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Abstract

The nonstationarity of EEG/MEG signals is important for un-
derstanding the functioning of human brain. From the previous re-
search we know that even very short, i.e. 250—500ms MEG signals are
variance-nonstationary. The covariance of stochastic process is mathe-
matically associated with its spectral density, therefore we investigate
how the spectrum of such nonstationary signals varies in time.
We analyze the data from 148-channel MEG, that represent rest state,
unattented listening and frequency-modulated tones classification. We
transform short-time MEG signals to the frequency domain using the
FFT algorithm and for the dominant frequencies 8—12 Hz we prepare
the time series representing their trial-to-trial variability. Then, we
test them for level- and trend-stationarity, unit root, heteroscedas-
ticity and gaussianity and based on their properties we propose the
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ARMA-modelling for their description.
The analyzed time series have the weakly stationary properties inde-
pendently of the functional state of brain and localization. Only their
small percentage, mostly related to the cognitive task, still presents
nonstationarity. The obtained mathematical models show that the
spectral density of analyzed signals depends on only 2—3 previous
trials.
The presented method has limitations related to FFT resolution and
univariate models, but it is not computationally complicated and al-
lows to obtain a low-complex stochastic models of the EEG/MEG
spectrum variability.
Although the physiological short-time MEG signals are in principle
nonstationary in time domain, its power spectrum at the dominant
frequencies varies as weakly stationary stochastic process. Described
technique has the possible applications in prediction of the EEG/MEG
spectral properties in theoretical and clinical neuroscience.

1 Introduction

Time series modeling plays an important role in the description of complex
biological systems and has numerous scientific applications. With regard
to the electro- (EEG) or magneto- (MEG) encephalography, proposing an
adequate model of neural activity, especially in the context of the brain’s re-
sponse to stimulation with external stimuli, is crucial for understanding the
functioning of neuronal connections in the brain, the phenomenon of percep-
tion, cognitive functions and is applicable in numerous fields of neuroscience
and medicine. This includes areas such as source modeling, seizure detection
prediction, memory and attention research, brain-computer interfaces, and
a large number of clinical observations in neurology, psychiatry and other
medical disciplines.

Many different methods are used in the literature to describe EEG/EMG
signals. Traditional evaluation of spontaneous (rest state) brain activity is
based on a description of the waveform morphology in the time domain, while
in the frequency domain methods based on the Fourier transform are usually
used. In turn, the clinically accepted technique for obtaining event-related
responses is the averaging method. A significant methodological limitation
in such studies is the fact that EEG/MEG signals are nonlinear and non-
stationary, i.e. their properties change over time [27, 31]. Therefore, more
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mathematically advanced methods of analysis had to find their place in neu-
roscience [32]. Plenty of them are time-frequency analysis, with the use of
tools such as wavelets or matching pursuit [7, 8, 17, 22, 25, 47, 49]. Some
of them are fractal or entropy based [45, 51]. Others use the independent
component analysis and similar techniques [26, 3, 44, 23]. Also, many algo-
rithms based on statistical methods were developed, mostly devoted to the
estimation of evoked responses [16, 50, 19, 29, 33, 52]. Among the latter,
attention should be paid to the stochastic time series models, dedicated to
the univariate [38] or multivariate [18, 37] description of EEG/MEG data.
These methods can be applied, among others for predicting changes in signal
parameters over time [48].

Moreover, it is not entirely clear how the human brain processes external
information. Traditional view on brain evoked-responses generation assumes
the so-called an additive model, in which stimulus-induced activity is hidden
in the noise associated with the spontaneous EEG, potentials resulting from
the processing of accompanying stimuli, including cognitive processes and
artifacts [33]. More recent approach is based on stimulus-related changes in
the ongoing EEG/MEG oscillations, then the evoked responses reflect rather
the synchronization of such oscillations during stimuli processing in neural
network [6, 41, 42, 57]. It is worth noting that the data description method
is usually selected to match the previously assumed functional model, what
may bias the obtained results [56].

So a few questions arise. Firstly, is it not worth looking for methods of
analysis that are not burdened with such assumptions? Second, is it possible
to better understand the nature of EEG/MEG signals so that new methods
of analyzing them are based on their real properties?

In this paper, we have devoted attention to examining some aspects of
the variability of MEG activity. For this purpose we applied statistical test
to infer about stochastic properties of encephalographic data, similarly as
in work [31]. As mentioned above, the bioelectrical activity of the brain is
considered a nonstationary process as it is well known that they are strongly
time-varying, especially their spectral power. Therefore, we analyzed the
trial-to-trial spectrum variability, obtained by a way similar to [28, 39] and
finally proposed a wide class of stochastic time series models for its descrip-
tion.
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2 Aim

Even very short (0.25-0.50 sec) fragments of MEG signals are proved to be
nonstationary due to the time-dependent variance [31]. However the covari-
ance matrix is mathematically associated with signal energy and the spectral
density, so variance-nonstationarity is equivalent to the time-variability of
spectral power of MEG signals and it is wide described in the bibliography
for both, spontaneous and event-related EEG/MEG data and have impor-
tant neurophysiologic consequences. Since the changes in the spectrum are
responsible for the nonstationarity of these signals our goal was to find out
how the spectral structure of short-term MEG fragments changes. We chose
MEG data recorded at rest state, during passive listening to sounds and re-
lated to the recognition and classification of frequency-modulated tones so
that our calculations could be used to compare whether the indicated spec-
trum variability is related to auditory information processing and, if, at what
level.

Presented studies are the continuation of research published in [31]. Like
in the Section 4.3 of cited work, the modern tests for (non-)stationarity
were applied to infer about time-varying statistical properties of MEG power
spectra. Moreover, the same real data set was used in both analysis. Yet,
in opposition to [31] where only 6 channels were taken into account (4 leads
above the auditory cortices of both hemispheres, and 2 – frontal and occipital
sensors – used as “reference” channels) here the multichannel analysis is
performed. The second new approach in the present work is the estimation
of stochastic time series models for series of the trial-to-trial variability of
spectra power in selected Fourier frequencies. The statistic modeling is used
for parametric description of analyzed MEG variability.

3 MEG experiment

The MEG experiment was performed at the Special Lab for Non-Invasive
Brain Imaging in Leibniz Institute for Neurobiology in Magdeburg, Germany.
A whole-head MEG device (Magnes 2500 WH, 4-D Neuroimaging, San Diego,
USA) containing 148 magnetometer sensors coupled to DC SQUID’s was used
to acquire the data. The measured signals are corrected for environmental
noise by means of a weighted subtraction of reference signals detected by
additional sensors located in close proximity to the field detectors. In order to
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avoid any noise contribution from the liquid helium, all pick-up and reference
detectors, as well as the 148 SQUID’s, are located in vacuum. The MEG
apparatus is located in a magnetically shielded room. Data were sampled
at 1017.25 Hz and bandpass filtered during acquisition between 0.1 Hz and
100 Hz.

The experiment was intended to acquire MEG signals representing vari-
ous functional states of the human brain. For this purpose, it was decided
to measure: 1. spontaneous brain activity; 2. signals registered during the
repeated tonal stimulation (evoked fields); 3. MEG waveforms containing
cognitive event-related components connected with perception of frequency-
modulated (FM) tones (with their classification task during one session). In
each FM sweep the instantaneous frequency changes linearly in time, either
upward or downward. A set of 32 FM tones was used, 16 for both categories,
presented in random order. The initial frequencies for the rising FMs varied
from 0.5 kHz to 2 kHz in steps of 100 Hz, those for falling FMs from 4 kHz to
1 kHz in steps of 200 Hz. Each FM sweep had duration of 500 ms including
10 ms linear ramps both at the beginning and the end.

The acoustic stimulation with FM tones was chosen because they have
fundamental role in the human speech as well as in the animal vocalizations.
Studies using FM tones provide a possibility to gain insight into the process-
ing of prosodies independent of any speech-specific mechanisms. The FM
tones can be easily separated into two natural categories with respect to the
underlying direction of frequency modulation, upward or downward. Thus,
they also serve as an ideal tool for comparing the auditory cortex response to
a passive condition, that is, mere listening to a sequence of FM tones, with
an active condition (cognitive task), that is, the directional categorization of
exactly the same FM tones. Different activation patterns for the two condi-
tions provide insight into the impact of cognitive aspects (related to FM tone
discrimination) on the processing of FM tones in the auditory cortex [57].
The FM tones find their importance not only in MEG studies on auditory
pathway yet also in fMRI-based neuroscience [53, 4, 21]. More details about
the FM stimuli are given in [34].

There were two stages of the experiment when the FM tones were used.
In the first one, the exposure condition (FM/E), the subject had to listen
passively to the sequence of FM tones. In the second one, the task condi-
tion (FM/T), he was instructed to discriminate the direction of frequency
modulation of the same FM tones and to categorize them by pressing one of
two response keys. The subject was instructed to signal rising FM sweeps
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with his left index finger, and falling FM sweeps with his right index finger
as soon as he had identified the direction of frequency modulation. Within
an experimental session, the presentation of the FM tones was binaural and
randomized.

The repeated 1 kHz stimuli had 500 ms duration and 10 ms ramps at the
beginning and at the end. The MEG data collected for an acoustic stimula-
tion with such a simple reference stimulus reflect the basic processes behind
the stimulus perception in the human brain because the associative processes
of stimulus recognition and its classification are intensive only in the very first
phase of the examination. Thus, the registered signals are representative for
the auditory-cortex processing.

Two sessions in which the spontaneous activity was registered (i.e. dur-
ing the period when the subject was not exposed to any stimulation) were
introduced to serve as the natural reference level for the sessions involving
stimulation.

Within each session involving stimuli, the stimulus was presented 96
times. For the 1 kHz stimulation each stimulus was exactly the same, whereas
the FM tones were presented randomly, each sweep 3 times, resulting in total
number of 96 stimuli (32× 3). The measurement was continuous, thus every
single trial (epoch) corresponding to a single stimulus presentation was equiv-
alent to 2 seconds of registration, where t = 0 corresponds to the stimulus
onset for each trial. The spontaneous brain activity was also measured con-
tinuously over the period of time, whose length equaled 96× 2s. Therefore,
each experimental session lasted 3 minutes and 4 seconds. Timing diagram
of a single trial is given in Fig. 1.

During experiment the acoustic stimuli were generated outside the MEG
chamber and delivered to the subject’s ears via two approximately 6-m long
plastic tubes. These tubes ended with special ear-molds which were indi-
vidually chosen to adapt to each subject’s pinnae. The time delay caused
by the signal conduction along the plastic tubes was measured as 20ms, and
was taken into account in the data analysis. At the beginning of each mea-
surement, the sound pressure level of the acoustic stimulus was adjusted to
90 dB SPL using a 1 kHz sinusoidal tone as reference signal and the subject
rated this sound intensity as comfortable.

As the result of measurements from a healthy volunteer, multichannel
MEG signals of high quality were obtained for all sessions. All were evaluated
by neurologist experienced in description of that kind of data as physiological:
the spontaneous MEG activity is typical for resting state in humans and free
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Figure 1: Timing of a single trial: A — final part of a previous trial; B
— the period of stimulus presentation; C — response time for classification
in the task condition FM/T (absent in the FM/E condition); D — post-
stimulus period for recovery of the MEG signal. B is absent in session without
stimulation. In the FM/T session, C may occasionally overlap with D. C
overlaps slightly with the period of stimulus presentation B, as the subject
responded already before the end of the stimulus in some trials. Time is
given in seconds.

of any seizure phenomena or sleep waveforms; the evoked fields are typical
early cortical auditory responses with proper amplitudes and latencies of
main components after averaging, as well as their over-head topography;
the event-related fields contain proper cognitive long-latency waveforms after
averaging and their topography over head is physiological too. Moreover, the
results obtained for the sessions related to acoustic stimulation show no signs
of habituation.

4 Methods

4.1 Data pre-processing

The approach of analysis requires the MEG signal segmentation on T equal-
length fragments, estimation of the spectral power for each segments sep-
arately and finally the statistical analysis of time-dependent properties of
series of trial-segregated Fourier coefficients calculated for given frequencies.
Similar, yet not equivalent algorithm was applied in studies presented in
[39, 28].

To evaluate possible connection of trial-to-trial variability of MEG power
spectrum with the measurement paradigm (tonal stimulation, stimulation
by FM tones with or without categorization task, spontaneous activity) the
registered signals were divided into segments time-locked to the stimulus (or
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to the beginning of the examination in the case of the measurement without
stimuli) and separated from other segments by the same time interval being
the difference between the fixed length of each trial (2 sec) and the length
of the segments, like in [31] – see Fig. 2 a). Spectral power for consecutive
trials of digital MEG signal was calculated as the discrete Fourier transform
using the fast Fourier transform (FFT) algorithm (see for example [12]).
Furthermore, a sequences of selected coefficients of these spectra zt, t =
1, . . . , T , were derived for some fixes frequency f . Note that only one spectral
coefficient for each segment was selected at a time – see Fig. 2 b).

Taking into account the frequency resolution and the nonstationary char-
acter of the data it was decided to perform analysis for two lengths of the
aforementioned segments. Important was to use rather short segments in
order to diminish the time error of the Fourier estimation and to maximize
the signal-to-noise ratio of the Fourier transformed data (this is because
the stimulus-related activity was assumed to last relatively shortly after the
stimulus onset), yet, it was also tried to preserve a reasonable frequency res-
olution, which increases with increasing the length of the analyzed signal to
be transformed. Therefore, the signals of both 250 ms and 500 ms duration
were analyzed. The 250 ms signals contain the evoked components but not
the waveforms related to endogenous (e.g., cognitive) activity. The 500 ms
signals enable investigation of all event-related waveforms.

The time series analysis of a trial-to-trial power spectrum variability was
performed for frequencies from the dominant range 8—12 Hz what is the
alpha activity frequency band. It was obtained 148 (the number of MEG
channels) series for each kind of stimulation and each of the selected signal
durations. For the 500 ms signals the FFT spectra revealed three significant
peaks, at 8 Hz, 10 Hz, and at 12 Hz, whereas the spectra of the 250 ms signals
demonstrated two clear peaks — at 8 Hz and at 12 Hz. This is because of the
inherent frequency resolution of the fast Fourier transform, which for these
signals equaled 2 Hz (1/500ms−1) and 4 Hz (1/250ms−1), respectively.

Concluding, the obtained results are a sequence of the Fourier coeffcients
for a fixed frequency calculated for each single-trial separately – see Fig. 2 c).
Realizations for all trials form the stochastic process Zt.

The subsequent steps in Fig. 2 show the following procedures.

a) The original MEG signal segmentation according to stimulus onset (or
equivalent interval of time): here a fragment of single-channel MEG
registered during tonal stimulation is shown, the stimulus onsets are
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pointed by arrows and the marked segments (500 ms samples in this
example) are selected to compute their spectra.

b) The single-trials MEG selected in step a) transformed with the use of
FFT to the frequency domain; for a fixed frequency (8 Hz in this case)
the time series of the consecutive Fourier coefficients is prepared.

c) The time series zt being the realization of the trial-to-trial-variability
of the MEG power spectrum and subject to further analysis.

This calculations were performed for each of 148 MEG channel separately,
and for all fixed frequencies from the dominant range 8—12 Hz (taking into
account the spectral resolution) separately.

4.2 Mathematical model

For the stochastic process Zt let us denote its realizations by zt. If time t is
discrete, t = 0,±1, . . . , this process is the time series. Such process is weakly
stationary if

E(Zt) = µZ (t) = const = µ, (1)

and
Cov(Zt, Zt+h) = γ (h) = E [(Zt+h − µ) (Zt − µ)] , (2)

for t = 0,±1, . . . , h = 0,±1, . . . . In other words, it means that the mean-
value function is independent of time t, and that the covariance function
depends on r and s only through their difference |r − s|, so it is independent
of t for each h too.

The spectral density of a stationary process Zt specifies the frequency de-
composition of the autocovariance function. Suppose that Zt is a zero-mean
stationary time series with autocovariance function γ. If

∑∞
h=−∞ |γ(h)| <∞

is satisfied, the process has the representation

γ (h) =

π∫
−π

eiωhf (ω) dω, (3)

for h = 0,±1,±2, . . ., eiω = cos (ω) + i sin (ω), and i =
√
−1. Equation (3)

is the inverse transform of the spectral density of Zt defined as

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 16, 2021. ; https://doi.org/10.1101/2021.03.15.435429doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.435429


a)

b)

stimulusstimulus stimulus stimulus stimulus stimulus stimulus

c)

0 100 200 300 400 500

B
[f
T

]

t [ms]

5 10 15 20

F
T

f [Hz]

FT

0 100 200 300 400 500

B
[f

T
]

t [ms]

5 10 15 20

F
T

f [Hz]

FT

...

...

0 100 200 300 400 500

B
[f
T

]

t [ms]

5 10 15 20

F
T

f [Hz]

FT

0 10 20 30 40 50 60 70 80 90

P
i

trial number

Figure 2: The scheme of computing the trial-to-trial variability time series
of the MEG power spectrum.

f (ω) =
1

2π

∞∑
h=−∞

e−ihωγ (h), (4)

where −π ≤ ω ≤ π. The spectral density is an analogue to the probability
density function; for all ω ∈ (−π, π], f (ω) ≥ 0 and it is even, i.e., f (ω) =
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f (−ω).
The relation between the spectral density function and the variance of

the process {Zt} is

γ (0) = Var(Zt) =

1
2∫

− 1
2

f (v) dv, (5)

where v = ω/2π is the frequency and −1/2 ≤ v ≤ 1/2.
To transform one function into another that is the frequency-domain rep-

resentation of the original function, we use the Fourier transforms (FTs).
Discrete Fourier transform (DFT) is given by

F (ωk) =
1√
n

n∑
t=1

Zte
−itωk , (6)

where n is the number of observations of a time series Zt, ω = 2πk
n

, and
k = −bn−1

2
c, . . . , bn

2
c, where byc denotes the largest integer smaller than or

equal to y. Then, each component of an observable time series Zt can be
written as

Zt =

bn/2c∑
k=−b(n−1)/2c

F (ωk) bcos (ωkt) + i sin (ωkt)c, (7)

where t = 1, . . . , n, which shows that Zt can be represented as a linear
combination of sine waves with frequencies ωk.

After procedure based on FFT algorithm, described in subsection 4.1, the
obtained sequence of the selected coefficients of the single-trial power spectra
for a fixed frequency will be now the time series zt being realization of the
stochastic process Zt representing time-varying brain activity in frequency
domain. Now, let us to present the procedure we propose to infer the zt
properties and to fitting an adequate time series model to it. These procedure
is given in a diagram form in Fig. 3.

In order to recognize the stochastic nature of Zt it was crucial to verify
their stationarity. In this case, similar to [31] were applied: the Kwiatkowski–
Phillips–Schmidt–Shin (KPSS) test for level-stationarity and trend- station-
arity [35], the Phillips–Perron (PP) test for unit root [43], and the White test
for heteroscedasticity (variance-nonstationarity) [54]. We used these tests in
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Figure 3: The statistical inference as the decision tree and the zt time series
modeling procedure. Explanations in the text.

the beginning of time series analysis, and if the trend-nonstationarity is de-
tected, we made detrending to its elimination, as it is shown in a upper part
of the decision tree from Fig. 3. Besides, the Jarque–Bera test [24] to verify
the hypothesis about normality of the analysed series of spectral coefficients
was also applied. Whenever Gaussianity was found, an appropriate model
was fitted from the class of autoregressive moving-average (ARMA) models
of the orders p, q ∈ [0, 10], which was justified by the obtained form of the
sample autocorrelation function (ACF) and the sample partial autocorrela-
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tion function (PACF) plots. Time series {Zt} is an (ARMA(p,q)) process:

Zt =

p∑
i=1

ϕiZt−i + at +

q∑
j=1

θjat−j, (8)

with some constant coefficients ϕi and θi, where {at} is a white noise [10].
Fitting the time series model is a complex, iterative procedure and can-

not be full described here, yet we introduce it shortly in a lower part of the
diagram from Fig. 3. In this work the methods given in detail in handbook
[11] were applied. For preliminary estimation (Fig. 3 (1)) of the parameters
of ARMA models we applied: the Yule-Walker estimation and the Burg’s
algorithm for pure autoregressive (AR) processes, the innovations algorithm
and the Hannan–Rissanen algorithm for pure moving-average (MA) models,
and the last-mentioned method for mixed (ARMA) models. All of these
algorithms are described in [11]. Estimators of the model parameters were
obtained by maximizing the Gaussian likelihood of the ARMA process. The
major criterion for the selection of orders of the estimated model is mini-
mization of the bias-corrected Akaike criterion (AICC) value, what is used in
this studies too. At the end, we performed the diagnostic checking to verify
the goodness of fit of a statistical model to a set of data (Fig. 3 (2)). We
applied it by testing the residuals of the model, which should have the white
noise properties if model is appropriate fitted. Therefore we applied varies
tests for randomness (the Ljung–Box test, The McLeod–Li test, the turning
points test, the difference-sign test, the rank test and the Jarque–Bera test)
exactly as it is given in [11].

Finally, let us to remind that the procedure described above, leading to
the adequate time series model of the trial-to-trial variability of the MEG
power spectrum was performed for each experiment paradigm, each single
MEG channel, each trial length and each of the fixed frequencies separately.

5 Results

5.1 Inference about stationarity

The stationarity of the series of Fourier coefficients were tested independently
for all channels and measurement sessions. It verified the presumptions that
the character of power spectrum trial-to-trial variability is related to the
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functional state of the brain. Such correlation should be observable in the
predominant frequency component of the MEG signals. All the results of
hypotheses testing are shown in Table 1.

The obtained results show that the trial-to-trial variability of the power
spectrum selected coefficients is evidently stationary in the wide sense. This
property seems to be independent of the length of the analyzed signals, but
the influence of the frequency resolution remains unknown. The highest
percentage of rejecting the null hypothesis H0 was observed for the Phillips–
Perron test, and the percentage of H0 acceptance is not fully comparable
with the results obtained with the adequate version of the KPSS test (in 19
of 25 cases the percentage of accepting the PP-test hypothesis about the ex-
istence of a unit root is higher than the percentage of rejecting the KPSS-test
hypothesis about trend-stationarity; there is only 1 opposite situation). The
reason for this is the test power. The Kwiatkowski–Phillips–Schmidt–Schin
test is a test of high power, and was proposed as an alternative for the unit-
root tests due to the fact that those tests were known to fail to reject the null
hypothesis of a unit root for many time series [35]. Therefore, authors be-
lieves that the results of the KPSS test are more objective. Having compared
the results obtained with the two versions of the KPSS test the presence of
trend-nonstationary in the analyzed data was considered only in a very small
number of channels. The existence of the variance-nonstationarity was gener-
ally not proved either. Nor could be find any differences between the results
of the two segment lengths. No significant differences between the results
of for the power spectrum trial-to-trial variability at the selected frequencies
were observed either. Finally, no clear channel-dependent properties were
found.

5.2 ARMA modeling

The results for normality testing and time series modeling of the trial-to-trial
variability of the MEG power spectrum are presented in Table 2.

It shows that the percentage of rejecting H0 in the Jarque–Bera test is
a little smaller for the measurement without stimulation compared to the
other experiments. It depends on the duration of the data segments taken
for FFT, and longer signals usually have larger percentage of rejecting the
hypothesis about Gaussianity. One exception is the power spectrum trial-
to-trial variability of the MEG signals registered for the categorization-task
paradigm. For those signals the averaged percentage of rejecting H0 by the
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Table 1: Results of testing the trial-to-trial variability of selected power spec-
tra coefficients. Used are: the Kwiatkowski–Phillips–Schmidt–Schin (KPSS)
test, the Phillips–Perron (PP) test, and the White test. Notation: LS —
level-stationary, TS — trend-nonstationary, UR — unit root, VS — variance-
stationary (homoscedastic), VNS — variance-nonstationary (heteroscedas-
tic).

% of rejection of statistical test
experimental trial frequency KPSS PP White

paradigm duration [Hz] H0: LS H0: TS H0: UR H0: VS
[ms] H1: UR H1: UR H1: LS H1: VNS
250 8 3.4 0 95.9 0

no stimuli 12 0.7 0.7 98.0 0.7
(session 1) 8 5.4 1.4 97.3 0

500 10 1.4 0 95.9 0.7
12 8.1 5.4 91.9 3.4

250 8 6.8 2.0 91.2 4.7
1 kHz sound 12 4.7 2.7 92.6 2.0
stimulation 8 0 0 100 1.4

500 10 14.9 3.4 96.6 0
12 2.0 0 98.0 0.7

250 8 10.1 2.0 82.4 0.7
no stimuli 12 1.4 1.4 97.3 0
(session 2) 8 3.4 2.7 97.3 3.4

500 10 6.8 1.4 93.2 0
12 0 0 94.6 2.0

250 8 2.0 0.7 99.3 0
FM/E 12 12.2 7.4 93.2 2.7

(exposure 8 8.1 8.1 79.0 0
condition) 500 10 2.7 2.0 94.6 5.4

12 7.4 1.4 93.2 1.4
250 8 10.1 3.4 88.5 2.0

FM/T 12 4.7 2.0 94.6 0
(task 8 0.7 0 84.5 10.1

condition) 500 10 4.1 2.7 95.3 14.9
12 14.2 4.1 94.0 0
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Table 2: Results of testing for normality and of ARMA modeling of the
trial-to-trial variability of the power spectrum. The percentage of revealing
the normal distribution stems from the Jarque–Bera test. Notation as in
Table 1.

experimental trial frequency proposed stochastic model [%]
paradigm duration [ms] [Hz] Gaussian AR MA ARMA TS unspecified

250 8 72.3 13.5 3.4 6.8 3.4 0
no stimuli 12 56.8 15.5 12.2 14.9 0 0.7
(session 1) 8 29.1 29.7 11.5 24.3 4.1 1.4

500 10 43.9 31.8 1.4 21.6 2 0
12 52.0 14.2 8.8 6.8 2.7 8.1

250 8 56.1 18.2 6.1 12.8 1.4 5.4
1 kHz sound 12 33.1 28.4 20.3 11.5 2.0 4.7
stimulation 8 27.7 24.3 30.4 17.6 0 0

500 10 33.1 10.8 15.5 26.4 10.8 3.4
12 29.7 34.5 17.6 17.6 2.0 0

250 8 56.8 4.7 18.2 10.1 8.1 2.0
nostimuli 12 64.2 8.1 15.5 10.8 0 1.4
(session 2) 8 59.5 12.8 13.5 7.4 0.7 6.1

500 10 37.2 23.6 23.0 9.5 5.4 1.4
12 41.9 14.9 16.9 26.4 0 0

250 8 43.9 31.8 10.8 11.5 1.4 0.7
FM/E 12 67.6 3.4 7.4 10.1 2.0 9.5

(exposure 8 33.8 27.0 14.9 16.2 0.7 4.7
condition) 500 10 31.1 20.3 27 17.6 0 8.1

12 52.7 16.2 12.8 10.8 6.1 1.4
250 8 61.5 15.5 2.0 8.8 6.8 5.4

FM/T 12 68.9 13.5 10.1 2.7 2.7 2.0
(task 8 43.9 23.0 22.3 0 0.7 10.1

condition) 500 10 34.5 20.9 10.1 15.5 1.4 17.6
12 48.6 16.9 15.5 4.7 10.1 4.1
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Jarque–Bera test computed for all the analyzed frequencies (34.8% for the
250 ms and 57.7% for the 500 ms window) is similar to the results obtained
for the ongoing activity (37.5% and 65.1%, respectively).

If not Gaussian, the ARMA model can be fitted in the vast majority of the
analyzed time series of the power spectrum trial-to-trial variability. However,
the percentage distribution of the proposed pure AR, pure MA, and mixed
ARMA models is different for each of the examined experimental paradigms,
and dependent on the length of the data segment. Moreover, the orders of
the fitted models do not reveal any correlation with the type of stimulation.
Nevertheless, it can be said that the trial-to-trial variability of the series of
selected Fourier coefficients is generally characterized by low-order stochastic
processes, because median of the model order was equal to: p = 3 for the
AR, q = 2 for the MA, and p = 2, q = 1 for the mixed ARMA model or by
a Gaussian process. It means that MEG spectral power in the given time
window depends on only 2 or 3 previous observations. Additionally, the need
to estimate only 2-3 coefficients proves the low level of complexity of the
model and the simplicity of calculations.

A small percentage of the analyzed time series cannot be described by
models from the ARMA class due to their nonstationarity. Fortunately,
approximately half of them contain deterministic trend, therefore the trend-
plus-noise model can be proposed for their description. Finally less than
5% of all time series remained undescribed. It may be essential to note
that the percentage of such “unknown” series increases relatively for the FM
stimulation. It is especially visible for the 10 Hz frequency and distinct for
the longer segments, which contain the cognitive event-related components.
For these data this percentage reached the maximum of 17.6%.

Unfortunately, no correlation between the particular time series model
characteristic and the MEG-channel localization over head was found.

6 Discussion

Although the physiological MEG signals recorded during the presented com-
plex acoustic experiment are in principle nonstationary in time domain, the
weakly stationary character of their power spectra exists at several frequen-
cies. Our results suggest it is the common property for that kind of signals,
rather independent from the functional state of brain i.e. recognition and
classification of cognitive stimuli (event-related responses), processing of au-
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diosensory information (auditory evoked fields) or rest state (spontaneous
MEG).

In some ways this observation is similar to the results obtained in [28]
or [5], but presented here conclusions are somewhat different. The authors
of the aforementioned articles claimed that their observations suggested that
the brain signals are stationary, which is not really true [31]. In our opin-
ion, short-time MEG signals may be nonstationary due to the time-varying
spectrum, but the variability of their spectrum is the stochastic process,
overwhelmingly with weakly stationary properties.

Applying the method of the signal transformation from the time domain
to the frequency domain presented in this paper, the time-variability of the
MEG spectrum mostly has a Gaussian distribution or could be described by
the stationary ARMA time series models. The calculation of the parameters
of these models turns out to be relatively simple and the obtained residua
meet the criteria of a proper fit of the time series model to the data. In
this way we obtained the effective models for MEG trial-to-trial spectral
variability with medial 2—3 coefficients what shows that the current spectral
power in a given frequency, calculated from 250ms or 500ms epoch lengths,
depends on 2—3 previous epochs only. Taking into account the 2s trial
length, the spectral power in a given trial depends on its value from the 4—6
seconds before.

Only a small percentage of the trial-to-trial power spectra changes in
a different way, i.e. still presents nonstationarity. However, it should be
emphasized that these cases concerned mainly longer fragments of MEG
signals registered during the task condition with FM tones stimulation. This
suggests that nonstationarity may be the result of a cognitive process and
thus, in a way, be a marker of a significant state change in the neural network
related to the classification of the direction of the frequency tone modulation.
If so, the question remains why it is observed in such a small percentage of
the data? Referring critically to the presented research, it is possible that
the particular estimation method used for this studies is responsible for this.
The temporal resolution of the Fourier transform is limited by the length
of a time window to be transformed, as the FFT provides only one power
spectrum for such a window. The frequency resolution is limited too, as
the lowest frequency to be observed is the inverse of a time-window length.
Therefore, the intrinsic limitations of the Fourier transform might have biased
our results.

On the other hand, the presented algorithm of encephalographic data
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analysis is not computationally complicated and allows to obtain a low-
complexity stochastic model of the EEG/MEG spectrum variability. There-
fore, it could be useful in some theoretical neuroscience. Exemplary, when
applied to the data presenting the habituation effect, we expect ARMA plus
trend nonstationary models of their trial-to-trial spectra variability, which are
also easy to estimate. It would also be worthwhile to investigate whether the
parameters of the time-varying spectrum models will be different in particu-
lar pathologies. The proposed method of analysis may also find applications
in the research where prediction of spectral changes plays important role.
Usually the learning mechanism is used to estimate the required statistics of
encephalographic data modeled by a complex network and a lot of research
has been devoted to this issue [15, 40]. It should be interesting how the
deep learning methods solve the problem of parametrization the trial-to-trial
EEG/MEG signals variability – in the presented work this procedure required
the researcher to make decisions in an iterative time series modeling algo-
rithm (see the Fig. 3). Also, we see a lot of possible applications for it. The
EEG characteristics prediction is helpful in versatile neurostimulation appli-
cations, such as the brain-machine interface based techniques [1, 13, 9] or
other EEG-cooperating methods like electrical brain stimulation [36]. Meth-
ods of predicting changes in EEG, especially when applied online, can be of
a great clinical utility. An appropriate model of spontaneous or evoked brain
activity gives the possibility of forecasting the state-changes, what is crucial
for patients in coma due to epileptic state, strokes or brain injuries [46]. So
far, the best solutions in this area have been achieved in epileptic seizure
prediction [55, 20] or prognostication in hypoxic-ischemic brain injury [2]. In
this place let us to notice that the AR time series models are already used in
forecasting of the alpha oscillatory phase of EEG signals [48] and the real-
time epileptic seizure prediction [14]. We hope our research may support
above mentioned and similar studies.

The proposed approach is by no means the final solution to the problem of
describing the trial-to-trial variability of the EEG/MEG spectrum. We con-
sider it is necessary to improve the methodology of such a time series mod-
eling. Earlier we noted that the spectral density estimation method (FFT in
our case) may bias the results. One can consider the use of wavelets or the
matching pursuit (MP) algorithm for this purpose, as in the work [30], but
then first of all approximations of the nonstationary spectrum are achieved
and the ARMA model serves only to describe the residual noise. Another
improvement would be to use multivariate state-space time series models in-
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stead of thier univariate version, similary like in works [18, 37]. Such models
keeps the characteristics of the signals from all EEG leads or MEG channels
at once, taking into account the cross-channel correlations.

7 Conclusions

The nonstationarity of MEG is important for understanding the brain func-
tioning on each level of neuronal network. In this paper we investigated
the very short MEG signals with the proven variance-nonstationary charac-
ter and representing rest state in comparison to the auditory information
processing at its few levels: from passive listening of simple tonal and fre-
quency modulated stimuli to the single-trial brain responses related to their
recognition and classification. By preparation the trial-to-trial spectral time
series we investigated their time-variability at the dominant alpha (8—12 Hz)
Fourier frequencies and we found the similarities independently of the func-
tional state of brain. The weakly stationary character is not found in only
a small percentage of the trial-to-trial power spectra time series, mostly re-
lated to the classification of the direction of the frequency tone modulation.
This suggests that nonstationarity may be the result of a cognitive process
underlies the generation of an auditory evoked response.

We conclude there could be the information about neural processing of
event-related information that exist in the spectrum variability and it is
possible to parametrise it by rather simple stochastic models. Finally we
proposed univariate ARMA class stationary time series models of a low-order
for their description. Thus, we showed that the spectral density of analyzed
signals depends on only 2-3 previous trials.

We hope our basic research is interesting for the scientists studying pre-
diction models of EEG/MEG changes. Of course we are focused on spectral
properties not the forecasting or reconstruction the encephalographic wave-
forms in time domain.

We believe that the presented method may prove useful in some theoret-
ical research and increase knowledge of the properties of brain signals, which
may be of benefit to more advanced research in neuroscience, which has been
discussed. From a clinical point of view, this work could contribute to the
development of a new method of predicting changes in EEG spectrum in
epilepsy or neuromonitoring patients.
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