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Abstract

Single-cell RNA-seq (scRNA-seq) can be used to characterize cellular heterogeneity in
thousands of cells. The reconstruction of a gene network based on coexpression patterns
is a fundamental task in scRNA-seq analyses, and the mutual exclusivity of gene expres-
sion can be critical for understanding such heterogeneity. Here, we propose an approach
for detecting communities from a genetic network constructed on the basis of coexpres-
sion properties. The community-based comparison of multiple coexpression networks en-
ables the identification of functionally related gene clusters that cannot be fully captured
through differential gene expression-based analysis. We also developed a novel metric re-
ferred to as the exclusively expressed index (EEI) that identifies mutually exclusive gene
pairs from sparse scRNA-seq data. EEI quantifies and ranks the exclusive expression lev-
els of all gene pairs from binary expression patterns while maintaining robustness against
a low sequencing depth. We applied our methods to glioblastoma scRNA-seq data and
found that gene communities were partially conserved after serum stimulation despite
a considerable number of differentially expressed genes. We also demonstrate that the
identification of mutually exclusive gene sets with EEI can improve the sensitivity of cap-
turing cellular heterogeneity. Our methods complement existing approaches and provide
new biological insights, even for a large, sparse dataset, in the single-cell analysis field.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) enables us to explore and characterize variability
in individual cells. At the same time, it can provide information on the regulatory relation-
ships between genes and how genes interact with each other at the single-cell level. Since
scRNA-seq experiments profile the dynamics and variation of gene expression in different
cell states, such as the cell cycle, cell division and cell differentiation, across thousands of
cells, the reconstruction of gene regulatory networks (GRNs) helps us to understand gene
functions and cell type- or state-specific variability in genetic interactions.

Many mathematical methods have been proposed to infer GRNs from bulk transcrip-
tome data, including the use of Boolean networks [1, 2, 3, 4], Bayesian networks [5, 6, 7, 8],
mutual information [9, 10, 11] and linear regression [12, 13]. Although most of these meth-
ods enable us to capture codependency and regulatory interactions from a dataset with
a limited sample size, they are not suitable for inferring regulatory relationships on the
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basis of temporal information or sparse expression. In addition, they are not applicable
to large-scale networks due to their high computational complexity.

With the development of high-throughput sequencing techniques, expression can now
be measured simultaneously in a large number of cells. In particular, while droplet-based
single-cell RNA sequencing can measure expression levels in thousands of cells, it exhibits
lower sensitivity for each gene compared to other scRNA-seq methods [14]. This leads to
an excessive amount of zero read counts, which is likely to affect downstream analysis.
Previous studies as mentioned in [15, 16] are useful for integrated datasets generated
by distinct platforms. The lower sensitivity of sparse scRNA-seq might be improved
by integrating datasets from several distinct platforms. However, it would be better to
develop methods to capture the specific expression from sparse scRNA-seq data through
a single platform.

For the inference of GRNs from scRNA-seq data, numerous methods have been de-
veloped [17, 18, 19, 20, 21, 22]. These methods are mostly aimed at reconstructing the
statistical dependency between genes based on the ordering of single cells according to the
time information underlying dynamic processes from a dataset obtained from high-quality
cells. The variability in gene expression can be revealed by taking advantage of underlying
temporal information for individual cells. In addition, an approach based on information
theory estimates non-linear dependencies with pairwise joint probability distributions if
the sample size is sufficient [17]. However, the sparsity of single-cell data might mean that
these data are not inherently suitable for the inference of GRNs, and GRN algorithms are
mostly effective for up to a thousand genes [23].

Moreover, the community detection of coexpression networks is important for the
identification of groups of functionally related genes. To address the community detec-
tion problem, many methods have been studied [24, 25, 26, 27, 28]. The Girvan-Newman
method basically decomposes a network to maximize the modularity [24, 29]. To improve
the computational complexity, the Leading eigenvector method, which partitions a net-
work based on the spectral optimization of modularity according to the eigenvector, is
developed [27].

Similar to codependency, mutual exclusivity is an inherent expression pattern in gene
expression. At single-cell resolution, mutually exclusive genetic alterations are likely to be
one cause of cellular heterogeneity not only within a tumour but also during cell develop-
ment. Notably, several approaches have been developed for detecting mutually exclusive
gene sets associated with cancer driver mutations. For example, mutual exclusivity mod-
ules (MEMo) are used to identify gene sets that belong to the same pathway by extracting
all groups of functionally related genes from the Human Reference Network using multiple
somatic mutation datasets [30]. Other methods predict whether the cause of an amino
acid change is associated (or not) with cancer based on a random forest with somatic mis-
sense mutations [31, 32]. Although these methods are suitable for detecting independent
alterations in cancer driver genes from mutation data, the modelling of mutual exclusivity
from scRNA-seq data has yet to be studied.

In this paper, we focus on the modelling of one-to-one relationships between two
genes, such as codependency and mutual exclusivity, because codependency and mutual
exclusivity are inherent and specific gene expression patterns. The purpose of this paper
is twofold. First, we develop an approach to detect communities of coexpression networks
with the co-dependency index (CDI) [33]. We evaluate the effectiveness of community
detection based on glioblastoma scRNA-seq data and show that this approach finds not
only densely connected subgraphs but also functionally related networks. Community-
based comparisons provide information on the similarities and differences in coexpressed
genes when applied to multiple samples. Second, we develop a novel metric, the exclusively
expressed index (EEI), for identifying mutually exclusive gene sets from sparse scRNA-
seq data. According to the idea of detecting sparse expression [33], EEI enables us to
quantify mutually exclusive expression due to negative correlations and genetic alterations
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not only in cancer driver genes but also in cell-type specific marker genes if the input is
scRNA-seq data. We apply our method to glioblastoma scRNA-seq data and show that it
outperforms existing methods while maintaining robustness against the sequencing read
depth, and mutually exclusive gene sets can improve the sensitivity of the identification
of cellular heterogeneity.

2 Methods

2.1 Co-Dependency Index Score

A previous study proposed a method, the co-dependency index (CDI), for quantifying the
codependency relationship between two genes, gene i and gene j, across thousands of cells
from scRNA-seq data [33].

Assuming that gi and gj are independently expressed, P (gi = 1) denotes the proba-
bility of observing that gi has the nonzero expression. P (gi = 1, gj = 1) denotes the joint
probability of observing that both genes gi and gj exhibit coincident nonzero expression
values in the same cell and is formulated as follows:

P (gi = 1, gj = 1) =P (gi = 1)P (gj = 1)

=πij

=
1li1lj

N2
,

(1)

where 1li and N represent the number of cells in which gi presents nonzero values and the
total number of cells, respectively. Under this assumption, pe(πij), defined as follows, is
the probability of observing a test statistic being as extreme under the null hypothesis
that genes gi and gj are independent:

pe(πij) =
∑

1lij≤x≤N

Bino(N, x, πij)

=
∑

1lij≤x≤N

(

N

x

)

πxij(1− πij)
N−x,

(2)

where Bino(N, x, πij) represents the probability of observing x successes in N trials if the
probability of success is πij . 1lij is the number of cells in which gi and gj simultaneously
present nonzero values. Then, CDI is defined as follows:

CDI = − log10[pe(πij)]. (3)

2.2 Exclusively Expressed Index Score

2.2.1 Definition

In this study, we propose a novel metric, the exclusively expressed index (EEI), for the
quantification of mutual exclusivity between two genes according to the concept of CDI
from sparse scRNA-seq data. Mutually exclusive expression between two specific genes, gi
and gj , can be divided into two cases: A and B. In the case of A, gi shows zero expression,
while gj shows nonzero expression, and the probability that A will occur can be denoted
by P (gi = 0, gj = 1). In the case of B, gi exhibits nonzero expression, gj exhibits zero
expression, and P (gi = 1, gj = 0) indicates the probability of B. EEI is computed for each
pair of genes for all possible combinations. Under the null hypothesis that gi and gj are
independent, the probability of the occurrence of A is defined as follows:
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σij = P (gi = 0)P (gj = 1),

pe(σij) =
∑

kij≤x≤N

Bino(N, x, σij)

=
∑

kij≤x≤N

(

N

x

)

σxij(1− σij)
N−x,

(4)

where kij represents the number of cells in which gi presents zero values and gj presents
nonzero values. Similarly,

ψij = P (gi = 1)P (gj = 0),

pe(ψij) =
∑

hij≤x≤N

Bino(N, x, ψij)

=
∑

hij≤x≤N

(

N

x

)

ψx
ij(1− ψij)

N−x,

(5)

where hij represents the number of cells in which gi presents nonzero values and gj presents
zero values. Then, EEI is defined as follows:

EEI =
(− log10 pe(σij)) + (− log10 pe(ψij))

2
. (6)

Although CDI and EEI do not impute technical zeros, these metrics calculate the pos-
sibility of codependency and mutual exclusivity by counting the number of cells according
to binary quantification if the sample size is sufficient. Gene pairs with lower CDI scores
cannot be applied to alternative gene pairs with higher EEI scores. Since CDI captures
the possibility of coexpression rather than being a coincidence, the gene pairs that are
expressed in all cells (i.e., housekeeping genes) exhibit lower CDI and EEI scores. A high
EEI can directly quantify that the gene pairs exhibit mutually exclusive expression.

2.2.2 Application of EEI to Single-Cell Clustering

Mutually exclusive expression can be observed as genetic alterations [34, 35, 36, 37] and
negative correlations [38, 39] between two specific genes. Genetic alterations lead to
protein production because mutually exclusive gene pairs might be amplified in different
cell populations [34]. Notably, tumour cell heterogeneity might be considered to be caused
by mutations in driver genes or to result from tumour cell progression. At single-cell
resolution, mutually exclusive expression means that it is highly possible that two genes
are exclusively expressed in the different cell types. Since this property is specific to single-
cell populations, we attempt to apply the expression of mutually exclusive gene sets to
improve the sensitivity of the identification of cellular heterogeneity. In this subsection,
we introduce a novel strategy for the classification of single cells with EEI gene sets.

Clustering analysis with EEI can be summarized as follows.

1. EEI is calculated for all gene pairs from scRNA-seq data, and the 1,000 gene sets
with the highest EEI scores are extracted.

2. To generate a feature matrix, the expression ratio (i.e., the proportion of the ex-
pression values) is calculated using normalized (i.e., normalize the gene expression
for each cell by the total read count) and log-transformed expression for all ex-
tracted pairs. Then, the features of expression are merged with the log-transformed
expression values in the scRNA-seq dataset, as shown in Figure 1A.

3. The merged data can be regarded as an input, and classification is performed via di-
mensionality reduction methods. In this experiment, we reduce the high-dimensional
data to 40 dimensions via singular value decomposition (SVD), and then UMAP is
used to reduce 40 dimensions to 2 dimensions.
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Figure 1: (A) Overview of the generation of a feature matrix from scRNA-seq data. (i)(ii)
If a gene-cell expression matrix is provided, EEI is calculated, and highly mutually exclusive
gene pairs are extracted. (iii) The feature matrix is generated by merging the expression
ratio matrix for EEI pairs with the gene-cell expression matrix. (iv) Dimension reduction is
performed using SVD and UMAP with the feature matrix as an input. (B) Summary of the
six scRNA-seq datasets. This contains the number of genes that expressed in at least one cell,
the number of cells, the number of total reads, the units of transcript counts and the reference.

2.3 Community Detection Algorithm

Community detection can extract topological characteristics from complex networks. The
Girvan-Newman method is a basic method that decomposes a network iteratively by
removing the edges connecting communities that present the highest edge betweenness
[24, 29] based on maximizing modularity, Q [24]:

Q =
1

2m

∑

i,j

[

Aij −
kikj

2m

]

δ(ci, cj), (7)

where m represents the total number of edges, Aij is the weight of the edge between nodes
i and j, ki is the sum of the weights of edges attached to node i or the degree of node i,
ci is the community to which node i belongs, and δ is defined as δ(u, v) = 1 if u = v and
as 0 otherwise.

The Leading eigenvector method [27] is based on the spectral optimization of mod-
ularity by reformulation of modularity in terms of the eigenvalue [40]. It calculates the
eigenvector of the modularity matrix and the largest positive eigenvector partitions the
network into two communities. This algorithm performs faster than other modularity
optimizations and slightly better for large-scale networks and a wide variety of networks
[41, 42].

This method maximizes modularity, which is defined in terms of a matrix based on
the eigenvalues and eigenvectors, called the modularity matrix, B [29]:

Bij = Aij −
kikj

2m
, (8)

where A is the adjacency matrix. Then, modularity is defined as follows:

Q =
n
∑

i,j=1

c
∑

k=1

BijSikSjk = Tr(STBS), (9)
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where S is an index matrix to detect c (c ≥ 2) communities. Each column of this matrix
is an index vector of (0, 1) elements. Writing B = UDUT , where U = (u1|u2| . . .) is the
matrix of eigenvectors of B, D is the diagonal matrix of eigenvalues Dii = βi and s is an

index vector of (−1, 1) elements in which u
(1)
i is the i-th element of the eigenvector, u1 of

B, then Q is defined as follows:

Q =

n
∑

j=1

c
∑

k=1

βj(u
T
j sk)

2
. (10)

For a different approach, the Louvain method [29] is an agglomerative hierarchical
clustering method to maximize modularity by local optimization. It aggregates each
cluster into a single node until the modularity does not increase, which leads to a small-
sized network and fast performance [43].

In this study, we applied the Leading eigenvector method because it is a fundamen-
tal method based on spectral optimization that partitions a network into clusters with
eigenvalue decomposition.

2.4 Dataset

To evaluate the performance of EEI and the community detection of coexpression net-
works, we applied six scRNA-seq datasets.

Glioblastoma scRNA-seq data: We generated single-cell RNA-seq data obtained from
glioblastoma stem-like cells before (stem) and after (serum+) the addition of serum that
are collected at 0 and 12 hours (see Section 2.5). Glioblastoma stem-like cells are subsets of
glioblastoma cells that possess self-renewal ability and exhibit extensive tumorigenicity.
The datasets obtained at 0h and 12h contained 2,102 and 2,209 single cells in total,
respectively.

Human ES progenitor scRNA-seq data: This dataset was published by Chu et al. [44]
and provides snapshots of lineage-specific progenitor cells differentiated from human ES
cells. The progenitor cells consisted of 1,018 single cells in total and included cell types
such as neural progenitor cells, endoderm cells, endothelial cells and trophoblast-like cells.
Library preparation was performed using the Fluidigm C1 system [45].

Human ESC-derived neuron scRNA-seq data: This dataset was published by Manno
et al. [46] and provides the transcriptomes of human ventral midbrain single cells. These
cells, 1,715 in total, included cell types such as oculomotor and trochlear nucleus, sero-
tonergic and medial neuroblasts.

Mouse cortex scRNA-seq data: This dataset was published by Zeisel et al. [47] and
provides the transcriptomes of mouse cortex and and hippocampal cells. These cells, 3,005
in total, included cell types such as interneurons, oligodendrocytes and microglial cells.

PBMC CELseq2 scRNA-seq data: This dataset was published by Mereu et al. [48]
and provides a reference sample containing human peripheral blood mononuclear cells
that were generated with the CELseq2 protocol. These cells, 1,083 in total, included cell
types such as B cells, NK cells and CD14 monocytes.

PBMC MARSseq scRNA-seq data: This dataset was published by Mereu et al. [48]
and provides a reference sample containing human peripheral blood mononuclear cells
that were generated with the MARSseq protocol. These cells, 1,481 in total, included cell
types such as CD4 T cells, FCGR3A monocytes and dendritic cells.

2.5 Sample Preparation for Glioblastoma scRNA-seq Data

The establishment and characterization of glioblastoma stem-like cells (GSCs) have been
previously reported [49]. Briefly, GSCs were cultured in Dulbecco’s modified Eagle’s
medium (DMEM)/F12 (Life Technologies) containing a B27 supplement minus vitamin
A (Life Technologies), epidermal growth factor, and fibroblast growth factor 2 (20 ng/ml
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each; Wako Pure Chemicals Industries). For in vitro differentiation, GSCs were cultured
in Dulbecco’s modified Eagle’s medium/F-12 medium (Life Technologies) containing 10%
foetal bovine serum for the indicated times. Single-cell suspensions of GSCs or serum-
induced differentiated GSCs were subjected to droplet-based scRNA-seq library prepa-
ration with the Chromium Single Cell 3’ Reagent Kit v2 (10x Genomics), aiming for an
estimated 2,000 cells per library and following the manufacturer’s instructions. The li-
braries were checked with a BioAnalyzer High Sensitivity Chip (Agilent), quantified with
a KAPA Library Quantification Kit (Roche), and then sequenced on the Illumina HiSeq
2500 platform in rapid mode.

2.6 Performance Evaluation

We evaluated the effectiveness of EEI compared to four existing methods: the Pearson
correlation coefficient (referred to as Pearson), minet [50], GENIE3 [51] and PIDC [17].

The Pearson correlation is a basic correlation measure for a linear relationship between
two variables ranging from -1.0 to 1.0. Note that the relationship of mutual exclusivity
indicates that the Pearson coefficient is negative and greater than -1.0. minet and PIDC
are methods for inferring of GRNs based on mutual information. minet infers the non-
linear relationship between two genes from microarray data and ranges 0.0 to 1.0. PIDC
is an inference algorithm used to quantify the statistical relationships between triplets
of genes based on the conditional mutual information from scRNA-seq data as positive
values. GENIE3 infers the non-linear interactions among two genes based on a random
forest regression and ranges 0.0 to 1.0. Since a very large amount of computational time is
required for the large-scale datasets, we performed parallel computing by using 25 cores.

2.7 Performance Metrices

We evaluated the performance of EEI on the basis of the area under the precision-recall
curve (AUPR) and average precision. The PR curve is plotted as the precision against
recall. It is appropriate for binary classification with imbalanced data in which the number
of positive samples is lower than the number of negative samples because the PR curve
is sensitive to class distribution. Average precision (AP) indicates the weighted mean of
precisions, with an increase in recall at each threshold (see Supplementary Appendix).

To validate the performance for clustering of single cells, we adopted the silhouette
coefficient, which measures the cluster cohesion and separation and ranges -1.0 to 1.0. If
the distance between one cluster and the other cluster is large, the silhouette coefficient
is high. When evaluating the community detection of coexpression networks, we used the
Szymkiewicz-Simpson coefficient and Jaccard index to measure the similarity between two
sets of nodes, which ranged 0 to 1.

3 Results

3.1 Comparison of Exclusively Expressed Genes

3.1.1 Comparison of Mutually Exclusive Gene Sets

Initially, we evaluated the effectiveness of EEI for the detection of mutually exclusive
gene pairs by comparing it with four existing methods, the Pearson correlation coef-
ficient, minet, GENIE3 and PIDC, using glioblastoma stem-like cell scRNA-seq data.
Since minet, GENIE3 and PIDC cannot be applied to large-scale datasets, we used the
expression data of the top 5,000 highly variable genes (HVG dataset) detected by Seurat
[52]. Gene sets with mutually exclusive expression may exhibit genetic alterations and
negative correlations. Highly mutually exclusive means that there is a high possibility of
exclusive expression between two genes, rather than being a coincidence.
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Table 1: The prediction accuracies of five methods.
EEI Pearson minet GENIE3 PIDC

AUPR 0.51 0.47 0.45 0.40 0.42
AP 0.52 0.48 0.43 0.42 0.44

Since the five methods commonly output the prediction score for each gene pair, we
assessed the performance of these methods for a binary classification problem. In this
classification, we prepared 17 mutually exclusive gene pairs that are reported in the liter-
ature as positive samples (Table S1). We also prepared 50 negative gene pairs that were
randomly sampled from 5,000 highly variable genes. To evaluate the performance of these
methods, we used AUPR and AP scores (see Methods).

Table 1 and Figure S1(A) summarize the performances of the five methods. The
AUPR and AP of EEI were the highest among all methods. While EEI could capture
mutually exclusive patterns according to binary quantification, minet, GENIE3 and PIDC
exhibited lower AUPR values, indicating that these methods could not correctly capture
the exclusivity of expression due to excessive zero read counts.

As shown in Figure S1(B), there were a few gene pairs had high EEI scores, while many
other gene pairs presented lower EEI scores. Since 6 positive gene pairs were among the
top pairs, actual mutually exclusive gene pairs could be predicted with moderate and
high scores could be predicted by using EEI. Notably, the PDGFRA and MET gene
pair showed the highest EEI of 12.4. Although minet and GENIE3 produced the highest
scores for that pair, these methods inferred lower scores for other gene pairs. Therefore,
these results indicate that our method enables us to identify mutually exclusive gene sets
independent of the sequencing depth in sparse scRNA-seq data.

3.1.2 Robustness Analysis of Read Depth in scRNA-seq Data

Since EEI identifies mutually exclusive gene pairs without taking into account technical
zeros by dropouts, we examined the robustness of EEI against an insufficient read depth
by comparison with the four methods. (Note that since PIDC cannot read the expression
files, we used the other four methods.) We generated synthetic datasets from glioblastoma
scRNA-seq data by randomly decreasing the total number of read counts from the original
data by 10%.

First, we analysed the robustness for common gene pairs using the HVG dataset.
We calculated the Pearson coefficient of the expression of two genes detected by minet
and GENIE3 and regarded the top 500 gene pairs with negative coefficients as mutually
exclusive gene pairs. Since the four methods shared 270 common gene pairs among the top
500 mutually exclusive gene pairs, we prepared these gene pairs as the positive samples
and 500 negative samples that were randomly generated from genes that did not have zero
expression. Figure 2 and Table S2 summarize the performances of the four methods, and
EEI showed the best performance among them. Existing methods showed lower accuracy
due to insufficient read counts as the read depth decreased. In contrast, EEI exhibited
better performance at a lower sequencing read depth and was not strongly affected by a
decrease in the total number of read counts.

Second, we also analysed the robustness for gold standard gene pairs using two types
of datasets: an HVG dataset and an expression dataset consisting of 18,597 genes that
are expressed in at least one cell (NTZ dataset). We prepared 17 and 29 positive samples
reported in the literature (listed in Table S1) for the HVG dataset and NTZ dataset,
respectively and 50 negative samples. Since minet and GENIE3 cannot be applied to the
large-scale datasets, we examined the performances of the EEI and Pearson methods. As
the gene pairs of negative samples may also correspond to mutually exclusive gene pairs
in some cases, we calculated only the AUPR and AP for the evaluation. As shown in
Figure 3, Tables S3 and S4, EEI exhibited the best performance among all methods in
both the HVG and NTZ datasets. For the HVG dataset, the AUPR and AP of Pearson,
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Figure 2: Comparison of the performances of the four methods with common gene sets from
the glioblastoma scRNA-seq dataset. r0.1 represents the synthetic dataset in which 90% of
read counts present zero expression compared to the original data. The average AUROC (A),
AUPR (B), and AP (C) were calculated by repeating each simulation 10 times.

Figure 3: Comparison of the performances of the four methods with gold standard gene pairs.
The AUPR (A) and AP (B) were calculated using the NTZ dataset and the AUPR (C) and
AP (D) were calculated using the HVG dataset.

minet and GENIE3 were low and decreased as the lower sequencing depth decreased. In
contrast, even when the sequence read depth decreased to 90% (r0.1 in Figure 3, Tables
S3 and S4), the AUPR and AP of EEI showed moderate values.

In particular, since the NTZ dataset contains a various types of genes, including not
only highly variable genes but also genes with low expression, EEI could comprehensively
capture various genes that were specifically expressed in each cell type. EEI enables
the application of a large-scale dataset and the extensive capture of mutually exclusive
expression levels even if a dataset is sparse. While the other methods were sensitive to
the depth of sequencing, EEI was not affected by a decrease in the sequencing depth.
These results suggest that our method enables us to comprehensively detect mutually
exclusive gene sets while maintaining robustness against the sequencing read depth in
sparse scRNA-seq data.

3.1.3 Identification of Cell Marker Genes

To examine the possibility of the identification of marker genes, we assessed the perfor-
mance of EEI for detecting marker genes by comparing the marker selection method and
the databases for single cells. SCMarker [53] is an unsupervised marker selection method
that identifies genes that are discriminatively expressed across cell types based on a mix-
ture distribution model and are co- or mutually exclusively expressed. We calculated the
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Table 2: Prediction accuracies of EEI and SCMarker.
(a) Human ES dataset.

EEI SCMarker
Accuracy 1.00 0.824
Precision 1.00 0.00284
Sensitivity 0.750 0.313
F1 score 0.857 0.00564

(b) Glioblastoma dataset.

EEI SCMarker
Accuracy 0.687 0.682
Precision 0.0194 0.00439
Sensitivity 0.643 0.143
F1 score 0.0377 0.00851

prediction accuracy of EEI and SCMarker in terms of the positive and negative samples
in Table S1(c) using human ES cells [44] and glioblastoma scRNA-seq datasets. The
marker genes of human ES and cancer stem cells in glioblastoma have been reported in
the previous studies [44] and [54, 55, 56], respectively. Note that since the two methods
detected the different numbers of genes, we generated the same number of false positives
and true negatives with SCMarker by randomly selecting genes detected from EEI.

For the glioblastoma dataset, EEI identified 5,354 genes above the threshold, 1.0,
and SCMarker identified 456 genes. Table 2 shows that EEI outperformed SCMarker for
detecting marker genes from the datasets that contain both sparse and sufficient read
counts. We also analysed the detected gene pairs in glioblastoma in two public databases
for cell type markers, CellMarker [57] and PanglaoDB [58], by EEI. The results showed
that PDGFRA was included in CellMarker and that PDGFRA, MET, MEF2C, OLIG1,
SDC2, A2M, CHL1, MEG3 and SLC1A3 were included in PanglaoDB. These markers
are expressed in specific cell types in brain tissue. These results suggest that EEI has the
possibility of detecting not only mutually exclusive gene pairs but also cell type marker
genes.

3.1.4 Application of EEI to Single-Cell Clustering

In the classification of single cells, feature selection is an important step. Notably, it is
crucial for there to be an association between gene expression features extracted from
scRNA-seq data and the clustering of single cells. At the single-cell level, mutually exclu-
sive gene sets due to genetic alterations might be considered to be expressed exclusively
in different types of cells, which leads to tumour heterogeneity in cancer progression. This
means that mutually exclusive gene sets can be used as features for the clustering of sin-
gle cells. To evaluate the effectiveness of EEI, we compared the performances of the five
methods using the five scRNA-seq datasets, as shown in Section 2.4. The feature matrix
was generated by merging the ratio matrix of the top 1,000 mutually exclusive gene pairs
by each method listed in Table S5 and the expression matrix of highly variable genes.

Figure 4 shows the UMAP results with EEI, the Pearson correlation, minet, GE-
NIE3 and PIDC. For both the human ESC-derived neuron [46] and PBMC CELseq2
[48] datasets, clustering with EEI showed that each cell type was detected as a sepa-
rate cluster and produced compact clusters for all cell types. As shown in Figures S3
and S5, the silhouette coefficients of EEI were greater than those of the other methods
for both datasets. For the other datasets shown in Figures S2, S4 and S6, the silhou-
ette coefficients of PIDC and minet were higher than those of EEI for the human ES [44],
mouse brain [47] and PBMC MARSseq [48] datasets, respectively. In particular, since the
PBMC CELseq2, PBMC MARSseq and human ES datasets were generated by CELseq2,
MARSseq and Smartseq2 protocols, not by a droplet-based protocol, they contained suf-
ficient read counts. In most cases, clustering with EEI displayed distinct clusters of cell
types in these datasets. This means that EEI tends to be effective not only for sparse
scRNA-seq data but also for data with a sufficient sequencing depth. Therefore, EEI
enables us to capture the exclusive expression between two genes displaying intercell-type
(but not intracell-type) heterogeneity.

In addition, we examined the effectiveness of EEI using human MEP scRNA-seq data
[59]. This dataset consists of normalized data, including negative values, and does not
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Figure 4: Comparison of the EEI (i), Pearson correlation (ii), minet (iii), GENIE3 (iv) and
PIDC (v) UMAP results using human ES cell (A) and PBMC CELseq2 (B) scRNA-seq
datasets.

contain any zero values. While CDI identified 854 gene pairs under a threshold of 0.01,
EEI outputted no gene pairs. One reason for this result is that since the dataset does not
include any zero values, EEI could not capture exclusive patterns by counting only the
number of cells according to binary quantification. Therefore, these results suggest that
EEI is widely applicable to various scRNA-seq datasets generated from distinct platforms
and that the mutually exclusive gene sets detected by EEI can be applied to improve the
sensitivity of the identification of cellular heterogeneity.

3.2 Comparison of Community Detection

3.2.1 Community Detection using Human ES Cell scRNA-seq Data

First, we evaluated the performance of community detection with CDI for human embry-
onic stem cell scRNA-seq data [44] with a sufficient sequencing depth. For the differentia-
tion of ES cells into specific cell types, several marker genes that are expressed in each cell
type as reported in [44] were examined. The coexpression network was constructed under
a CDI threshold of 10.0. A total of 3,270 genes were included in this network, and we iden-
tified 102 communities in total, including small-sized communities. Since the modularity
score was 0.64, the network contained densely connected communities. Regarding known
marker genes, we identified 13 markers described in [44] and analysed which markers were
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Table 3: List of human ES cell type-specific genes included in each community and the corre-
sponding cell types. Six genes specific to DE cells are included in the c0 community.

Cell type name Marker gene (Community No.)
H1 cells DNMT3B(c97)
NPCs SOX2 (c97), PAX6 (c0), MAP2 (c97)
ECs CD34 (c98)
TBs GATA3 (c98), HAND1 (c99)

DECs
CER1 (c0), EOMES (c0), GATA6 (c0), LEFTY1 (c0),
SOX17 (c0), CXCR4 (c0)

Table 4: Comparison of modularity scores and the numbers of communities under three methods
applied to glioblastoma scRNA-seq data.

CDI Pearson correlation Cosine similarity
Modularity 0.38 0.35 0.09

The number of communities 8 147 29

included in individual communities. Table 3 shows the marker genes and the cell types in
which the corresponding markers were expressed.

The detected marker genes were mostly included only in communities c0, c97, c98 and
c99. In particular, 6 genes (CER1, EOMES, GATA6, LEFTY1, SOX17 and CXCR4 )
specific to definitive endoderm (DE) cells were identified in the c0 community. Since
human ES cells can differentiate towards DE cells, it is possible that c0 contains not only
marker genes but also some genes associated with endoderm development. Similarly, other
markers were mainly included in the c97 community, and it is possible that c97 contains
sets of genes that exhibit functions specific to H1 and NP cells. Therefore, community
detection enables us to identify groups of functionally related genes, in contrast to the
analysis for individual genes using a coexpression network. These results suggest that CDI
can capture coexpression patterns not only from sparse datasets but also from different
types of datasets with a sufficient read depth.

3.2.2 Comparison of Coexpressed Gene Sets

Second, we evaluated the performance of the community detection of gene coexpression
networks from sparse scRNA-seq data. Since CDI can be applicable to large-scale net-
works, we focused on detecting communities of coexpression networks using the Leading
eigenvector method (see Methods). We compared codependent gene sets by CDI using
glioblastoma 0h scRNA-seq data with those by the Pearson correlation and cosine simi-
larity. In this experiment, we selected the top 11,100 gene pairs under a CDI threshold of
10.0, and the same number of gene sets with positive coefficients in descending order were
subjected to the other methods. The numbers of genes included in the resulting networks
associated with CDI, the Pearson correlation and cosine similarity were 835, 1,221 and
436, respectively. The modularity score and the number of communities detected under
each method are summarized in Table 4.

The highest modularity score was 0.38 for CDI, and it was observed that the coexpres-
sion network according to CDI was divided into 6 medium-sized communities composed
of approximately 10–300 genes (c0, c3, c4, c5, c6 and c7), as shown in Figure 5. In
particular, the 0h c3 community consisted of many genes that exhibited a high degree
and were densely connected. At 0h, c0, c4 and c5 contained fewer hub genes than other
communities. In contrast, the network obtained by the Pearson correlation was divided
into several medium-sized and many small communities. Networks with high modularity
scores presented sets of nodes that were densely connected.

To evaluate the properties of the communities obtained with the three methods, we cal-
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Figure 5: The structures of 6 extracted communities of coexpression networks by using CDI
in the glioblastoma dataset. The blue node has a high degree. The 0h c3 community contains
many hub genes that are connected to many other genes.

culated the Jaccard index to measure the similarity of the sets of genes in the community
under each method. We regarded 30 genes included in the glioma pathway (hsa05214)
in the Kyoto Encyclopedia of Genes and Genomes (KEGG) [60] as the gold standard:
EGF, TGFA, PDGF, IGF1, EGFR, PDGFRA, IGF1R, PLCG1, SHC1, GRB2, CALM,
PRKCA, SOS, CAMK1, HRAS, PIK3CA, PTEN, BRAF, AKT, MAP2K1, MTDR, ERK,
MDM2, TP53, P21, P16, CCND1, CDK4, RB1 and E2F1. Since there were some vari-
ations in community size, we used only communities containing more than 8 genes. The
largest coefficients were 0.0156 for c0 and 0.0115 for c4. On the other hand, no genes
identified according to the Pearson correlation and cosine similarity were shared with
the KEGG pathways. The c0 community consisted of 165 genes, including the stem-
ness marker genes PDGFRA, A2M and NEAT1, and the genes shared with the KEGG
pathways were PDGFRA, IGF1R and EGFR. Interestingly, these genes were commonly
included in the c0 community. We also performed Gene Ontology (GO) term enrichment
analysis [61, 62], and 24 functional pathways were found to be significantly enriched (with
a p-value of less than 1e − 04 for three shared genes), as listed in Figure S7. The top 3
pathways were transmembrane receptor protein tyrosine kinase activity, positive regulation
of DNA replication and tyrosine-protein kinase, catalytic domain. Although there were a
few shared genes between the 0h c0 community and the KEGG pathways, many different
pathways were enriched compared to other CDI communities. There is a possibility that
several specific genes associated with glioblastoma and various biological functions were
included in the 0h c0 community. CDI can capture coexpression patterns from sparse
scRNA-seq data if the sample size is sufficient. However, it must be noted that it does not
necessarily provide information indicating that two genes are positively correlated. These
results suggest that the coexpression network associated with CDI contained densely con-
nected subnetworks and that community detection enables us to identify not only possible
densely connected subgraphs but also biologically functional networks.

3.2.3 Comparison of Coexpression Networks for Multiple Samples

To validate the effectiveness of community detection when multiple samples are provided,
we performed a comparative analysis of coexpression networks from glioblastoma scRNA-
seq data at different time points. The dataset for 0 hours consisted of 18,597 genes and
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Figure 6: Comparative analysis of coexpression networks at different time points. The coex-
pression network constructed at each time point (A) and degree distribution (B). The blue
and yellow nodes represent the high- and low-degree nodes, respectively. After decomposition
of the coexpression networks, four communities were extracted for each sample, and the values
between the communities at 0 and 12 hours represent the Szymkiewicz-Simpson coefficients
(C).

2,102 cells, and the dataset from 12 hours consisted of 18,163 genes and 2,209 cells. Using
these datasets, we reconstructed coexpression networks based on a CDI threshold of 10.0.
After decomposition of the networks using the Leading eigenvector method, to compare
extracted communities, we calculated the Szymkiewicz-Simpson coefficient to evaluate the
similarity between two communities at different time points.

As shown in Figure 6, every network exhibited a power-law degree distribution. The
scale-free network presented an uneven node degree distribution and contained a few hub
nodes. With regard to the hub genes, in the 0-hour network, CDK1, PBK, KIAA0101,
GTSE1, MKI67, UBE2C, SGOL1, TPX2, AURKB and RRM2 were identified, and in
the 12-hour network, TOP2A, PBK, TYMS, NUSAP1, BIRC5, UBE2C, TPX2, GTSE1,
ATAD2 and MKI67 were also identified. Additionally, the results showed that 4 com-
munities including more than 100 genes were extracted for each sample. We observed
high similarity for shared communities: 0.83 for 0h c3 and 12h c6 and 0.74 for 0h c4 and
12h c7 (see Table S6). In contrast, 0h c0 and 12h c8 as well as 0h c5 and 12h c0 were
considered to be specific communities in response to external stimuli. For example, it
has been reported that the known stemness marker genes PDGFRA and MET exhibit
different expression patterns [34]. While PDGFRA and neighbouring genes existed in
0h c0, PDGFRA did not exist in any community, and some neighbouring genes remained
in 12h c8. MET and neighbouring genes existed in both in 0h c5 and 12h c0. EEI results
showed that PDGFRA and MET were expressed in a mutually exclusive manner, indicat-
ing that these two genes are expressed in the different cell populations [34]. This means
that although there are some variations in the expression of individual genes, the sets of
genes that constitute the community are partially conserved regardless of the effects of
external stimuli. Therefore, these results suggest that community-based comparisons of
coexpression networks enable us to detect similarities and differences in coexpressed genes
across multiple samples.
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4 Conclusion and Discussion

In this study, we developed a novel metric, EEI, to comprehensively quantify mutual
exclusivity between two genes from sparse scRNA-seq data. A comparison with existing
methods using glioblastoma scRNA-seq data suggested that EEI identified gene sets due
to genetic alterations and negative correlations.

In particular, our findings show that EEI is effective for detecting mutually exclusive
gene sets, while maintaining robustness against the sequencing read depth in droplet-based
scRNA-seq data. We also applied EEI to improve the sensitivity of the classification of
single cells. The results suggest that exclusive expression can be introduced to identify
intercell-type heterogeneity based on the feature matrix.

We also examined the performance of coexpression networks from glioblsatoma scRNA-
seq data in community detection. Although the Louvain method is faster, we used the
Leading eigenvector method, which is fundamental and sufficiently applicable to large-
scale networks. The results suggested that the communities detected from CDI contained
more densely connected subgraphs than existing methods, and some marker genes asso-
ciated with specific pathways in glioma were identified. Community detection enables
us to identify candidate marker genes from known marker genes. A community-based
comparison provides information not only on functionally related genes but also on the
similarities and differences in coexpressed genes when multiple samples are provided.

Since EEI does not impute technical zeros and captures genes that are mutually exclu-
sively expressed without discriminating those with zero expression due to biological and
technical zeros, the imputed data might be able to improve the detection of gene pairs.
Although EEI and CDI can be applied to large-scale datasets, they require considerable
computational time and are effectively parallelizable. In addition, while the mutually
exclusive gene sets identified by EEI can improve the sensitivity of the identification of
cell-to-cell heterogeneity, this approach is not suitable for datasets containing excessive
zeros, and another future goal will be to improve the extraction of expression features.

5 Data Availability

The code to calculate CDI and EEI is available at https://github.com/Natsu01/EEISP.
The raw sequencing data and processed files of the glioblastoma scRNA-seq are available
at the NCBI Gene Expression Omnibus (GEO) under accession number GSE144623.
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