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Abstract 
The effects of the microbiome on the host’s metabolism are core to understanding the role of the 
microbiome in health and disease. Herein, we develop the paradigm of in silico in vivo association 
pattern analyses, entailing a methodology to combine microbiome metabolome association 
studies with in silico constraint-based microbial community modelling. By dissecting confounding and 
causal paths, we show that in silico in vivo association pattern analyses allows for causal inference on 
microbiome-metabolome relations in observational data. Then, we demonstrate the feasibility and 
validity of our approach on a published multi-omics dataset (n=346), demonstrating causal microbiome-
metabolite relations for 43 out of 53 metabolites from faeces. Finally, we utilise the identified in silico 
in vivo association pattern to estimate the microbial component of the faecal metabolome, revealing that 
the retrieved metabolite prediction scores correlate with the measured metabolite concentrations, and 
they also reflect the multivariate structure of the faecal metabolome. Concluding, we integrate with 
hypothesis free screening association studies and knowledge-based in silico modelling two major 
paradigms of systems biology, generating a promising new paradigm for causal inference in metabolic 
host-microbe interactions. 
 
Introduction 
The determination of the microbiome’s metabolic functions is a key challenge in understanding the 
contribution of the gut microbiome to health and disease [1-3]. As metabolic functions are shared across 
phylogenetic classes [4], differences in composition do not necessarily translate in differences in 
metabolic output. Therefore, analyses of the microbiome composition alone cannot give conclusive 
insights into the collective metabolic output of a community. In the light of this challenge, researchers 
have repeatedly tried to shine a light on metabolic functions of microbes via integrating microbial 
abundance data with metabolome data via statistical association studies [5-8]. Especially faecal 
metabolomics, being closest to a direct functional readout, has been used for statistical screening for 
associations [6, 8, 9]. However, statistical screenings can easily result in false positives [10], and recent 
modelling has shown that microbe-metabolite associations are prone to be the result of confounding, 
especially due to the multivariate nature of both types of omics datasets [11]. Moreover, from the 
viewpoint of causal statistics, extracting causal models correctly from observational data requires full 
information on all relevant confounding variables [12]. However, measuring and conceptualising all 
relevant confounders poses conceptual and practical problems for a concrete microbiome-metabolome 
study, partly due to limited knowledge on relevant confounding factors [13]. Hence, results of statistical 
hypothesis free screening approaches are often difficult to interpret and to embed into the knowledge 
already gathered about microbial biology [13, 14].  
 
Integrating the genetic content of the microbial community with knowledge of microbial biology while 
respecting basic laws of nature, such as conservation of mass and charge, constraint-based modelling 
and reconstruction analysis (COBRA) [15] allows a fine-graded mapping of metabolic functions of 
microbial communities [16]. Thus, COBRA is optimally suited to complement microbiome-metabolome 
association studies by delivering biological context in a quantitative way [17]. COBRA community 
models offer quantifications of the feasible range of metabolic fluxes  given a diet, allowing 
consequently the calculation of, for instance, the metabolite secretion potential into a simulated faecal 
compartment of a given microbial community in silico [16]. In contrast to species metabolome 
association analysis, COBRA microbial community modelling allows the direct deterministic 
calculation of the contribution of a species to the output of the whole community [17]. As such, COBRA 
modelling results are not impacted in the same way as statistical associations by confounding caused by 
physiological and behavioural attributes of the host. However, while COBRA microbial community 
modelling has already been applied to investigate metabolic functions in Parkinson’s disease [18, 19] 
and inflammatory bowel disease [17], the predictions of the COBRA microbial community models have 
not been integrated systematically with metabolomic in vivo data to validate the predicted metabolic 
functions.  
 
Here, we develop first the theoretical frameworks to combine COBRA microbial community modelling 
with microbiome metabolome association studies, outlining the causal and confounding paths effective 
in species-metabolite associations in vivo and in silico. Building on these theoretical considerations 
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rooted in causal inference theory, we develop a methodological paradigm, which we call ‘in silico in 
vivo association pattern analyses’, allowing for causal inference on microbiome-metabolite relations in 
theory. Using published metagenomic data in conjunction with faecal metabolome data from [8], we 
then demonstrate that community modelling systematically predicts the statistical associations pattern 
between microbiome measurements and faecal metabolome measurements, justifying the proposed 
methodology. Finally, we show that our framework can be used to derive predictions scores for faecal 
metabolite concentrations from microbiome composition data, characterising the microbial component 
of the faecal metabolome. Our work highlights how metabolomics and metagenomics in combination 
with COBRA microbial community modelling can be utilised to improve mechanistic understanding, 
generate hypotheses, and identify and validate biomarkers for metabolic functions in human health and 
disease.  
 
Results 
Theoretical frameworks 
The challenge presented by in vivo species-metabolite association studies, especially in observational 
data, is to disentangle the various sources of correlation. To this end, we classify the various sources of 
correlation between species and faecal metabolite concentrations in vivo. In a second step, we examine 
how these sources of correlation influence in silico species-flux associations derived from COBRA 
community models. Finally, to integrate species-metabolite association studies utilising faecal 
metabolome data with COBRA modelling, we introduce herein a theoretical framework of how in silico 
calculations refer to in vivo correlations, resulting in an analysis paradigm that allows for causal 
inference on metabolome-microbiome relations. 
 
Causal and confounding paths in species-metabolite associations in vivo 
Statistical correlation between species abundances and metabolite concentrations in observational data 
can result either of confounding or causation. We discuss first the causal paths by utilising directed 
acyclic graphs [12] leading to species-metabolite association by physiological, biochemical, or 
ecological mechanisms (Fig 1). First, a species can produce or consume a metabolite, directly 
influencing the metabolite’s concentration (direct metabolic causation). Second, a species may produce 
an intermediate, which is then converted by another microbe into the metabolite under consideration 
(indirect metabolic causation); an effect, which can, for example, be seen in microbial bile acid 
metabolism [17]. Third, a microbe can influence the abundance of another microbe via competition or 
cooperation [20], which in return is causally linked to the metabolite (ecological causation). Fourth, a 
microbe may modulate a physiological factor of the host (for example, inflammation [21]), which in 
return may influence the concentration of the metabolite under consideration. Fifth, a microbe may also 
modulate a behavioural factor, for example, dietary habits [22], which then impacts the metabolite’s 
concentration (behavioural causation) (Fig 1). 
 
However, confounding plays an equally important role as a source of correlation (Fig 1). Physiological 
factors of the host, for example, constipation [23], may impact the abundance of a microbial species, 
while also affecting a metabolite (physiological confounding), inducing correlation between the species 
abundance and the metabolite, which are unrelated otherwise. Second, behavioural traits of the host, for 
example, diet [24], may also influence microbial abundances and metabolite concentrations 
(behavioural confounding). Additionally, another species may be causally related to the species of 
interest, while impacting the levels of a metabolite (direct ecological confounding). Alternatively, a third 
factor (microbial, physiological, or behavioural) may induce correlation between the species under 
consideration and another species, which is causally linked to the metabolite’s concentration (indirect 
ecological confounding). In all these scenarios of confounding, we would observe a correlation between 
species abundance and metabolite concentrations without any underlying causal relation.  
 
When determining associations by integrating metabolomic and metagenomic data, the various causal 
and confounding paths are added up to one single association statistic (e.g., the regression coefficient), 
making statistically significant associations difficult to interpret. Therefore, we need to integrate further 
information into the interpretation of species-metabolite association to allow for causal inference. Next, 
we show that COBRA community models can provide the necessary, additional context on the nature 
of metabolite-species associations to allow for a more refined interpretation of association statistics.  
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Causal and confounding paths in species-metabolite associations in silico 
An individual COBRA microbial community model provides the metabolic secretion profile of the 
microbial community under consideration by calculating maximal net production fluxes from a set of 
diet constraints [16], the underlying genome scale reconstructions of the individual microbes, and the 
measured composition of the microbial community. If we have a population of microbial communities 
and their corresponding COBRA microbial community models, we can derive an in silico flux-species 
correlation pattern by correlating the species abundances with the overall community net metabolite 
production capacities. These association patterns, expressed in fluxes rather than concentrations, can be 
seen as theoretical counterparts to the in vivo species metabolite association patterns from metabolome-
microbiome association studies. Importantly, as multiple studies have shown, variance in microbial 
abundance, and thereby variance in metabolic secretion and consumption, influence the metabolic 
profiles of the host [6, 8, 9]. Thus, if COBRA microbial community models are valid descriptions of the 
actual microbial activity, then the variation in the in silico net secretion pattern translates into in vivo 
variation in metabolite concentrations in the host. However, this assumption needs further theoretical 
considerations, as COBRA microbial community models do not reflect all causal and confounding paths 
effective in in vivo species-metabolite associations (Fig 1). 
 
COBRA microbial community modelling allows calculating the direct contribution of a species to the 
metabolic net production profile of a community, thereby quantifying the direct and indirect metabolic 
causal effects [17]. Additionally, it allows for quantifying the ecological effects as well, although no 
inference on the nature (i.e., causal vs. confounding) of the ecological effects can be made from 
community modelling alone [25]. In essence, all confounding and causal pathways, which lead to 
correlation among species abundances, impact the output of COBRA microbial community models, 
explicitly including ecological causality and the two types of ecological confounding (Fig 1). Crucially, 
if the diet is held constant across the interrogated population of the computational microbial community 
models as done in [18, 19], in silico flux-species associations are independent of the concrete 
physiological or behavioural attributes of the host, which means that neither physiological, or 
respectively behavioural, confounding nor causality are represented. In conclusion, for in silico species-
metabolite associations derived from computational microbial community models, all sources for 
species-metabolite correlation lay within the composition of the microbiome, while for in vivo species-
metabolite associations causal and confounding paths linked to physiological and behavioural variation 
are also shaping the associating pattern.  
 
Integrating in silico modelling with metabolome-microbiome association statistics 
Based on these arguments, we can conclude that in the case of an in silico species-metabolite association, 
the microbiome, at least in the computational model, is causally related to the metabolite under 
consideration, while no conclusion about causality can be drawn for an in vivo association. However, as 
in silico species-metabolite associations are model-based predictions, in silico associations alone 
without empirical evidence remain hypothetical. Hence, combining metabolome microbiome 
association studies with COBRA community modelling holds promise for overcoming the limitations 
of each paradigm alone. In essence, for a given metabolite, if the species-metabolite associations in 
silico and in vivo systematically correlate, we can conclude that the microbiome is causally related to 
the metabolite and that the microbial community model is indicative of the net secretion or consumption 
of the metabolite through the microbiome. If no systematic correlation between in silico and in vivo 
association statistics is found, no conclusion can be drawn, as there are many reasons for missing 
correlation, from a lack of statistical power over measurement error to physiological and behavioural 
confounding or incomplete metabolic reconstructions of the microbes. For the same reasons, we should 
not expect perfect correlation between the two classes of associations, as they do not share all causal 
and confounding paths. 
 
In silico in vivo association pattern analyses 
These considerations lead to a methodological paradigm, called ‘in silico in vivo association pattern 
analyses’, which integrates population statistics with constraint-based modelling. This paradigm 
requires metagenomic data quantifying the microbiome at a body site, corresponding metabolomic 
measurements from the host, a collection of microbial genome-scale metabolic reconstructions, such as 
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provided by AGORA [4, 26], for generating the microbial community models, and adequate metadata 
for controlling for important covariates, e.g., age, sex, and body mass index (BMI). Conceptually, in 
silico in vivo association pattern analyses can be defined by three steps (Fig 2). 

1) Step 1 (in vivo association pattern):  
Calculate association statistics for the associations of metabolite concentrations with  
and the species abundances conditional on a set of covariates. 

2) Step 2 (in silico association pattern):  
Calculate association statistics for the associations of community net metabolite secretion fluxes 
as determined by COBRA microbial community modelling and the species abundances 
conditional on a set of covariates 

3) Step 3 (in silico in vivo pattern analyses):  
Calculate regressions for each metabolite with the significant in vivo metabolite-species 
association statistics as response variable and the corresponding in silico association statistics 
as predictor. Test the resulting regression coefficients on zero. A significant regression 
coefficient, and thus a significant in silico in vivo association pattern, indicates that the 
microbiome is causally related to the metabolite under consideration.  
 

The concrete statistical operationalisation (i.e., which covariates to include, questions of statistical 
model parametrisations, and so on) is dependent on the concrete study design. The most canonical way 
to retrieve association statistics is via a set on linear regression models (Fig 2). However, other statistical 
paradigms could be used as well. For example, beyond correlating in vivo and in silico association 
statistics in Step 3, one may compare the sign of the two types of association statistics via simple 
hypergeometrical tests.   
 
Summary of the theoretical part 
In summary, we have established that in vivo species-concentration association statistics and in silico 
species-flux association statistics theoretically share certain sources of variance, while they do not 
completely overlap. Our theoretical considerations led consequentially to the hypothesis that for 
metabolites, whose concentrations in the host are systemically influenced by variance of the gut 
microbiome composition, we should see a substantial correlation between in vivo species concentration 
association statistics and in silico species flux association statistics.  
 
This hypothesis of correlating association statistics is testable via integrating metabolome data with 
microbial community models based on metagenomic quantifications of the microbiome, as outlined in 
the section on in silico in vivo association pattern analysis. The most direct test can be performed by 
integrating computational community models of the gut microbiome with faecal metabolome data, being 
physiologically closest to the gut microbiome, but the outlined principles hold for other compartments 
and body sites as well (e.g., the oral microbiome and the saliva metabolome). Importantly, the 
hypothesis requires COBRA microbial community models to be fundamentally valid in their capability 
to predict actual metabolic activity. Testing the correlation of in vivo and in silico species-metabolite 
association statistics delivers a fundamental model test of COBRA community modelling regarding its 
ability to reflect the real metabolic activity of the gut microbiome.  
 
Empirical results 
For testing the theoretical framework outlined above, we utilised faecal metabolome and metagenomic 
data from Yachida et al.  [8]. First, we mapped the measured faecal metabolome data, reporting the 
absolute concentrations for 450 metabolites, onto the AGORA collection of 818 microbial genome-scale 
reconstructions [4]. We found that 106 metabolites were measured by the metabolome data and had an 
exchange reaction in at least one microbial reconstruction. Of these 106 metabolites, 53 had values 
above the limit of detection in the faecal metabolome for at least 50% of all observations and thus, they 
were included into the subsequent analyses (Fig 2A, 2B). Second, we mapped the relative metagenomic 
quantifications that had been reported by Yachida et al. [27]onto the AGORA collection. From 623 
measured species, 363 were included in AGORA (2C). Next, applying personalised COBRA microbial 
community modelling [16], we derived for each of the 53 metabolites the net production capacity under 
an in silico average Japanese diet for 347 individuals, who had metabolome measurements (n=220 
colorectal cancer cases; n=127 healthy controls). One observation from the cancer group was dropped 
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for having zero net secretion for all metabolites due to an infeasible model configuration. Consequently, 
the analysis sample consisted of n=346 individuals (Fig 2D). We then calculated the in vivo species-
concentration associations using the faecal metabolite measurements via multivariable regressions, 
deriving the full faecal species-concentration association pattern (Step 1). Using the in silico metabolic 
profile, we correlated the abundance of each species with the overall net community production capacity 
analogously (Step 2), giving rise to an in silico species-flux association pattern (Step 3). The species-
association patterns were generated for all 148 microbial species (Fig 2C), which were found at least in 
10% of all samples, resulting overall in 7844 species-metabolite associations. We generated two types 
of in silico in vivo association pattern, i) one pattern with respect to the species presence, and ii) one 
pattern with respect to the species abundance. For both patterns, we analysed the agreement in the sign 
and the value of the in silico and in vivo association statistics, resulting overall in four sets of in silico 
in vivo comparisons.   
 
In vivo species presence metabolite association patterns are predicted by COBRA community models  
In total, we found 2099 associations between faecal metabolite concentrations and species presence with 
p<0.05, and 1208 associations with a false discovery rate <0.05 (FDR) with glutarate and glutamate 
having the highest amount of significant species presence associations (Supplementary Table S1). For 
adenosine, spermidine, riboflavin, and dodecanoic acid, we found less than 10 species presence 
associations with p<0.05 (Supplementary Table S1). These four metabolites were dropped for missing 
a clear statistical in vivo pattern. From the remaining 49 metabolites included into the analysis, in silico 
species presence association pattern significantly predicted the sign of in vivo species-metabolite 
associations for 25 metabolites with an FDR<0.05 (Fig 4, Supplementary Table S3). Regarding the value 
of the in vivo association statistics, COBRA-based in silico association statistics correlated significantly 
(FDR<0.05) for 27 metabolites with their corresponding in vivo association statistics (Fig 4, 
Supplementary Table S3). Noteworthy, sign prediction has low statistical power if there is little variance 
in the signs of the in vivo associations (e.g., all or nearly all associations are positive, respectively 
negative). Still, for 23 metabolites, in silico associations predicted significantly (both FDR<0.05) sign 
and size of in vivo species presence metabolite associations (Fig 4). 
 
Importantly, for six metabolites (glutamate, methionine, N-acetyl-glucosamine, glutarate, uridine, and 
5-methylthioadenosine) in silico associations were systematically inversed to the in vivo associations 
(Fig. 4, Supplementary Table S4). In all these cases, microbial exchange directions were noted to be 
bidirectional in the AGORA resource. The easiest explanation for this pattern is therefore to interpret 
the secretion potential as a metric of net consumption. In an earlier work [25], the validity of this 
interpretation was demonstrated for glutarate.  
 
In vivo species abundance metabolite association patterns are predicted by COBRA community 
models  
Calculating the in vivo abundance faecal concentration association pattern via regressions, we found 
1305 abundance concentration associations with an FDR<0.05 and 2267 associations with p<0.05 with 
putrescine, alanine, and choline showing the largest numbers of species associations (Supplementary 
Table S2). No metabolite showed less than ten associations with at least p<0.05, and thus all metabolites 
were retained in the analysis. In respect to the sign of the association, the in silico association pattern 
predicted significantly the sign for 12 metabolites with an FDR<0.05 (Fig 4, Supplementary Table S4). 
However, in respect to the value of the association statistics, 44 out 53 metabolites showed a significant 
correlation between in vivo and in silico association statistics with an FDR<0.05 (Fig 4, Supplementary 
Table S4). As with the species presence association pattern analyses, we observed systematically 
inversed associations for a range of metabolites, indicating that maximal net secretion fluxes represent 
net consumption in these cases.  
 
In silico in vivo association pattern analyses reveals broad causal microbiome-metabolome relations 
Overall, in silico and in vivo association statistics significantly related to each other for 46 out of the 53 
metabolites in at least one domain (i.e., value or sign for species abundance or species presence 
association patterns, respectively). For threonine, glycerol-3-phosphate, succinate, hypoxanthine, 
inosine, guanosine, and adenosine, we could not identify any significant in silico in vivo association 
pattern. Importantly, from 46 association patterns, 14 were consistently discordant (negative correlations 
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between in vivo and in silico association statistics), 29 consistently concordant (positive correlations 
between in vivo and in silico association statistics), while histamine, adenine, and uridine showed mixed 
concordant and discordant patterns (Fig 4A, Supplementary Table S3, S4). For illustration, Figure 5 
displays examples of significant and insignificant, concordant and discordant association patterns, 
showing the various degrees of correlations across the metabolites between in silico and in vivo 
association statistics. In general, all significant pattern per metabolite should be consistent, as the 
computed fluxes cannot indicate net consumption (discordant pattern) and net secretion (concordant 
pattern) at the same time. Thus, these inconsistencies hint at model misspecifications at the statistical 
level or at the level of COBRA community modelling, and the corresponding pattern for uridine, 
histamine, and adenine cannot be rated as evidence for causal relations. In conclusion, as we found clear 
pattern of correlation between in silico and in vivo association statistics, in silico in vivo association 
pattern analyses revealed substantial causal contributions through the gut microbiome for the faecal 
concentrations of 43 metabolites from a wide range of classes (Fig 4). However, in silico in vivo 
association patterns were more pronounced for amino acids and amines than for nucleotides, hinting at 
a higher variance contribution of the microbiome to the faecal metabolome in the domain of amino acid 
metabolism than in nucleotide metabolism.  
 
Prediction of the microbial component of the faecal metabolome 
For certain metabolites, such as isoleucine (Fig 5), we found a very high correlation (r=0.95) between 
in silico and in vivo association statistics, indicating that there is a linear function between changes in 
community secretion fluxes and changes in log faecal concentrations. Note that this high correlation 
was achieved without training the community models to predict the in vivo associations. The empirical 
finding of such clear functional relationships between fluxes and concentrations indicates that it may be 
possible to predict the microbial component of the faecal metabolome from the microbial abundances 
via community modelling.   
 
To further explore this possibility, we calculated in silico net concentration contributions based on the 
retrieved linear relationships between fluxes and concentrations from the in silico in vivo association 
pattern analyses (see Methods section for details). Therefore, we assumed that a change in species 
abundance, respectively species presence, would result in a change of log metabolite concentration in 
the faeces proportional to the corresponding change in the community net metabolite secretion flux. The 
latter represents a strong assumption, although the assumption seems to be plausible for those 
metabolites with a significant linear in vivo in silico association pattern.    
 
We derived two set of prediction scores, one derived from the abundance association patterns and the 
second from the presence association patterns. These two prediction scores can be seen as estimates of 
the net concentration contribution of the microbiome to the faecal metabolome and therefore can be 
conceptualised as the microbial part of the faecal metabolome. The species abundance metabolite 
concentration prediction scores predicted significantly (FDR<0.05) the measured metabolite 
concentrations for 27 metabolites (Supplementary Table S5). Notably, the metabolite concentration 
prediction from species presence pattern was more successful with 50 metabolites being significantly 
predicted (FDR<0.05) and with putrescine, isoleucine, and leucine being the top hits (Fig. 6A). R-
squared values reached maximally 25% in the metabolite concentration prediction from species presence 
pattern (Fig. 6A) and 22% in the abundance species metabolite concentration prediction, indicating that 
most of the variegation in the faecal metabolome is not causally related to the microbiome 
(Supplementary Table S5). However, the multivariate structure of the in silico faecal metabolite 
concentrations was partly reflective of the empirical correlation patterns (Fig. 6B). Especially, in silico 
faecal concentration prediction scores from species presence patterns were able to reconstruct the 
correlation structure for proteinogenic amino acids (Fig. 6C). Once again, the species presence 
metabolite prediction scores outperformed visually the species abundance metabolite prediction scores.  
In conclusion, in silico in vivo association pattern analysis allows for a characterisation of the microbial 
component in the faecal metabolome, partly mirroring the multivariate structure of the faecal 
metabolome. In this specific analysis, metabolite prediction based on species presence gave the best 
results. 
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Discussion 
The microbiome contributes essentially to the human metabolism providing essential nutrients such as 
vitamins and short chain fatty acids, which would be inaccessible otherwise [28]. Numerous studies 
have been conducted to shine a light on the complex metabolic host-microbiome interplay, generating 
insights from a diverse range of paradigms spanning experimental work [29-31], computational and 
theoretical studies [11, 32] and statistical interrogation into the dependence patterns of observational 
multi-omics data-sets [13, 33]. Herein, we bridge the gap between population statistics and in silico 
COBRA community modelling to facilitate causal inference regarding metabolome-microbiome 
relations in observational data.  
 
For identifying causal relationships in observational data, either full information on relevant covariates 
[34] or plausible instrumental variables (e.g., as utilised in Mendelian Randomisation [35]) must be 
available. In the case of microbiome-metabolome association studies, information on relevant 
covariates, such as diet, is typically missing and often difficult to assess reliably [13]. Moreover, while 
certain genetic variants have been shown to be associated with the microbiome [36], the host genetic 
signature is modest at best [37], making the identification of suitable genetic instrument variables to 
perform Mendelian Randomisation difficult. Therefore, metabolome-microbiome associations are 
difficult to interpret in causal terms, and indeed, simulation studies of microbial communities suggest 
that naïve interpretation would lead to a high level of false positives [11]. However, we demonstrate 
that we can overcome these difficulties by systematically integrating in silico COBRA microbial 
community modelling into statistical analyses of metabolome-microbiome datasets. On a conceptual 
level, COBRA microbial community modelling delivers the additional biological context needed to 
disentangle whether the microbiome is causally related to a metabolite or not. 
 
Systematic in silico in vivo association pattern analyses revealed that most of the examined metabolites 
are causally related to the microbiome (81.1 %, Fig. 4). The causal signature was especially clear for 
amines and proteinogenic amino acids, while, relatively spoken, less pronounced for nucleotides. In a 
previous study, we had modelled the microbiomes of paediatric inflammatory bowel disease patients 
and healthy controls and predicted an increased amino acid potential in IBD microbiomes with dysbiosis 
that was directly linked to the presence of Gammaproteobacteria [38]. Interestingly, metabolomic 
measurements from the same samples had demonstrated increased faecal amino acid concentrations in 
IBD patients that correlated with Proteobacteria abundances [39]. While in our previous study [38], we 
could only indirectly compare in silico fluxes with metabolomic measurements, we here demonstrate 
the value of such an integrated analysis and showcase that the availability of multiple types of omics 
data for the same individuals can result in novel insight through re-analysis. The weak signature for 
nucleotides could indicate a higher amount of contribution of the host to the faecal nucleotide 
concentrations but may also point towards incomplete representation of microbial nucleotides 
metabolism in the genome-scale reconstructions. Importantly, the predictive power of COBRA 
microbial community modelling regarding in vivo species metabolite associations delivers a strong proof 
of concept that community models based on genome-scale reconstructions indeed result in 
quantifications of the actual metabolic activity of microbial communities. 
 
We understand “causally related” in terms of the frameworks of Pearl [12]. It should not go unnoticed 
that the theory of causal statistics, built on the backbone of directed acyclic graphs, is based on strong 
assumptions, which can be justifiably challenged [40], especially in dynamic systems [41]. Moreover, 
the chosen operationalisation of causal relation can be contra-intuitive. For example, it can be that a 
microbial community produces a metabolite and that alterations in the community composition changes 
the production rate without affecting substantially the concentration in the host for various reasons (i.e., 
saturated transport kinetics). In this case, the microbiome would not be causal for variation in the host, 
while being causal for the production of the metabolite. This observation is also a reason, why in silico 
modelling alone is not sufficient for determining causal relations between metabolite concentrations in 
the host and species abundances. To give another example, in the case of the faecal metabolome, we 
only saw a weak, yet significant in silico in vivo association pattern regarding propionate, a short chain 
fatty acid known to be produced by the gut microbiome. In the case of strong intra- and interpersonal 
variation in absorption of propionate, which is mainly metabolised by the liver, the influence of the gut 
microbiome on faecal concentrations may be minor. This result indicates additionally that faecal 
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propionate concentrations may not be good proxies for microbial propionate secretion. In contrast, in 
silico in vivo association pattern analysis was remarkably successful regarding butyrate (Supplemental 
Tables S3, S4), another short chain fatty acid produced by the microbiome, highlighting that faecal 
butyrate pools are good indicators of the microbial community butyrate production. The examples of 
propionate and butyrate show the value of in vivo in silico association pattern analyses to determine 
which faecal concentrations can serve as good biomarkers of microbial metabolic activity. In future 
studies, the influence of the host on faecal metabolite levels could be explored in simulations by 
integrating the microbiome models with a whole-body model of human [42]. 
 
It is worth noting that in silico in vivo pattern analyses, strictly spoken, allows only for an inference on 
whether the microbial community as a whole is causally related to a metabolite. As COBRA microbial 
community modelling, at least in the herein applied form, cannot differentiate between ecological 
causation and ecological confounding [25], causal inference on the species level, strictly spoken, is not 
possible. One also may argue that causal inference on single species is not sensible due to systems nature 
of microbial communities, making the concepts of causal inference on the species level more difficult 
to apply. Nevertheless, in silico in vivo association pattern analyses can give insights into individual 
species-metabolite relations. First, one can compute the direct contribution of a species to the total 
community’s net secretion potential [17, 38]. If the species under consideration also shows a significant 
species-concentration association, one may argue with some justification that a causal relationship was 
identified. However, one must be careful, as a species can have a positive direct contribution to the net 
secretion potentials, while displaying large negative ecological effects. An example of this was given in 
Hertel et al. [25], where Fusobacterium sp. were demonstrated to contribute small amounts of butyrate 
to faecal butyrate pools, while having large deleterious effects on community butyrate production. In 
this case, low abundance of prominent butyrate producers, such as F. prausnitzii, in Fusobacterium sp. 
containing communities resulted in an overall negative impact of Fusobacterium sp. on community 
butyrate production [25]. 
 
Other potential insights in future studies could be won by analysing outliers in the in silico in vivo 
association pattern. Outlier species (e.g., species having for example very strong in vivo associations, 
while having low in silico associations values) may indicate physiological and behavioural influences 
on metabolite-species associations not reflected in the in silico modelling. Thus, they could be target for 
further investigations in the direction of the host’s physiology and behaviour. On the other hand, outliers 
may also indicate incomplete genome-scale reconstructions. Thus, outlier analyses within in silico in 
vivo association pattern analysis holds promise for increasing the knowledge base and pointing towards 
species indicative of underlying physiological or behavioural processes. 
 
For ten metabolites (Fig 4A), we could not identify significant or consistent in silico in vivo association 
pattern. As already sketched in the theoretical results part, the reasons for missing in silico in vivo 
association pattern can be manifold, making it impossible to disentangle the various possibilities and to 
conclude that the microbiome has no systematic influence on those metabolites. Table 1 categorises the 
different factors leading to missing association pattern into i) statistical, ii) biological, and iii) model-
based factors. Importantly, we are dealing with two types of modelling (statistical modelling and 
COBRA modelling), each entailing their own set of assumptions. In particular, the need of sufficient 
statistical power to detect in vivo metabolite-species associations means that in silico in vivo association 
pattern analyses is bound to studies with medium to large sample sizes. Concrete sample size 
requirements are difficult to give, as they depend on data quality and study design, but the presented 
sample including 346 individuals with metabolome and metagenome data was sufficient for 
comprehensive analyses of in silico in vivo association pattern. 
 
Finally, we utilised the in silico in vivo association pattern to derive prediction scores for faecal 
metabolite concentrations. The derived scores were able to reflect individual metabolite concentrations 
as well as mirrored the multivariate structure of the faecal metabolome. Hence, one can conclude that 
the microbiome is a large determining factor for the correlation structure of the faecal microbiome.  
 
In contrast to pure machine learning approaches to predict metabolite concentrations from microbial 
community composition, our approach includes through genome-scale metabolic reconstructions a 
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wealth of knowledge into the construction of the prediction scores, avoiding “conceptual overfitting” 
[43]. Basically, conceptual overfitting means that machine learning is blind to whether a source of 
covariation is due to confounding or due to causality. Maximising statistical model fit can therefore lead 
to parametrisations and statistical models, which may technically show the best fit, but do not 
approximate what we are interested in on a conceptual level in terms of biology. In the case of 
metabolome-microbiome studies, we are often interested in the part of the metabolome, which is 
causally influenced by the microbiome. As our work shows, in silico in vivo association pattern analyses 
is capable to characterise the microbial part of the faecal metabolome. In contrast, machine learning 
algorithms will deliver on the question, which part of the metabolome covariates with the microbiome 
regardless of whether the covariation is caused by confounding or causation. Notably, the concrete 
metabolome prediction scores are likely not to generalise to other human cohorts, as they are built on 
the covariance structure of a specific case-control study researching colorectal cancer. This problem of 
generalisability is common to machine learning studies and in silico in vivo association pattern analysis. 
However, applied to a large representative, general population sample, in silico in vivo association 
pattern analysis may present generalisable metabolite prediction scores, enabling to estimate the 
metabolic contribution of the microbiome directly from the microbial composition in a replicable 
manner.   
 
Interestingly, the metabolome prediction via species presence association patterns was more successful 
than the prediction via species abundance association pattern. This finding is paradoxical in the first 
place, as species presence pattern carry less information than species abundance pattern since species 
are treated as binary variables (present vs. not present). The worse performance of the species abundance 
association pattern in predicting metabolite concentrations can have multiple reasons, both of biological 
and of statistical nature. While the herein applied algorithm assumes linear functions between 
abundances, change in fluxes, and change in log concentrations, the biologically true functions may look 
very different, and the functional relationships may also be species dependent. In this case, it can be that 
including the abundance information leads to worse performance, as it introduces substantial bias 
because of false parametrisations. Another methodological problem could be seen in the compositional 
nature of the abundance data, which is ignored in the applied prediction algorithm. Integrating 
compositional approaches into the prediction from in silico in vivo association pattern analyses may 
improve the performance in the future. 
 
Regardless of future improvements, the successful prediction of metabolite concentration from 
association patterns shows promise for applications, where biomarkers of microbial functions are 
needed. For example, in pre- and probiotic interventions aiming at improving the butyrate production 
may be supported by such butyrate prediction scores, delivering a direct proxy of community butyrate 
secretion. Importantly, those scores can be superior to using butyrate quantification in the faeces, as 
butyrate measurements in the host are also influenced by microbiome unrelated factors, lowering 
arguably the statistical power to detect intervention effects.  
 
Conclusions 
We presented a theoretical framework integrating population statistics with COBRA community 
modelling for causal inference on microbiome-metabolome relations. We then showed the feasibility 
and validity of our approach on an empirical dataset, consisting of 346 individuals with faecal 
metabolome data and faecal metagenomics. Conceptually, we validated thereby a methodological 
framework to incorporate formalised knowledge about microbial biology in the form of genome-scale 
models into statistical association analyses, bridging two major paradigms of systems biology. The 
successful identification of significant in silico in vivo association pattern for 43 metabolites highlights 
the validity of COBRA community models as theoretical model for actual microbial metabolic activity. 
Importantly, the prediction of in vivo species metabolite associations was achieved without training the 
COBRA community models on the given metabolome dataset. Limitations of the introduced 
methodology lay within the limited possibilities to perform causal inference on the level of individual 
species, and in the non-representation of behavioural and physiological causality, where the microbiome 
influences physiological or behavioural attributes of the host and thereby the metabolome. The latter 
aspect may be partially rectified in future studies by introducing personalised diet constraints and 
comprehensive whole-body modelling [42] for a more holistic picture of host-microbiome metabolic 
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interactions. Overall, this study highlights the value of integrating knowledge-based and data-driven 
procedures to overcome the limitations of each paradigm alone. 
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Methods  
 
Study sample  
The study sample consisted of the Japanese colorectal cancer cohort data obtained from [8], which 
included for 347 individuals (220 colorectal cancer cases and 127 healthy controls) shot-gun sequencing 
data for faecal metagenomics and mass spectrometric metabolome data including quantifications for 
450 metabolites. Sequencing reads and taxonomic assignments had been performed using the 
MetaPhlAn2 pipeline [27] Furthermore, meta-data on age, sex, and BMI were available and included 
into the re-analyses of the data. For details on metagenomic and metabolomic measurements, refer to  
[8].   
 
Construction of sample-specific gut microbiota models  
Relative abundances on the species level for the 347 samples were obtained from the supplementary 
material (https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-019-0458-
7/MediaObjects/41591_2019_458_MOESM3_ESM.xlsx) [8]. In the first step, the quantified species 
were mapped onto the reference set of 818 microbial metabolic reconstructions (AGORA) [4] utilising 
the translateMetagenomeToAGORA.m function of the Microbiome Modelling Toolbox [16]. Next, 
personalised microbial community models were generated via the mgPipe module of the Microbiome 
Modelling Toolbox. First, pan-species models were built from AGORA version 1.03. For each 
metagenomic sample, the AGORA pan-species models corresponding to the species present in the 
metagenome were joined into one constraint-based microbial community reconstruction [16]. Next, the 
flux through the reactions of each pan-species model was coupled with to the flux through the respective 
biomass objective function (for details see [44]). Then, the community biomass reaction was 
parametrised via the relative abundances as stoichiometric values for each individual microbe biomass 
reaction. Finally, the community models were contextualised with constraints corresponding to an 
average Japanese Diet constraints as described previously (see below, Table S6) [16]. Finally, the 
community biomass reaction flux was set to be between 0.4 and 1 mmol/person/day, representing faecal 
excretion of once every three days to daily.  
 
Definition of an average Japanese diet  
We used an average Japanese, as described in [26]. Briefly, the in silico Japanese diet was formulated 
based on the average daily food consumption of 106 Japanese individuals extracted from food frequency 
questionnaires and 28 days weighed diet records [45] (Table S6a). To convert the dietary information 
into constraints (given in mmol/person/day) suitable for COBRA microbial community modelling, we 
used the Diet Designer of the VMH database (https://vmh.life), which lists the composition of >8,000 
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food items [46]. In the absence of a perfect match, the closest food item entry was retrieved (Table S6a). 
The obtained uptake flux values were then applied to the uptake reactions present in each microbial 
community model using the Microbiome Modelling Toolbox [16] (see below). Ensuring the growth of 
all pan-species models under the defined diet, we refined the uptake fluxes as necessary (Table S6b). 
 
Simulations  
The net community secretion flux values were determined as described in [17], [18]. Briefly, for each 
metabolite that could be transported by at least one AGORA model included in the community models, 
flux variability analysis [47] was performed for the respective dietary and faecal secretion exchanges. 
The net secretion fluxes, which correspond to the absolute value of the difference between the maximal 
flux through the faecal secretion exchange reaction and the minimal flux through the corresponding 
dietary uptake exchange reaction, were subsequently retrieved for each personalised model. All 
simulations were performed in MATLAB (Mathworks, Inc.) version R2018b with IBM CPLEX (IBM) 
as the linear and quadratic programming solver. The simulations were carried out using the COBRA 
Toolbox [15] and the Microbiome Modelling Toolbox [16].  
 
Statistical operationalisation of in vivo in silico association pattern analyses 
In silico in vivo association pattern analyses consists of three steps. First, the in vivo association pattern 
was determined by calculating the associations between species and metabolite concentration. Second, 
the in silico association pattern between species and community net secretion fluxes was determined. 
Third, the pattern of in silico association was analysed together with the pattern of in vivo associations. 
The in silico in vivo association pattern analyses was performed on all 346 cases with valid COBRA 
community models. All statistical analysis was performed within STATA 16/MP (Stata Inc., College 
Station, Texas). 
 
Species presence in vivo association studies 
To generate the in vivo association pattern for species presence, we performed linear regressions with 
the log faecal concentration as response variable, the species presence (binary: present vs. not present) 
as predictor of interest, while including age, BMI, sex, and study group (binary: colorectal cancer vs. 
healthy controls) as covariates. To account for potential heteroscedasticity, heteroscedastic robust 
standard errors were used. This regression model was performed for each microbial species found in at 
least 10% of the samples, resulting in 148 included species, and for all metabolites having non-zero 
measurements in at least 50% of the cases, resulting into 53 metabolites included in the analyses. Note 
that, by using log transformations for the faecal concentrations, we treated zero concentration measures 
as missing values. We then retrieved the regression coefficient of the species presence variable, which 
referred in this case to the difference in mean log concentration between the individuals having a certain 
species in their gut microbiome and those not having this species conditional on the included vector of 
covariates. To assess significance, FDR correction [48] was applied correcting for 148*53=7844 tests. 
The regression model is given in equation (1) with 𝒀𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏𝒊 denoting the faecal concentration of 
metabolite i, 𝑿𝒑𝒋 the species presence of species j. The regression coefficient 𝑏,-"# is the coefficient of 
interest. 
 

(1) log'𝒀𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏𝒊( = 𝑏./0 + 𝑏,-"#𝑿𝒑𝒋 + 𝑏1/0𝑨𝒈𝒆 + 𝑏2/0𝑩𝑴𝑰 + 𝑏3/0𝑺𝒆𝒙 + 𝑏4/0𝑮𝒓𝒐𝒖𝒑. 
 
Full results can be found in the Supplementary Table S1. 
 
Species presence in silico association studies 
To derive the in silico species presence association pattern, community net secretion fluxes for the 53 
metabolites measured in more than 50% of the cases were calculated as described above. Then, an 
analogous series of regressions to the in vivo species presence metabolite association models were 
performed exchanging the log faecal concentration with the net community secretion flux values. The 
net community secretion flux values were not log transformed, because their distributions were not 
consistently right-skewed as it was the case for the faecal concentrations. Then, the regression 
coefficients of the microbial species presence variable were extracted. The corresponding regression 
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model is shown in (2) with 𝒀5678" denoting the faecal concentration of metabolite i, 𝑿𝒑𝒋 the species 
presence of species j. The regression coefficient 𝑏5-"# is the coefficient of interest. 
 
(2) 𝒀5678" 	 = 𝑏./0 + 𝑏5-"#𝑿𝒑𝒋 + 𝑏1/0𝑨𝒈𝒆 + 𝑏2/0𝑩𝑴𝑰 + 𝑏3/0𝑺𝒆𝒙 + 𝑏4/0𝑮𝒓𝒐𝒖𝒑 
 
Full results can be found in the supplementary material (Table S3). 
 
Species abundance in vivo association studies 
To calculate the species abundance in vivo association pattern, we formulated analogous models to (1) 
by exchanging the microbial species presence variable with the species abundance. All other aspects 
remained the same. Full results can be found in Table S2. 
 
Species abundance in silico association studies 
The species presence in silico association pattern were derived via equation (2), exchanging the 
microbial species presence variable for the species abundance. Once, again all other aspects of 
regression modelling remained the same. Again, full results can be found in Table S4. 
 
In silico in vivo association pattern analyses 
We retrieved two pairs of association statistics (species presence pattern and species abundance pattern). 
To analyse the in silico in vivo association pattern, we calculated for each of the 53 metabolites a linear 
regression with the in vivo regression species metabolite regression coefficients as response variable and 
the corresponding in silico regression coefficient as predictor using once again heteroscedastic robust 
standard errors. Only microbial species-metabolite association pairs were included where the in vivo 
association statistics were at least nominally significant (p<0.05). Metabolites with less than ten 
nominally significant in vivo associations were excluded as they were missing a robust in vivo 
association pattern. The utilised regression equation is displayed in (3) and the corresponding slope 
𝛽9/ 	was then tested on being zero. Note that 𝒃𝑭𝒊 and 𝒃𝑪𝒊 are now vectors of regression coefficients, 
originating from the in silico and in vivo association studies of the metabolite i. 
 
(3) 			𝒃𝑪𝒊 = 𝛽./ + 𝛽9/𝒃𝑭𝒊   
 
Significance of regression model (3) was determined after correction for multiple testing by using the 
FDR accounting for 53 tests in the case of the abundance association pattern and for 50 tests in the case 
of the species presence association pattern analysis. 
 
In a second step, we analysed the agreement in sign of in silico and in vivo association statistics. This 
analysis was done via hypergeometrical tests, where the sign of the in vivo association statistics was 
tabulated against the sign of the in silico association statistics per metabolite. Once again, significance 
was assessed after correction for multiple testing using the FDR. Note that the statistical power to detect 
significant sign agreement depends on variation in the signs of the associations. Statistical power will 
be low if nearly all associations have the same sign.   
 
Prediction of the microbial component of the faecal metabolome 
We derived prediction scores for the 53 metabolites utilising the in silico in vivo association pattern. 
Two set of scores were derived: i) metabolite prediction scores based on the species presence in silico 
in vivo association pattern, and ii) metabolite prediction scores based on the species abundance in silico 
in vivo association pattern. The corresponding equations are given in (4) and (5). 
(4) 	𝒀#𝒑𝒊 = ∑ 𝛼"𝑿𝒑𝒋	

𝑱
𝒋&𝟏 	𝑤ℎ𝑒𝑟𝑒	𝛼" ≔ 𝛽()𝑏*+"# 

(5) 	𝒀#𝒂𝒊 = ∑ 𝛼"𝑿𝒂𝒋	
𝑱
𝒋&𝟏 	𝑤ℎ𝑒𝑟𝑒	𝛼" ≔ 𝛽()𝑏*-"# 

To validate the scores, we fitted linear regressions using the actual faecal concentrations as response 
variables and the prediction scores as predictor of interest, resulting in two sets of 53 regressions. 
Significance of prediction scores were evaluated after correction for multiple testing via the FDR. 
Additionally, we calculated the correlation matrices of the net metabolite secretion capacities, the log 
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faecal concentrations, the metabolite prediction scores, comparing the in vivo correlations with the three 
types of in silico correlation matrices via correlation heatmaps. 
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Figures and Tables 
Table 1: Classification of reasons for missing in silico in vivo association pattern 

Statistical  Biological COBRA modelling-based 

Low Sample Size 
Low/zero net contribution of 
the microbiome to metabolite 
pools 

Incomplete reconstructions 

Measurement error 
Large variance in metabolite 
levels due to the host‘s 
physiology 

Gene mis-annotations 

Neglected nonlinearity Large variance in metabolite 
levels due to diet variation 

Wrong directionality of 
transport reactions 

Violations against 
assumptions, such as the 
IID or normality 
assumptions 

Systematic confounding by 
behavioural or physiological 
factors 

Mis-specified constraints 

Neglected interaction 
terms 

Host-microbiome feedback 
loops 

Systematic error due to the 
steady state assumptions 

  
Optimisation problem solved 
by flux balance analysis does 
not reflect community 
behaviour 

IID=independent and identically distributed 
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Figure 1: Causal and confounding paths in in vivo and in silico species metabolite association studies 
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Figure 2: The three steps of in silico in vivo association pattern analyses operationalised in terms of 
linear regression modelling. 
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Figure 3: Overview on the utilised empirical dataset. A Mapping of the measured faecal metabolome 
onto the AGORA resource of gut microbial metabolic reconstructions [4]. B Compounds included in 
the in silico in vivo pattern analyses. C Mapping of the detected microbial species onto AGORA. D 
Sample characteristics of the utilised study dataset. 
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Figure 4: Overview on the in vivo in silico pattern association analyses for 53 faecal metabolites. A 
Discordance (significant, inverse association between in vivo and in silico association statistics) and 
concordance (significant, positive association between in vivo and in silico association statistics) for the 
53 metabolites separated by metabolite class. Inconsistent pattern (uridine and thymidine) point towards 
model misspecifications, either in the statistical models or in the COBRA modelling. B Vulcan plots for 
the modelled metabolites displaying the strength of association (correlation and sign agreement, 
respectively) against the -log10 FDR. All significant patterns are labelled with the corresponding 
metabolites.  
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Figure 5: Examples for in silico in vivo association pattern with regression line and 95%-confidence 
intervals. Each dot represents a species with the X-axis denoting the in silico association statistic and 
the Y-axis denoting the in vivo association statistics. Association pattern for isoleucine (concordant), 
N-acetyl-D-glucosamine (discordant) are significant, while for succinate no significant pattern could 
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be identified. Significance of pattern is determined by a significant slope of the regression line and 
significant sign (dis)agreement. 
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Figure 6: Results of the prediction of the microbial part of the faecal metabolome. A Scatter plots with 
regression lines and 95% confidence intervals for the three metabolites with highest R-squared values 
after prediction from the species presence in silico in vivo association pattern. B Correlation heatmaps 
for the 53 measured faecal metabolites, the corresponding metabolite prediction scores from species 
presence in silico in vivo association patterns, the metabolite prediction scores from species abundance 
in silico in vivo association patterns, and the raw net metabolite secretion capacities from community 
modelling. Rows and columns of the correlation heatmaps refer to the 53 metabolites included into 
modelling and the colour codes refer to the strength of the correlation between pairs of metabolites. C 
Correlation heatmaps for the 19 measured proteinogenic amino acids included into modelling, the 
corresponding metabolite prediction scores from species presence in silico in vivo association patterns, 
the metabolite prediction scores from species abundance in silico in vivo association patterns, and the 
raw net metabolite secretion capacities from community modelling. Rows and columns of the 
correlation heatmaps refer to the 19 proteinogenic amino acids included into modelling and the colour 
codes refer to the strength of the correlation between pairs of amino acids.    
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