to supervise lipid synthetic and turnover pathways (2). However, while the case

84 for FoxO1 regulation of specific genes is strong, its genome-wide regulatory function in the

broader context of the nutrient response has only been marginally addressed (9, 10). Therefore,

86 the extent to which the lipid and glucose metabolic branches of insulin signaling share a common

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

87	regulatory network remains unknown. Moreover, transcriptional networks are integrated,
88	redundant units with overlapping functions. During fasting, as glucagon, catecholamine, and
89	FFA levels rise, a host of factors is activated to modulate glucose and lipid mobilization. Besides
90	FoxO, they include CREB, PPARs, CEBPs, and nuclear receptors (11). To address these
91	questions, we undertook to generate a liver FoxO1 cistrome in different physiologic and
92	pathophysiologic states and compare it with the CREB, PPAR α , and glucocorticoid receptor
93	cistromes. By leveraging a new mouse model developed for genome-wide interrogation of
94	FoxO1 function (12), we discovered a FoxO1 transcriptional logic that provides insight into
95	hepatic insulin action and resistance.

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

97 **RESULTS**

98

99 In vivo features of hepatic FoxO1 translocation

100 There is a dearth of primary data on the kinetics of hepatic FoxO1 localization in response to

101 hormones and nutrients in the living organism. To optimize conditions for genome-wide ChIP-

seq, we performed immunohistochemistry in wild-type mice to determine the time- and dose-

103 dependence of FoxO1 nucleocytoplasmic translocation in response to insulin. Insulin injection

104 into the inferior vena cava triggered rapid FoxO1 translocation that reached a plateau by 15

105 minutes (Fig. S1a), with an ED₅₀ of 0.02U/kg (plasma level 0.4 ng/mL) (Fig. S1b). In contrast,

106 HNF4A remained nuclear throughout (Fig. S1a). Thus, FoxO1 translocation is rapid and

107 sensitive to physiological levels of insulin.

108 Next, we investigated translocation in response to fasting and refeeding. Following a 109 physiologic 4-hr fast, 1-hr refeeding induced complete FoxO1 translocation (Fig. 1a). In contrast, 110 a prolonged, 16-hr fast resulted in decreased FoxO1 immunoreactivity. Subsequent refeeding for 111 up to 4 hr failed to translocate residual FoxO1 to the cytoplasm, while FoxO1 immunoreactivity 112 increased and HNF4A immunoreactivity decreased after 2-hr refeeding (Fig. S1c). The reduced 113 protein levels and delayed translocation are likely secondary to FoxO1 deacetylation (13-15). 114 FoxO1 localization correlated with plasma glucose and insulin levels, as well as liver Akt 115 phosphorylation. Thus, rapid nuclear exclusion in the 4-hr-fast/1-hr-refeed design was associated 116 with a modest rise of glucose and insulin levels (Fig. S1d) and increased Akt phosphorylation 117 (Fig. S1e), whereas persistent nuclear localization in the 16-hr fast/4-hr refeed design was 118 associated with hyperglycemia, hyperinsulinemia (Fig. S1d), and reduced Akt phosphorylation 119 (Fig. S1e). Based on these findings, we selected the 4-hr fast and 1-hr refeed time points to 120 assess the hepatic FoxO1 regulome.

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

1	2	1
	_	т

122 FoxO1 regulome during fasting and refeeding

- 123 To study the genome-wide regulation of FoxO1 with fasting and refeeding, we interrogated
- 124 genome occupancy by FoxO1 using an anti-GFP antibody in FoxO1-Venus knock-in mice (12)
- 125 for chromatin immunoprecipitation (ChIP), to overcome the limitations of anti-FoxO1
- 126 antibodies. As reported (12), anti-FoxO1 antibodies detected the FoxO1-Venus fusion protein
- 127 encoded by the modified *Foxol* locus (Fig. S2a-b). Comparison between the two antibodies at
- 128 known FoxO1 target genes (*Igfbp1*, *G6pc*, and *Pck1*) confirmed the specificity and superior
- sensitivity of the GFP antibody (Fig. S2c) (16). We next compared ChIP-qPCR and ChIP-seq
- 130 using GFP antibody in FoxO1-Venus mice in the same conditions (Fig. S2d-h). Both approaches
- 131 demonstrated similar decreases of FoxO1 binding to *Igfbp1*, *G6pc*, and *Pck1*, and the lack of
- 132 effects on the unrelated *Fkbp5*. As the results were internally consistent, we performed further
- 133 analysis with GFP antibody.

Genome-wide FoxO1 ChIP peak calling detected ~15,000 peaks; ~8,000 unique peaks in
fasting, ~1,000 in refeeding, and 5,000 in both conditions but to different extents (Fig. 1b). >30%

- 136 of FoxO1 sites localized to promoters/transcription start sites (TSS) (Fig. 1c). Signal intensity
- 137 plots demonstrated that refeeding cleared FoxO1 binding to autosomes (Fig. 1d and S3a),
- 138 regardless of the distance from TSS (Fig. S3b). Known (Fig. S3c) and *de novo* motif analyses
- 139 (Fig. 1e, Fig. S4) retrieved the FoxO1 motif TGTTTAC (12). This motif was found in 17% and
- 140 29.3% of FoxO1 sites in fasted and refed conditions, respectively. The same motif was found in
- 141 fasted and refed conditions (Fig. S3d), and was evenly distributed between 1 and –5Kb from TSS
- 142 (Fig. S3e) (17).

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

143	Next, we integrated ChIP-seq and RNA-seq data into a hepatic FoxO1 regulome. To
144	identify FoxO1-regulated mRNAs, we induced somatic ablation of FoxO1 in liver by injecting
145	Foxol ^{lox/lox} mice with AAV-Cre (A-FLKO) and documented its completeness and specificity by
146	mRNA measurements and western blotting of different tissues (Fig. S3f-g). After 3 weeks, we
147	isolated livers from 4-hr-fasted A-FLKO and control (A-WT) mice and performed RNA-seq. We
148	plotted the log ₂ difference in DNA binding (FoxO1 ChIP-seq peak number in fasted vs. refed
149	animals) vs. the log ₂ difference in gene expression between A-WT and A-FLKO mice
150	(differentially expressed genes, DEGs). Thus, the effect of genotype lies along the vertical axis,
151	and that of fasting along the horizontal axis (Fig. 1f and Table S1).
152	Contingency analyses showed the strongest association between DEGs in the fasted state
153	and FoxO1 DNA binding sites at promoters/TSS (183 of 198, or 92.4%), followed by introns
154	(260 of 344, 75.6%), and intergenic sites (181 of 281, 64.4%), respectively ($p < 0.0001$). Since
155	DEGs are more likely to be FoxO1 targets, these data provide initial, suggestive evidence of a
156	FoxO1 transcriptional logic, <i>i.e.</i> , genes regulated by FoxO1 in a fasting/refeeding-dependent
157	manner have a greater frequency of FoxO1 sites in their promoter/TSS, introns, and intergenic
158	regions.
159	

160 FoxO1 regulates metabolic genes through active hepatic enhancers

161 In addition to metabolism, FoxO1 regulates cellular maintenance functions in a fasting-

162 independent manner (18). We sought to understand the transcriptional logic of these diverging

- 163 functions. We hypothesized that basic cellular functions would be regulated through core
- 164 promoters, which are generally found within 1 kb from TSS and are associated with
- 165 housekeeping genes and developmental TFs (19). Conversely, we surmised that metabolic genes

166	would be regulated through tissue-specific enhancers (11, 20). To test the hypothesis, we mapped
167	active enhancers using H3 ^{K27ac} and H3 ^{K4me1} ChIP-seq (21) in fasting and refeeding, and
168	determined their overlap with FoxO1 sites (Fig. S5a).
169	Of 5,303 active enhancers co-localizing with FoxO1 sites genome-wide, 2,975 were
170	unique to fasting, 1,022 to refeeding, and 1,306 were found in both conditions (Fig. S5b). FoxO1
171	enhancers localized mostly to intergenic regions and introns, and to a lesser extent to
172	promoter/TSS (Fig. 2a). The rate of clearance in response to refeeding varied according to
173	genomic annotation: 59.6% in intergenic regions (804/1348); 67.9% in introns, (1085/1597); and
174	81.5% in promoters/TSS (564/692) ($p < 0.0001$).
175	Next, we performed ontology analyses of genes associated with FoxO1 sites in active
176	enhancers vs. core promoters and visualized causal relationships among enriched terms in
177	directed acyclic graphs (DAG) (22). FoxO1 sites in active enhancers were overwhelmingly
178	enriched in metabolic genes, with the top three fundamental ontologies being glucose
179	metabolism, lipid homeostasis, and insulin response (FDR 10 ⁻⁴⁰ to ⁻⁷⁰) (Fig. 2b, c, S5c). These
180	gene ontologies showed a strong correlation between the fasting/refeeding ratio of FoxO1 DNA
181	binding (Fig. 2d, e and S5d) ($b = 0.09$, $p < 0.0001$), and changes to mRNA expression following
182	FoxO1 ablation, especially in fasting conditions (Fig. 2f). In contrast, enhancer-less FoxO1 sites
183	in promoter/TSS included gene ontologies related to intracellular transport, DNA repair, ncRNA
184	processing, and protein modification by small protein conjugation (Fig. 2g, h, S5e) (FDR 10 ⁻²⁰ to
185	⁻⁴⁰). These sites showed a lesser correlation between the fasting/refeeding ratio of FoxO1 binding
186	(Fig. 2i-j and S5f) ($b = 0.29$, $p < 0.0001$). More importantly, mRNAs encoded by genes lacking
187	active enhancers were largely unaffected by FoxO1 ablation (Fig. 2k). The active enhancer
188	marker, H3 ^{K27ac} , was unaffected by fasting and refeeding ($b = 0.91, p < 0.0001$) (Fig. S5g).

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

189	These results indicate that the cell maintenance and metabolic functions of FoxO1 are
190	ruled by distinct transcriptional logics: the former are governed by core promoters in a
191	fasting/refeeding-independent manner, whereas the latter are governed by active enhancers and
192	show a strong dependence on nutritional status (18).

193

194 Enrichment of FoxO1 sites in introns of triglyceride and cholesterol genes

195 The second most common genomic annotation of FoxO1 binding sites mapped to introns (Fig.

196 1c). The corresponding genes showed changes to their mRNAs following FoxO1 ablation (Fig.

197 If and Table S1). To understand the functional correlates of FoxO1 binding to introns, we

198 compared expected and actual distribution of FoxO1 sites across the genome for different gene

199 ontology groups. Interestingly, triglyceride metabolism genes showed a skewed distribution,

200 with FoxO1 binding sites occurring at two- to three-fold the expected frequency at two locations:

201 5 to 50kb and -50 to -5kb from TSS (proximal introns and distal promoters), and 30 to 50% of

the expected frequency at 0 to 5kb and 50 to 500kb from TSS (Fig. 3a). In contrast, glucose

203 metabolism genes showed an enrichment 50 to 500kb from TSS, followed by the 5 to 50kb

204 regions (Fig. 3b). Statistical analyses of annotation distribution demonstrated that triglyceride

205 metabolism genes were significantly enriched in introns, while glucose metabolism genes were

enriched in intergenic and promoter/TSS sites (p = 0.03) (Fig. 3c).

The ontology groups of intron-enriched genes included a nearly exclusive assortment of lipid, lipoproteins, and cholesterol genes (Fig. 3d). Nearly half of intron sites were associated with active enhancers (Fig. 2a). Next, we analyzed the FoxO1 regulome by intron enhancer status. Linear regression analysis of FoxO1 tags in the fasted vs. refed state demonstrated that introns marked by active enhancers showed a three-fold lower coefficient of variation than

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

212	enhancer-less introns ($b = 0.19 vs. 0.06$) (Fig. S6a–b), and were more frequently associated with
213	variations of the encoded mRNAs in A-FLKO. For example, ScarB1 (23) (Fig. 3e), Angptl4, and
214	Angptl8 (24) (Table S2) showed fasting-induced FoxO1 binding to active intron enhancers, as
215	well as altered mRNA levels upon FoxO1 ablation. In contrast, the ApoB, ApoA1/C3/A4/A5 and
216	C2/C4/C1/E clusters (the latter syntenic with the human APOCII enhancer) (25) showed fasting-
217	independent FoxO1 binding to enhancer-less introns, and preserved mRNA expression following
218	FoxO1 ablation (Fig. 3f-g, Table S2).
219	The transcriptional logic of the FoxO1 regulome emerging from the preceding analyses
220	suggests that a majority of glucose metabolism genes are governed by an intergenic/proximal
221	promoter/TSS active enhancer-logic in a fasting-inducible manner, whereas a majority of
222	triglyceride, lipoprotein, and cholesterol genes are ruled by a bipartite intron-logic: fasting-
223	dependent active intron enhancers and fasting-independent enhancer-less introns.
224	We hypothesized that this differential logic underlies hepatic insulin resistance. We tested
225	the hypothesis using three different conditions: (<i>i</i>) resilience analysis to determine whether these
226	two regulatory modalities affect the ability of these genes to undergo compensatory changes in
227	response to variations in FoxO1 function, as a surrogate measure of insulin action (Fig. S1); (ii)
228	comparative genomic analyses with other fasting-induced TFs to identify functional partners and
229	redundancies; and (iii) genome-wide FoxO1 ChIP-seq in insulin-resistant/hyperglycemic mice.
230	
231	Transcriptional resiliency of glucose metabolic genes
232	First, we sought to determine whether different modalities of FoxO1 regulation (intergenic and

233 promoter/TSS vs. intron) were associated with differential compensation by other TFs that may

234 affect the pathophysiology of insulin resistance. To this end, we compared gene expression

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

- differences between constitutive *vs*. adult-onset somatic ablation of FoxO1 in liver (26-28) and
 correlated these differences with ChIP-seq data.
- We generated Alb-Cre: FoxOl^{fl/fl} mice to induce constitutive hepatic FoxOl ablation (C-237 238 FLKO) and compared gene expression differences between adult-onset (A-FLKO, described in 239 Fig. 1) and constitutive (C-FLKO) knockouts according to nutritional state (fast vs. refeed), 240 genotype (WT vs. FoxO1 ablation), and timing of ablation (A-FLKO vs. C-FLKO) using RNA-241 seq (Fig. S7). t-SNE plots showed large differences in fasted vs. refed gene expression patterns 242 between A-FLKO and their matched controls (A-WT). In contrast, the differences between C-243 FLKO and C-WT were considerably blunted (Fig. 4a). We calculated fold-change and average 244 gene expression in each WT/knockout pair to draw MA-plots of log-intensity ratios (M-values) 245 vs. averages (A-values). The number of differentially regulated genes in fasted C-FLKO mice 246 decreased by 60% compared to A-FLKO (227 vs. 585), whereas it was similar in refed 247 conditions (301 vs. 243) (Fig. 4b-e, Table S3). Thus, a first conclusion is that chronic 248 compensatory changes partially mask the effect of FoxO1 ablation on the fasting response. 249 Next, we determined the ontologies of genes undergoing compensatory changes as a 250 function of nutritional status (fast vs. refeed), genotype (knockout vs. WT), and timing-of-251 ablation (A-FLKO vs. C-FLKO) (Fig. 4f). We identified four ontology groups (A-D). Group A 252 was comprised of genes induced by fasting, and group C of genes induced by refeeding, neither 253 of which was affected by FoxO1 ablation in either A-FLKO or C-FLKO mice. These groups 254 included cellular, immune, chemical, and stress response genes. In contrast, group B was comprised of genes affected by genotype (A-FLKO vs. A-WT and C-FLKO vs. C-WT), 255 256 regardless of the timing of ablation. This group included primarily lipid and fatty acid 257 metabolism genes whose expression decreased with fasting in FoxO1 knockouts. Group D was

258	enriched in genes regulated by fasting, genotype, and timing of ablation. These genes were
259	induced by fasting in WT, but not in A-FLKO mice. However, the differences between WT and
260	A-FLKO were virtually lost in C-FLKO mice. This group included metabolic pathways, retinol
261	and PPAR signaling, and steroid function genes (Fig. 4g). In contrast, only a small number of
262	genes, primarily linked to extracellular matrix-receptor interaction and protein digestion and
263	absorption, were uniquely affected following constitutive ablation.
264	We examined group D at a more granular level to identify genes in which the effect of
265	FoxO1 ablation became less marked in C-FLKO (i.e., lower fold-change and higher FDR value
266	between control and KO mice in C-FLKO than those in A-FLKO). These genes involved
267	classical FoxO1 targets regulating insulin signaling (Irs2), gluconeogenesis (G6pc, Pck1,
268	Ppargc1a), glycolysis (Gck, Pfkfb1 and 3, Ldhd), ketogenesis (Hmgcs1), and glucose/fatty acid
269	partitioning (Pdk4) (Table S3). Other genes undergoing compensation included 17 members of
270	the Cyp2 family and 6 members of the Cyp4 family of drug metabolizing enzymes, Angptl8,
271	Fgf21, Gdf15, Klf15, Slc13a5 (encoding INDY), Enho (encoding Adropin), Fmo3, and Asns.
272	Among genes involved in fatty acid synthesis or oxidation, apolipoproteins, and
273	cholesterol trafficking, only <i>Vldlr</i> and <i>Lpin1</i> showed >50% compensation. Thus, FoxO1-
274	regulated glucose metabolism genes as well as several metabolically important genes undergo a
275	compensatory response following constitutive FoxO1 ablation, whereas the majority of lipid
276	metabolism genes don't. We termed this finding transcriptional resiliency.
277	
278	A FoxO1/PPARα signature of fasting-inducible enhancers
279	Transcriptional regulation of the fasting response involves several TFs, including CREB, GR,

and PPARα (11). To understand the integration of these networks with FoxO1 and their potential

281	role in the transcriptional resiliency observed after FoxO1 ablation, we compared the present
282	dataset with published genome-wide ChIP-seq of these three factors (29, 30). Analyses of peak
283	distribution demonstrated that CREB peaks are enriched at promoters, while GR and PPAR α are
284	enriched in introns and intergenic regions (Fig. 5a). When overlaid with FoxO1 sites, we found
285	that co-localization of FoxO1/PPAR α (Fig. 5b) prevailed at active intergenic and intron
286	enhancers, where approximately half of FoxO1 sites are shared with PPAR α (Fig. 5c, e). In
287	contrast, trinomial combinations FoxO1/CREB/PPAR α prevailed at enhancer-less promoters
288	(Fig. 5d, e). At active enhancer sites, 11.2% of unique FoxO1 sites were associated with changes
289	in gene expression following FoxO1 ablation, whereas only 5.4% of shared sites (FoxO1 and
290	CREB or PPAR α) did (p < 0.0001, Table S4). This difference was not seen in non-active
291	enhancer sites (6.09% vs. 5.93% , respectively) (p = NS, Table S4). Gene ontology analysis (Fig.
292	5f) showed that abnormal gluconeogenesis is the most significant annotation of
293	FoxO1/PPAR α shared intergenic peaks (FDR = 2.22 × 10 ⁻³¹), while lipid homeostasis is the most
294	significant in introns (FDR = 2.01×10^{-21}).
295	Next, we asked whether co-regulation by FoxO1 and PPAR α can explain the resiliency
296	of gene expression. We plotted each FoxO1/PPAR α shared peak with active enhancer marks vs.
297	changes to mRNA encoded by associated genes in A-FLKO and C-FLKO (Fig. 5g-h). In both
298	intergenic (Fig. 5g) and intron (Fig. 5h) sites, >80% of FoxO1/PPAR α co-regulated genes
299	showed a compensatory response to constitutive FoxO1 ablation (75 of 92 and 68 of 76,
300	respectively). In intergenic sites, we found notable resilient glucose metabolism genes, such as
301	Pck1, G6pc, Irs2, Ppargc1a and b, Ppp1r3g, Cry1, Gdf15 (31) and Klf15 (32) (Fig. 5g). In
302	introns, we found lipid genes, such as Gdf15, and Lipc (Fig. 5h, Table S5). Thus, shared
303	FoxO1/PPAR α enhancers are more likely to undergo compensation when FoxO1 is inactive.

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

304

305 Enhancer spreading of FoxO1 binding in insulin resistance/hyperglycemia

306 To evaluate the effects of insulin resistance and hyperglycemia on the FoxO1 regulome, we

307 subjected FoxO1-Venus mice to high fat diet (HFD) or treatment with the insulin receptor

308 antagonist, S961 (33). Both interventions impaired refeeding-induced FoxO1 translocation (Fig.

309 6a) and caused hyperglycemia (not shown). However, as the effects of S961 were more marked,

310 we performed genome-wide ChIP-seq in livers of 4-hr-fasted/1-hr-refed mice treated with S961

311 vs. vehicle.

312 Regression analysis of FoxO1 tags under fasted and refed conditions showed a two-fold

higher coefficient in S961-treated mice than in vehicle controls (b = 0.28 vs. 0.62, Fig. 6b),

314 consistent with impaired translocation (Fig. 6a). We examined FoxO1 binding to representative

315 genes of the two main transcription logics identified above, intergenic/promoter/TSS (glucose)

316 vs. intron (lipid) genes. We found the emergence of novel FoxO1 binding patterns at active

317 enhancers of both classes. Examples included intergenic/promoter enhancers of glucogenic

318 (G6pc, Pck1, Klf15) (Fig. 6c-d, S8a) and glucose–lipid metabolic partitioning genes (Pdk4) (Fig.

319 6e), as well as intron enhancers of lipid/cholesterol genes (*ApoA1/C3/A4, Scarb1*) (Fig. 6f, S8b-

320 c). These novel FoxO1 peaks were unaffected by fasting/refeeding, and included both FoxO1

321 binding motif-containing sites and sites without FoxO1 motifs. In contrast, novel FoxO1 marks

322 at enhancer-less sites occurred less frequently. Thus, insulin resistance and hyperglycemia bring

323 about an ectopic, dysregulated binding of FoxO1 at enhancer sites, which we term enhancer

324 spreading.

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

326 **DISCUSSION**

327

328	The present study provides transcriptional logic insight into the differential regulation of glucose
329	and lipid metabolism in response to nutrient changes, and in insulin resistance. There are
330	obviously non-transcriptional components to this pathophysiologic state that are partly cell-
331	nonautonomous (34), but the present study was designed to establish genome-wide map that
332	integrates multiple TFs, including FoxO1, with the salient pathophysiologic features of hepatic
333	insulin action and resistance. The main conclusions are: (i) the transcriptional logic of FoxO1 is
334	compatible with the bifurcating model of insulin signaling to lipid vs. glucose metabolism (35),
335	whereby glucose metabolic genes are governed by intergenic and promoter/TSS enhancers, and
336	lipid genes by a bipartite intron logic that includes fasting-dependent intron enhancers and
337	fasting independent enhancer-less introns. (ii) Active enhancers of glucose metabolic genes show
338	transcriptional resiliency, likely through shared PPARα/FoxO1 regulatory elements. (iii) Insulin
339	resistance and hyperglycemia result in the spreading of FoxO1 binding to enhancers, resulting in
340	quantitative and qualitative abnormalities of FoxO1 marks (12).
341	Based on these findings, we propose this model (Fig. 7): in the physiologic
342	fasting/refeeding transition, FoxO1 is cleared more efficiently from enhancer-containing sites
343	than from enhancer-less sites. As the former are more tightly associated with glucose genes, and
344	the latter with lipid/lipoprotein genes, in the initial stages of insulin resistance glucose genes can
345	still be regulated, while regulation of lipid genes is impaired. This differential sensitivity can
346	explain why lipid/lipoprotein abnormalities chronologically precede hyperglycemia in the
347	progression of diabetes (36). Further work will be required to functionally interrogate different
348	classes of sites. As insulin resistance progresses, the gradual compensation of glucose vs. lipid
349	genes in response to chronic vs. adult-onset FoxO1 ablation (transcriptional resiliency at

350	intergenic and promoter/TSS enhancers) can be interpreted to suggest that glucose genes can
351	gradually become FoxO1-independent, allowing transcription factors (likely PPAR α) to induce
352	their expression. In the clinically overt stage of the disease, as insulin resistance increases,
353	activation of FoxO1 at ectopic (or low-affinity) enhancers leads to worsening fasting
354	hyperglycemia, and may possibly underlie therapeutic failures. The proposed model integrates in
355	vivo pathophysiological and cell biological data with genome-wide assessments to explain a
356	clinical conundrum that has important practical implications for treatment and drug development
357	(1). This model also addresses two criticisms leveled at the FoxO-centric view of insulin action:
358	(i) that FoxO1 sensitivity to insulin makes it an unlikely candidate as a mediator of insulin
359	resistance (37); and (ii) that transcription of candidate glucogenic genes alone does not fully
360	explain increased hepatic glucose production (38). Indeed, the gamut of FoxO1 targets includes
361	most genes involved in insulin action, and the failure to detect abnormalities in their expression
362	following constitutive somatic ablation of FoxO1 can be explained by their resiliency.
363	To demonstrate a distinctive FoxO1 transcriptional logic, we decisively leveraged the
364	ability to examine FoxO1 targets by genome-wide ChIP-seq (12). Previous studies have been
365	limited by the sensitivity of available FoxO1 antibodies, and have therefore detected fewer
366	FoxO1 binding sites (9, 10, 39). There is a partial dissociation between the ChIP results,
367	indicating that FoxO1 is still bound at several sites after refeeding, and the immunofluorescence
368	that shows FoxO1 nuclear exclusion. However, ChIP is more sensitive than
369	immunohistochemistry, being based on PCR amplification, and can detect lower levels of FoxO1
370	protein. The formation of different molecular complexes likely underlies the different modes of
371	FoxO1 action. In this regard, we have previously shown that SIN3a is the FoxO1 corepressor at
372	glucokinase, providing a mechanistic precedent for gene-specific targeting (8). The preferential

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

373	regulation of FoxO1 by fasting/refeeding at active enhancers likely results from intrinsic and
374	extrinsic factors, such as higher DNA accessibility at active enhancers (40), and active enhancer-
375	promoter interactions (41) that affect assembly of pre-initiation complexes, initiation of
376	transcription by RNA polymerase II, or transcription bursting (19).
377	Following FoxO1 ablation, expression of its targets can be compensated for by
378	transcription factors acting synergistically, through its paralogue FoxO3, or reorganization of
379	chromatin accessibility at sites where FoxO1 acts as pioneer transcription factor (42), as shown
380	with other FoxO isoforms (27). Interestingly, genes associated with glucose metabolism (G6pc,
381	Pck1, Ppargc1a, Pdk4 and Klf15), but not those regulating general cellular responses, are
382	selectively compensated for following FoxO1 ablation. FoxO1 peaks in these genes are cleared
383	by refeeding, but not in insulin-resistant conditions. These genes have been shown to play a role
384	in diabetes in studies with insulin-resistant mice (26, 43-45).
385	There are parallels between our findings and recent evidence that immunocyte
386	differentiation is controlled by an enhancer- or core promoter-driven logic, with a striking
387	partition between the two gene sets (46). The former activity is cued by the overall activity
388	pattern of distal enhancers, while the latter is aligned with promoters. Although it is disputed
389	whether core promoters and enhancers represent different entities or synergistically regulate
390	transcriptional bursting, enhancers are thought to be tissue-specific, and thus more likely to
391	confer specificity on the tissue-specific metabolic functions of FoxO1 (20).
392	Our comparative analysis provides evidence of cooperative and non-cooperative
393	interactions with GR, CREB and PPAR α , the latter involving up to half of the FoxO1 sites in
394	active enhancers. The extensive sharing of intergenic active enhancers of glucose genes by
395	FoxO1 and PPAR α is a novel finding of this study that dovetails with the different physiologic

- 396 cues regulating these two TFs. During fasting, glycogenolysis precedes gluconeogenesis and the
- 397 generation of FFA substrates that activate PPAR α (47). Thus, we envision that FoxO1 and
- 398 PPAR α act in a physiologic relay to ensure continuity between the early and late fast. The
- 399 significant overlap between FoxO1 and PPARα may also provide an explanation for the
- 400 relatively mild phenotypes of liver-specific inactivation of FoxO1 (26) and PPAR α (48).
- 401 Functional elucidation of their interactions will be important to determine key targets in glucose
- 402 metabolism and their role in diabetes pathogenesis.

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

403 **Data sharing**

- 404 Further information and requests for resources and reagents should be directed to and will be
- 405 fulfilled by Takumi Kitamoto (tk2752@cumc.columbia.edu).

406 Data and Code Availability

- 407 The ChIP-seq and RNA-seq datasets generated during this study are available at the NCBI GEO
- 408 [GSE151546]

409 EXPERIMENTAL MODEL AND SUBJECT DETAILS

410 Animals

411 Mice were housed in a climate-controlled room on a 12h light/dark cycle with lights on at 07:00

- 412 and off at 19:00, and were fed standard chow (PicoLab rodent diet20, 5053; PurinaMills). Male
- 413 mice of C57BL/6J background aged 8-12 weeks were used. FoxO1-Venus mice have been
- 414 described (12, 49). Briefly, To express GFP (Venus), we
- 415 obtained the pCAG:myr-Venus plasmid. A 15-amino acid linker sequence was placed between
- 416 the C terminus of FoxO1 and N terminus of Venus to alleviate steric hindrance. We used BAC
- 417 recombineering to generate FoxO1-Venus ES cells. To generate constitutive liver-specific
- 418 FoxO1 knockouts, we crossed FoxO1^{lox/lox} and Albumin-cre (50) transgenic mice. Adult onset
- 419 liver-specific FoxO1 knockout mice were generated by injection of 1×10¹¹ purified viral particles
- 420 (AAV8.TBG.eGFP or AAV8.TBG.Cre, Penn Vector Core) per mouse via tail vein. We
- 421 performed metabolic analysis or killed animals on day 21 post-injection. To assess FoxO1
- 422 localization and other liver parameters, we took organs from 4-hr-fasted (10:00 to 14:00) or 4-hr-
- 423 fasted/1-hr-refed mice. For prolonged fasting experiments, we removed food overnight (18:00 to
- 424 10:00). Mice were killed 0, 1, 2, or 4 hr after refeeding. For insulin treatment, we anesthetized
- 425 16-hr-fasted mice with ketamine (100mg/kg) and xylazine (10mg/kg) i.p., followed by injection

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

- 426 of 1U/kg insulin (NovoLog®, Novo Nordisk, Denmark) in the inferior vena cava (IVC). We
- 427 collected blood and took the liver before and after insulin injection. Blood glucose was measured
- 428 using (CONTOUR®NEXT ONE, Ascensia, USA), and insulin with a mouse-specific ELISA kit
- 429 (Mercodia, USA). All animal experiments were in accordance with NIH guidelines, approved
- 430 and overseen by the Columbia University Institutional Animal Care and Use Committee.

431 **Primary hepatocyte isolation**

- 432 Primary hepatocyte isolation was performed as described (51). We anesthetized male mice with
- 433 ketamine (100mg/kg) and xylazine (10mg/kg) i.p., cannulated the IVC with a 24-gauge catheter
- 434 (Exel international), and infused 50 cc EGTA-based perfusion solution followed by 100 cc type I
- 435 collagenase solution (Worthington Biochemicals). Following cell dissociation, we filtered cells
- 436 with 100 mm mesh cell strainers, and gradient centrifugation steps to purify cell suspension.
- 437 Then, we suspended hepatocytes at 5×10^5 cells / mL in Medium 199 (Sigma), 10% FBS (Life
- 438 Technologies), antibiotics (plating medium). After plating for 2 hr on collagen-coated plates, we
 439 exchanged plating medium for 4 hr.

440

441 METHOD DETAILES

442 Chemicals and antibodies

443 Ketamine was from KetaSet® and Xylazine from AnaSed®; medium 199, HBSS, EGTA,

444 HEPES, PenStrep and Gentamycin from Life Technology; collagen type 4 from Worthington;

- 445 Insulin (NovoLog®) and S961 from Novo Nordisk A/S; sodium orthovanadate from New
- 446 England Bio; Bovine Serum Albumin (BSA) from Fisher Scientific. 16% paraformaldehyde
- 447 (PFA) was from Electron Microscopy Sciences, and was diluted in sterile phosphate buffer
- 448 solution to 4% final concentration. Anti FoxO1 (for Western Blot and immunohistochemistry,

- 449 C29H4), anti panAkt (for Western Blot, 40D4) and phosphor-Akt (Ser473) (for Western Blot,
- 450 D9E), normal Rabbit IgG (for chromatin immunoprecipitation, 2729) were from Cell Signaling.
- 451 HNF4A (for immunohistochemistry, ab41898), GFP (for chromatin immunoprecipitation, ab
- 452 290), FoxO1 (for chromatin immunoprecipitation, ab39670) were from Abcam. H3K27ac (for
- 453 chromatin immunoprecipitation, 39133) was from Active motif. Anti GFP
- 454 (immunohistochemistry, A-6455) was from Invitrogen.

455 **Protein analysis**

- 456 Livers were lysed in sonication buffer containing 20 mM HEPES pH7.5, 150 mM NaCl, 25 mM
- 457 EDTA, 1% NP-40, 10% glycerol, 1 mM Na vanadate, 1 mM phenylmethylsulphonyl fluoride
- 458 (PMSF), and protease and phosphatase inhibitors cocktail (Cell Signaling). We sonicated lysates
- for 100 sec (5×, output 70%, 20sec/20sec) and centrifuged them for 15 min at 14,000 rpm. $30 \mu g$
- 460 protein (Pierce BCA, Thermo scientific) was subjected to SDS-PAGE. We used the following
- 461 antibodies: Akt (1:2,000), phosphor-Akt (Ser473) (1:2,000), β-actin (1:1,000), FoxO1 (1:1,000)
- 462 (all from Cell Signaling), and GFP (1:1,000) (Abcam, ab290).

463 Immunohistochemistry

- 464 We anesthetized 8- to 12-week-old mice fasted or refed for various lengths of time and perfused
- 465 them with 4% PFA through the IVC. Livers were collected, fixed in 4% paraformaldehyde for 2-
- 466 hr, dehydrated in 30% sucrose overnight at 4°C, embedded in OCT (Sakura, Torrance, CA),
- 467 frozen to -80°C, and cut into 7-μm sections. We used primary antibodies to FoxO1 (1:100; Cell
- 468 signaling technology, Boston, MA) and HNF4A (1:100; Abcam, Cambridge, MA), and
- 469 secondary anti-IgG antibodies conjugated with Alexa Fluor 488 and 555 for each of the species
- 470 (1:1,000; Life Technologies). Immunofluorescence was visualized by the TSA fluorescence
- 471 system (PerkinElmer, Waltham, MA).

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

472 **Real-time qPCR**

- 473 We lysed livers in 1 mL of TRIzol, purified RNA using RNeasy Mini Kit (Qiagen, Germantown,
- 474 MD), reverse-transcribed it with qScript cDNA Synthesis Kit (QuantaBio, Beverly, MA), and
- 475 performed PCR with GoTaq® qPCR Master Mix (Promega, Madison, WI). Primer sequences are
- 476 available upon request. Gene expression levels were normalized to 18S using the 2-DDCt
- 477 method and are presented as relative transcript levels.

478 **RNA-seq library constructions and data analysis**

- 479 We prepared the samples from three mice for each group, and generated the libraries
- 480 individually. Libraries for RNA-seq were prepared using the TruSeq Stranded mRNA Sample
- 481 Prep Kit (Illumina), following the manufacturer's protocol. Deep sequencing was carried out on
- 482 the Illumina NextSeq 500 platform using the NextSeq 500/550 high-throughput kit v2.5
- 483 (Illumina) in 75-base single-end mode according to the manufacturer's protocol. Sequenced
- reads from the RNA-seq experiment were aligned to mouse genome mm10 using HISAT2.
- 485 Cufflinks was used for transcript assembly. Gene expression levels were expressed as fragments
- 486 per kilobase of exon per million mapped sequence reads and Cuffdiff was used for statistical
- 487 comparison.

488 Chromatin immunoprecipitation assays and ChIP-seq library construction

489 The ChIP-IT® High Sensitivity kit (Active Motif, Carlsbad, CA) was used for chromatin

490 immunoprecipitation (ChIP) following the manufacturer's protocol. We anesthetized 8- to 12-

491 week-old mice after 4-hr fasting followed or not by 1-hr refeeding and perfused them with 10

492 μ M orthovanadate through the IVC. We harvested samples from left lobe of liver tissues and

493 pooled 100mg of samples from three individual replicates for further experiments. We obtained

494 sheared chromatin from 300 mg of liver extract using a S220 Focused-ultrasonicator (Covaris).

495	Immunoprecipitation was performed using 4 μ g of anti-GFP antibody for 10 μ g of sheared
496	chromatin. The specificity of the anti-GFP antibody was confirmed by western blotting of liver
497	extract. ChIP-seq libraries were constructed using KAPA Hyper Prep Kit (KAPA Biosystems)
498	according to the manufacturer's instructions. ChIP-seq libraries were quantified by Tapestation
499	(Agilent) and sequenced on an Illumina NEXTseq (Illumina, San Diego, CA, USA) with 75-base
500	single-end mode.
501	ChIP-qPCR
502	Real-time ChIP-qPCR was carried out as described above. The signal of binding events was
503	normalized against input DNA for primer efficiency (Active Motif). Quantitative PCR primers
504	used are listed. <i>G6pc</i> forward: GCCTCTAGCACTGTCAAGCAG and reverse:
505	TGTGCCTTGCCCCTGTTTTATATG; Pck1 forward: TCCACCACACACCTAGTGAGG and
506	reverse: AGGGCAGGCCTAGCCGAGACG; Igfbp1 forward:
507	ATCTGGCTAGCAGCTTGCTGA and reverse: CCGTGTGCAGTGTTCAATGCT; Fkbp5
508	forward: TTTTGTTTTGAAGAGCACAGAA and reverse: TGTCAGCACATCGAGTTCAT.
509	ChIP-seq data analysis
510	Reads were aligned to mouse genome mm10 using Bowtie2 software (52). The reads used in
511	subsequent analysis passed Illumina's purity filter, aligned with no more than 2 mismatches, and
512	mapped uniquely to the genome. Duplicate reads were removed with Picard tools. The tags were
513	extended at their 3'-ends to 200-bp. Technical information of sequencing depth and aligned reads
514	is summarized in Table S6. Peak calling was performed by MACS 2.1.0 (53) with the p -value
515	cutoff of 10^{-7} for narrow peaks and with the <i>q</i> -value cutoff of 10^{-1} for broad peaks against the
516	input DNA control sample. The transcription start site (TSS) determined on mouse genome
517	mm10 was used as measurement of the distance of each peak. HOMER software suite (54) was

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

- 518 used to perform motif analysis, annotate peaks, such as promoter/TSS, introns, exons, intergenic,
- 519 5' UTR, non-coding RNA, and 3' UTR, merge files, and quantify data to compare peaks. For the
- 520 detection of active enhancers, we used bedtools (55) by collecting the intersection of the peaks of
- 521 TF and histone marks.

522 In vivo insulin-resistant model

- 523 For high-fat diet-induced insulin resistance, animals were fed either standard or High-fat chow
- 524 (Rodent Diet with 60kcal% fat, D12492i; Research diets Inc.) beginning at 8 weeks of age for 4
- 525 weeks. For S961 treatment, vehicle (normal saline) or 10nmol S961 was loaded into Alzet
- osmotic pumps 2001 and implanted subcutaneously on the back of mice. Mice were euthanized 3
- 527 days after implantation.

528 Additional Data Sets

- 529 The following public source data were used in this work: ChIP-seq data from adult mouse liver
- 530 [H3^{K4me1}] (56) (GEO: GSE31039), PPARα (30) (GEO: GSE35262), GR and CREB (29) (GEO:

531 GSE72084).

532 QUANTIFICATION AND STATISTICAL ANALYSES

533 Values are presented as means \pm SEM, and analyzed using Prism 8.2.1 (GraphPad Software,

- 534 Inc.). We used unpaired Student's *t*-test for normally distributed variables for comparisons
- between two groups, one-way ANOVA followed by Bonferroni post-hoc test for multiple
- 536 comparisons, and Pearson's correlation coefficient to investigate the relationship between two
- variables. Chi-square tests are applied for contingency analysis. We used a threshold of p < 0.05
- 538 to declare statistical significance.

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

- 540 Acknowledgments. We thank members of the Accili and Kaneda laboratories, Dr. Utpal B.
- 541 Pajvani, Dr. Rebecca A. Haeusler, Dr. Michael J Kraakman for insightful discussions of the data.
- 542 Mr. Thomas Kolar and Ms. Ana Maria Flete (Columbia University) for exceptional technical
- 543 support.
- 544 **Funding.** Supported by NIH grants DK57539 and DK63608 (Columbia Diabetes Research
- 545 Center).

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

547 **References**

548	1.	E. Ferrannini, R. A. DeFronzo, Impact of glucose-lowering drugs on cardiovascular
549		disease in type 2 diabetes. Eur Heart J 36, 2288-2296 (2015).
550	2.	R. A. Haeusler, T. E. McGraw, D. Accili, Biochemical and cellular properties of insulin
551		receptor signalling. Nat Rev Mol Cell Biol 19, 31-44 (2018).
552	3.	R. N. Bergman, M. S. Iyer, Indirect Regulation of Endogenous Glucose Production by
553		Insulin: The Single Gateway Hypothesis Revisited. Diabetes 66, 1742-1747 (2017).
554	4.	R. A. Rizza, Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes:
555		implications for therapy. <i>Diabetes</i> 59 , 2697-2707 (2010).
556	5.	D. Accili, Insulin Action Research and the Future of Diabetes Treatment: The 2017
557		Banting Medal for Scientific Achievement Lecture. Diabetes 67, 1701-1709 (2018).
558	6.	L. Monnier, C. Colette, G. J. Dunseath, D. R. Owens, The loss of postprandial glycemic
559		control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care
560		30 , 263-269 (2007).
561	7.	M. Evans, A. R. Morgan, Z. Yousef, What Next After Metformin? Thinking Beyond
562		Glycaemia: Are SGLT2 Inhibitors the Answer? Diabetes Ther 10, 1719-1731 (2019).
563	8.	F. Langlet et al., Selective Inhibition of FOXO1 Activator/Repressor Balance Modulates
564		Hepatic Glucose Handling. Cell 171, 824-835 e818 (2017).

565	9.	W. Fan et al., FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages.
566		<i>Embo J</i> 29 , 4223-4236 (2010).
567	10.	D. J. Shin et al., Genome-wide analysis of FoxO1 binding in hepatic chromatin: potential
568		involvement of FoxO1 in linking retinoid signaling to hepatic gluconeogenesis. Nucleic
569		Acids Res 40, 11499-11509 (2012).
570	11.	I. Goldstein, G. L. Hager, Transcriptional and Chromatin Regulation during Fasting - The
571		Genomic Era. Trends Endocrinol Metab 26, 699-710 (2015).
572	12.	T. Kuo et al., Identification of C2CD4A as a human diabetes susceptibility gene with a
573		role in beta cell insulin secretion. Proc Natl Acad Sci U S A 116, 20033-20042 (2019).
574	13.	L. Qiang, A. S. Banks, D. Accili, Uncoupling of acetylation from phosphorylation
575		regulates FoxO1 function independent of its subcellular localization. J Biol Chem 285,
576		27396-27401 (2010).
577	14.	A. S. Banks et al., Dissociation of the glucose and lipid regulatory functions of FoxO1 by
578		targeted knockin of acetylation-defective alleles in mice. Cell Metab 14, 587-597 (2011).
579	15.	J. Y. Kim-Muller et al., FoxO1 Deacetylation Decreases Fatty Acid Oxidation in beta-
580		Cells and Sustains Insulin Secretion in Diabetes. J Biol Chem 291, 10162-10172 (2016).
581	16.	A. Nitzsche et al., RAD21 cooperates with pluripotency transcription factors in the
582		maintenance of embryonic stem cell identity. PLoS One 6, e19470 (2011).

583	17.	N. D. Heintzman <i>et al.</i> , Distinct and predictive chromatin signatures of transcriptional
584		promoters and enhancers in the human genome. Nat Genet 39, 311-318 (2007).
585	18.	D. Accili, K. C. Arden, FoxOs at the crossroads of cellular metabolism, differentiation,
586		and transformation. Cell 117, 421-426 (2004).
587	19.	V. Haberle, A. Stark, Eukaryotic core promoters and the functional basis of transcription
588		initiation. Nat Rev Mol Cell Biol 19, 621-637 (2018).
589	20.	E. Calo, J. Wysocka, Modification of enhancer chromatin: what, how, and why? Mol Cell
590		49 , 825-837 (2013).
591	21.	R. Raisner et al., Enhancer Activity Requires CBP/P300 Bromodomain-Dependent
592		Histone H3K27 Acetylation. Cell Rep 24, 1722-1729 (2018).
593	22.	C. Y. McLean et al., GREAT improves functional interpretation of cis-regulatory
594		regions. Nature Biotechnology 28, 495-501 (2010).
595	23.	S. X. Lee et al., FoxO transcription factors are required for hepatic HDL cholesterol
596		clearance. J Clin Invest 128, 1615-1626 (2018).
597	24.	K. C. Ehrlich, M. Lacey, M. Ehrlich, Tissue-specific epigenetics of atherosclerosis-
598		related ANGPT and ANGPTL genes. Epigenomics 11, 169-186 (2019).

- 599 25. C. M. Allan, S. Taylor, J. M. Taylor, Two hepatic enhancers, HCR.1 and HCR.2,
- 600 coordinate the liver expression of the entire human apolipoprotein E/C-I/C-IV/C-II gene
- 601 cluster. J Biol Chem 272, 29113-29119 (1997).
- 602 26. M. Matsumoto, A. Pocai, L. Rossetti, R. A. Depinho, D. Accili, Impaired regulation of
- hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in
- 604 liver. *Cell Metab* **6**, 208-216 (2007).
- 605 27. R. A. Haeusler, K. H. Kaestner, D. Accili, FoxOs function synergistically to promote
- 606 glucose production. *J Biol Chem* **285**, 35245-35248 (2010).
- 607 28. R. A. Haeusler et al., Integrated control of hepatic lipogenesis versus glucose production
- 608 requires FoxO transcription factors. *Nature communications* **5**, 5190 (2014).
- 609 29. I. Goldstein *et al.*, Transcription factor assisted loading and enhancer dynamics dictate
- 610 the hepatic fasting response. *Genome Res* **27**, 427-439 (2017).
- 611 30. M. Boergesen *et al.*, Genome-wide profiling of liver X receptor, retinoid X receptor, and
- 612 peroxisome proliferator-activated receptor alpha in mouse liver reveals extensive sharing
- 613 of binding sites. *Mol Cell Biol* **32**, 852-867 (2012).
- 614 31. S. Patel *et al.*, GDF15 Provides an Endocrine Signal of Nutritional Stress in Mice and
- 615 Humans. Cell Metab **29**, 707-718 e708 (2019).

- 616 32. Y. Takeuchi et al., KLF15 Enables Rapid Switching between Lipogenesis and
- 617 Gluconeogenesis during Fasting. *Cell Rep* **16**, 2373-2386 (2016).
- 618 33. A. Vikram, G. Jena, S961, an insulin receptor antagonist causes hyperinsulinemia,
- 619 insulin-resistance and depletion of energy stores in rats. *Biochem Biophys Res Commun*
- **398**, 260-265 (2010).
- 621 34. H. V. Lin, D. Accili, Hormonal regulation of hepatic glucose production in health and
- 622 disease. *Cell Metab* **14**, 9-19 (2011).
- 623 35. M. S. Brown, J. L. Goldstein, Selective versus total insulin resistance: a pathogenic
- 624 paradox. Cell Metab 7, 95-96 (2008).
- 625 36. S. Baldi *et al.*, Influence of apolipoproteins on the association between lipids and insulin
- 626 sensitivity: a cross-sectional analysis of the RISC Study. *Diabetes Care* **36**, 4125-4131
- 627 (2013).
- 628 37. P. M. Titchenell, Q. Chu, B. R. Monks, M. J. Birnbaum, Hepatic insulin signalling is
- 629 dispensable for suppression of glucose output by insulin in vivo. *Nature communications*
- **6**30 **6**, 7078 (2015).
- 631 38. V. T. Samuel *et al.*, Fasting hyperglycemia is not associated with increased expression of
- 632 PEPCK or G6Pc in patients with Type 2 Diabetes. Proc Natl Acad Sci U S A 106, 12121-
- 633 12126 (2009).

634	39.	A. Kalvisa et al., Insulin signaling and reduced glucocorticoid receptor activity attenuate
635		postprandial gene expression in liver. PLOS Biology 16, e2006249 (2018).
636	40.	R. Andersson, A. Sandelin, Determinants of enhancer and promoter activities of
637		regulatory elements. Nat Rev Genet 10.1038/s41576-019-0173-8 (2019).
638	41.	M. A. Zabidi et al., Enhancer-core-promoter specificity separates developmental and
639		housekeeping gene regulation. Nature 518, 556-559 (2015).
640	42.	M. M. Brent, R. Anand, R. Marmorstein, Structural basis for DNA recognition by FoxO1
641		and its regulation by posttranslational modification. Structure 16, 1407-1416 (2008).
642	43.	X. C. Dong et al., Inactivation of hepatic Foxo1 by insulin signaling is required for
643		adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab 8, 65-76
644		(2008).
645	44.	N. Kubota et al., Dynamic functional relay between insulin receptor substrate 1 and 2 in
646		hepatic insulin signaling during fasting and feeding. Cell Metab 8, 49-64 (2008).
647	45.	M. Lu et al., Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and
648		Foxo1. Nat Med 18, 388-395 (2012).
649	46.	H. Yoshida et al., The cis-Regulatory Atlas of the Mouse Immune System. Cell 176, 897-
650		912 e820 (2019).

- 47. M. Pawlak, P. Lefebvre, B. Staels, Molecular mechanism of PPARα action and its impact
- on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease.
- 653 *Journal of Hepatology* **62**, 720-733 (2015).
- 48. A. Montagner *et al.*, Liver PPARalpha is crucial for whole-body fatty acid homeostasis
- 655 and is protective against NAFLD. *Gut* **65**, 1202-1214 (2016).
- 656 49. T. Kuo *et al.*, Induction of alpha cell-restricted Gc in dedifferentiating beta cells
- 657 contributes to stress-induced beta-cell dysfunction. *JCI Insight* **5** (2019).
- 658 50. C. Postic *et al.*, Dual Roles for Glucokinase in Glucose Homeostasis as Determined by
- 659 Liver and Pancreatic β Cell-specific Gene Knock-outs Using Cre Recombinase. *Journal*
- 660 of Biological Chemistry **274**, 305-315 (1999).
- 51. J. R. Cook, F. Langlet, Y. Kido, D. Accili, Pathogenesis of Selective Insulin Resistance
- 662 in Isolated Hepatocytes. *Journal of Biological Chemistry* **290**, 13972-13980 (2015).
- 663 52. B. Langmead, S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**,
- 664357-359 (2012).
- 53. J. Feng, T. Liu, B. Qin, Y. Zhang, X. S. Liu, Identifying ChIP-seq enrichment using
- 666 MACS. *Nat Protoc* **7**, 1728-1740 (2012).

667	54.	S. Heinz et al., Simple combinations of lineage-determining transcription factors prime
668		cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38, 576-
669		589 (2010).
670	55.	A. R. Quinlan, BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Curr
671		Protoc Bioinformatics 47, 11 12 11-34 (2014).
672	56.	E. P. Consortium, An integrated encyclopedia of DNA elements in the human genome.
673		<i>Nature</i> 489 , 57-74 (2012).
674		

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

676 FIGURE LEGENDS

677

678	Figure 1. Distribution of genome-wide FoxO1 binding sites in the fast-refeed transition
679	(a) FoxO1 and HNF4 α immunohistochemistry in liver. Scale bar = 50 μ m. (b) Venn diagram of
680	the number of FoxO1 peaks in fasted or refed conditions. (c) Distribution of FoxO1 peaks
681	relative to annotated RefSeq genes (color-coded) compared with mouse genomic background. (d)
682	Signal intensity plots of ChIP-seq data for FoxO1 compared to input chromatin. The highest
683	level of binding occupancy of chromatin is at the top. (e) De novo motif analysis of the FoxO1
684	ChIP-seq. Logos of the recovered FoxO1 motif shows position-specific probabilities for each
685	nucleotide ($p = 1e-185$ in fast, 1e-195 in refeed). (f) Scatterplots of FoxO1 ChIP-seq peaks,
686	expressed as log ₂ fold-change of FoxO1 tags between fast and refeed (horizontal axis) vs. log ₂
687	fold-change of mRNA levels between wild type and liver-specific FoxO1 knockout mice
688	(vertical axis) for each genomic site. FoxO1 peaks detected in fasted or refed conditions were
689	included in this analysis, and their number at each genomic annotation is shown inside each
690	graph. Detailed information on peaks associated with genes whose $FDR < 0.05$ is in Table S1.
691	Red= FDR < 1%; Blue= 1% \leq FDR < 5%; Green= 5% \leq FDR < 10%; Black= 10% \leq FDR. See
692	also Figure S1 and S2.

693

Figure 2. Comparison of the features of FoxO1 sites in active enhancers *vs.* non-enhancers inpromoter/TSS

696 (a) Bar diagram of FoxO1 active enhancers (red) and FoxO1 non-active enhancers (green) in

697 each genomic location. The number of active enhancer/non-active enhancer at each genomic

698 location is: Intergenic=1795/849, 5' UTR= 128/966, Promoter/TSS= 760/4303, exon= 384/1258,

699	intron= 2034/2501, non-coding= 44/158), TTS= 105/17), 3' UTR= 53/22. (b) Directed acyclic
700	graph derived from gene ontology analysis (GO) of biological processes associated with 5,305
701	FoxO1 active enhancers by GREAT GO tools. Letters correspond to the groups shown in (c) and
702	Fig. S3c. Numbers indicate the term's fold-enrichment. Red circles: fundamental ontologies in
703	the hierarchy listed in (c). Blue circles: additional enriched ontologies. Gray circles: parent
704	ontologies. (c) List of GO in (b) and their -log ₁₀ FDR. (d-f) Heatmap alignments of ChIPseq
705	FoxO1 binding in fast (d), fast/refeed ratio (e), and FDR of gene expression changes between
706	wild type and liver FoxO1 knockout mice (f) in GO related to glucose metabolic processes, lipid
707	homeostasis, and cellular response to insulin genes as listed in (b, c). (g, h) Same GO analysis as
708	in (b, c) applied to 4,303 FoxO1 sites lacking active enhancer marks in promoter/TSS. (i-k)
709	Heatmap alignments as in (d-f) of GO related to ncRNA processing, DNA repair, and protein
710	modification as listed in (g, h). See also Figure S3
711	

712 Figure 3. Different FoxO1 binding logic between triglyceride and glucose metabolism genes 713 (a, b) Comparison between region-gene associations of triglyceride homeostasis (yellow bar) (a), 714 or glucose metabolic process (orange bar), with set-wide FoxO1 binding sites (blue bar) as 715 detected by FoxO1 ChIP-seq in fasted or refed conditions, binned by orientation and distance from TSS. *= p < 0.05; **= p < 0.01; ***= p < 0.0001 by chi-square test. (c) Distribution of 716 717 FoxO1 binding sites associated with triglyceride homeostasis or glucose metabolic process genes according to genomic annotation as in Fig. 1c. p = <0.03 by contingency analysis. (d) GO 718 719 analysis of biological processes associated with 4,535 FoxO1 binding sites in introns using GREAT GO tools. (e-g) IGV Genome browser views of FoxO1 peaks and associated H3K27ac and 720 H3^{K4me1} histone marks at selected apolipoprotein clusters (Apob and ApoC2/C4/C1/E Apob, 721

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

722 Apoc4-c2, Apoc1, Apoe) and ScarB1. Signals are normalized for the comparisons between

fasted and refed conditions. FoxO1 signals are aligned with peak regions. Red arrows indicate

active enhancers as detected by H^{3K27}ac and H3^{K4me1} signals. FoxO1 peaks in introns are listed in

Table S2. See also Figure S4.

726

727 Figure 4. Resilience analysis of FoxO1-regulated genes

728 (a) t-SNE plot of RNA-seq data (n= 8). Circles indicate fasted and triangles refed animals. Filled

red symbols: AAV-GFP-injected animals (A-WT in the text); empty symbols with red border:

730 AAV-CRE-injected animals (A-FLKO in the text); green filled symbols: Foxol^{loxp/loxp} (C-WT in

the text); empty symbols with green border: Alb-Cre/*Foxol*^{flox/flox} (C-FLKO in the text). (b-e)

732 MA-scatterplots of average expression levels vs. log₂ fold-change induced by FoxO1 ablation in

tag count within exons of Ensemble gene bodies in fasted (b) or refed (c) A-FLKO, and fasted

(d) or refed (e) C-FLKO. Red dots represent differentially expressed genes (DEGs) (FDR \leq

735 0.05). The number of DEGs is indicated in each box. (f) Enrichment analysis of k-Means clusters

with molecular pathways underlying each category with top 1,000 variable genes among all

range samples used in (a) by iDEP tools. (g) GO analysis of DEGs in fasted conditions, shown in (b)

and (d), by Shiny GO tools. Red heatmap shows FDR of genes in A-FLKO or C-FLKO. Violin

739 plots show log₂ fold-change of gene expression between control and A-FLKO (red) or C-FLKO

740 (green) for DEGs. Number of DEGs is indicated at the top. Purple heatmap shows FDR of each

ontology described next to it. Red- colored ontologies indicate the top enriched term in each

category. The number of genes in each ontology is shown in parenthesis in (f, g). DEGs are listed

743 in Table S3. See also Figure S5.

Kitamoto et al. Nutrient-regulated transcription and hepatic insulin resistance

745	Figure 5. Comparative analysis among fasting inducible transcriptional factors
746	(a) Distribution of PPAR α , CREB and GR binding sites in fasted conditions. (b) Peak plot
747	mapping the overlap of the FoxO1 (Fig. 1e) and PPARα, CREB and GR peaks. (c-d) Intersection
748	analyses of active (c), and non-active (d) FoxO1 and PPAR α , CREB or GR enhancer peaks in
749	fasting conditions. (e) Proportion of PAARa peaks with/without active enhancer marks in FoxO1
750	active enhancers in fasting conditions according to genomic annotation. (f) Heatmap with
751	associated FDR of phenotype ontology terms of shared FoxO1/PPAR α active enhancers (red
752	bars) in intergenic regions and introns. (g, h) Resiliency plots of genes associated with shared
753	FoxO1/PPAR α active enhancers in intergenic regions (g) and introns (h). Plot show log ₂ fold-
754	change induced by adult-onset vs. constitutive liver FoxO1 ablation. Resilient genes (FDR ≤ 0.05
755	in AFKO or CFKO mice, showing lower fold-change and higher FDR value in CFKO mice than
756	AFKO mice) are indicated by blue dots, non-resilient genes (FDR ≤ 0.05 in AFKO or CFKO
757	mice) are marked by red dots, $FDR > 0.05$ in both mice by white dots. DEGs are listed in Table
758	S5.
759	
760	Figure 6. The transition of FoxO1 binding sites under insulin resistant condition
761	(a) Immunohistochemistry of FoxO1 and HNF4 α after 4hr fasting or following 1hr refeeding in
762	high fat diet (HFD)-fed mice or insulin receptor antagonist (S961)-treated mice. Scale bar = 20
763	μ m. (b) Scatterplots showing linear regression analysis of FoxO1 tag count between fasted and
764	refed conditions. Green: vehicle; red: S961-treated mice. (c-f) IGV Genome browser views of

FoxO1 peaks with or without S961 treatment and associated $H3^{K27ac}$ and $H3^{K4me1}$ marks of at

766 *G6pc, Pdk4, Angptl4/8, and ApoA1/C3/A4*. See also Figure S6.

768	Figure 7. Model of FoxO1 transcriptional logic in the pathogenesis of selective insulin resistance
769	In normal conditions, FoxO1 is cleared upon refeeding from resilient enhancers, enriched in
770	glucose metabolism genes, but not in introns, enriched in lipid metabolism genes. With the onset
771	of insulin resistance-induced hyperinsulinemia, FoxO1 can be cleared from resilient enhancers,
772	but not from introns, increasing serum lipoprotein and triglyceride levels. As insulin resistance
773	progresses, compensation by PPAR α and spreading of FoxO1 binding to additional sites bolsters
774	expression of glucose metabolic genes, inducing fasting hyperglycemia with dyslipidemia.
775	

Enriched in fasting

Figure 2

Figure 3

Figure 6

Figure 7.

