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Abstract 
Traumatic brain injury (TBI) is a major unsolved public health problem worldwide with 
considerable preclinical research dedicated to recapitulating clinical TBI, deciphering the 
underlying pathophysiology, and developing therapeutics. However, the heterogeneity of clinical 
TBI and correspondingly in preclinical studies have made translation from bench to bedside 
difficult. Here, we present the potential of data sharing, data aggregation, and multivariate 
analytics to integrate heterogeneity and empower researchers. We introduce the Open Data 
Commons for Traumatic Brain Injury (ODC-TBI.org) as a user-centered web platform and cloud-
based repository focused on preclinical TBI research that enables data citation with persistent 
identifiers, promotes data element harmonization, and follows FAIR data sharing principles. 
Importantly, the ODC-TBI implements data sharing at the level of individual subjects, thus 
enabling data reuse for granular big data analytics and data-hungry machine learning 
approaches. We provide use cases applying descriptive analytics and unsupervised machine 
learning on pooled ODC-TBI data. Descriptive statistics included subject-level data for 11 
published papers (N = 1250 subjects) representing six distinct TBI models across mice and rats 
(implementing controlled cortical impact, closed head injury, fluid percussion injury, and 
CHIMERA TBI modalities). We performed principal component analysis (PCA) on cohorts of 
animals combined through the ODC-TBI to identify persistent inflammatory patterns across 
different experimental designs. Our workflow ultimately improved the sensitivity of our analyses 
in uncovering patterns of pro- vs anti-inflammation and oxidative stress without the multiple 
testing problems of univariate analyses. As the practice of open data becomes increasingly 
required by the scientific community, ODC-TBI provides a foundation that creates new scientific 
opportunities for researchers and their work, facilitates multi-dataset and multidimensional 
analytics, and drives collaboration across molecular and computational biologists to bridge 
preclinical research to the clinic. 

 

Introduction 
Traumatic brain injury (TBI) is a leading cause of neurological disorders and affects over 

69 million people annually worldwide [1,2]. The incidence of TBI is expected to rise each year, 
and over 3 million patients in the U.S. alone and many more globally suffer from chronic TBI-
related disabilities [2–4]. Despite the abundance of preclinical TBI studies, randomized 
controlled clinical trials have consistently failed [5,6]. The lack of effective treatment can be 
broadly ascribed to the heterogeneity of injuries and the varied pathological biology captured by 
the broad definition of TBI: a disruption of neurological function caused by a bump, blow, or jolt 
to the head or penetrating head injury [7].  

Biological injury responses can differ dramatically across injury sites, injury severities, 
and patient characteristics [8]. To capture the heterogeneity of clinical TBIs, a multitude of 
preclinical TBI models have been developed to isolate specific injury mechanisms [9]. While the 
diverse injury parameters and outcome measures employed by different experimenters do 
effectively recapitulate distinct aspects of clinical pathology, the breadth of preclinical models 
and research ultimately makes inferential insights difficult to compare across studies and 
translate across species. Preclinical TBI models have thus largely been treated as very distinct 
representations of clinical TBI, circumventing the complexity of TBI heterogeneity instead of 
directly addressing it. However, the wealth of data collected across TBI models presents a new 
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opportunity for rigorous joint analyses across studies and across preclinical TBI models to 
directly investigate common biological features underlying heterogeneity. Indeed, there is 
growing interest and support for the application of Big Data frameworks and multidimensional 
machine learning to TBI research [10–12]. Such techniques have been recently employed with 
clinical data to reveal TBI pathophysiology persistent across heterogeneous patients [13,14]. 
While similar efforts in preclinical TBI research are still nascent, they represent a unique 
perspective towards unraveling common pathological mechanisms and bridging preclinical to 
clinical research. 

A major obstacle to the Big Data approach is the under-developed and under-utilized 
practice of data sharing and data standardization and harmonization in the preclinical TBI field. 
Clinical TBI data programs, such as Transforming Research and Clinical Knowledge in TBI 
(TRACK-TBI) and Collaborative European NeuroTrauma Effectiveness Research in TBI 
(CENTER-TBI), have dramatically improved access to data and enabled multidimensional 
analytics in clinical research [15–18]. In contrast, most preclinical TBI data and research have 
been communicated and shared solely through publications without the release of the 
underlying data. The data of each published specimen are thus sequestered as summarized 
aggregates which makes individual-subject level data inaccessible for data reuse and further 
analytics [12,19]. Additionally, the language and terminology of collected variables can differ in 
name and definition between labs. The National Institute of Neurological Disorders and Stroke 
(NINDS) have released dictionaries of “common data elements” (CDEs), basic units of data that 
prescribe the data type and standardize the language for variables in an effort to improve the 
reproducibility of clinical and preclinical TBI research [20,21]. However, there remains an unmet 
need for open data infrastructures that host preclinical TBI data and for datasets to begin 
integrating the NINDS-defined CDEs for data sharing and reusability. 

In this article, we present the Open Data Commons for TBI (ODC-TBI.org), a platform 
and repository for data sharing for the global preclinical TBI research community. The 
infrastructure is developed in collaboration with the Neuroscience Information Framework (NIF) 
[22]. Building upon previous work on the Open Data Commons for Spinal Cord Injury (ODC-
SCI.org) [23,24], we developed the ODC-TBI for protected data sharing while upholding data 
stewardship principles towards making biomedical data Findable, Accessible, Interoperable, and 
Reusable (FAIR) [25]. To jumpstart FAIR sharing in preclinical TBI, we standardized datasets 
from 11 publications along NINDS-defined CDEs and uploaded them to the ODC-TBI. As a 
proof of concept for Big Data analytics enabled by the ODC-TBI, we aggregated data from three 
separate experiments uploaded to the ODC-TBI and harnessed multivariate analytics to 
uncover persistent patterns of the inflammatory response in the controlled cortical impact TBI 
mouse model. Altogether, we illustrate the infrastructure of the ODC-TBI to promote data 
sharing within the preclinical TBI research community and demonstrate the utility of multi-
dataset, multidimensional analytics to uncover common TBI pathophysiology across 
heterogeneous experimental features. 

 

Results 
ODC-TBI Infrastructure for Data Sharing and Security 

The purpose of the ODC-TBI is to establish an infrastructure to facilitate effective data 
sharing practices within the preclinical TBI research community and expand the data 
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standardization and harmonization guidelines initiated by the NINDS [20,26]. Additionally, the 
ODC-TBI interface has been developed to address the concerns of preclinical TBI researchers 
towards data sharing practices [21] and empower the researchers through an intuitive interface. 
Currently, the ODC-TBI provides guidelines to help researchers format their dataset according 
to best practices for data interoperability [27,28] and standardize them according to FAIR 
principles [25] and NINDS-defined CDEs. Once prepared, datasets can be uploaded to the 
ODC-TBI and then further combined for Big Data analytics (Fig 1A).  

 Protecting a lab’s data from misuse by third parties is a major concern of investigators 
[29,30]. To address this obstacle, the ODC-TBI is built on a robust cloud-based 
cyberinfrastructure through the California Institute for Telecommunications and Information 
Technology (CalIT2) which includes e-commerce grade security and encryption. In addition, 
ODC-TBI has established several approval protocols to provide qualified access to sensitive 
data while enabling open access to published data (Fig 1B). Uploading, sharing, and accessing 
data is only possible for users who have a verified institutional email and have been approved 
for lab membership by a Principal Investigator (PI) with a lab in ODC-TBI. The process of data 
sharing requires authorization by the PI, and the PI can remove datasets from the shared space 
at any time. When data is first uploaded, it is restricted to a Personal space accessible to only 
the original uploader and their lab PI. Once approved by the PI, the dataset migrates to the Lab 
space where others in the same lab will be able to access the dataset. The PI can approve the 
release of a dataset into the Commons space where other members of the ODC-TBI community 
will be able to access the dataset. Lastly, the PI can trigger a dataset publication process on the 
ODC-TBI; once completed, the dataset will be published as a citable unit of research with a 
unique digital object identifier (DOI) and made accessible to the general public (Fig 1C). By 
granting the PI full control of their data sharing at all times and requiring multiple security 
checks, we can alleviate security concerns regarding data sharing. 

 Another common obstacle towards data sharing is the lack of guidance towards 
adequately organizing the data [31]. Experimental data is commonly stored on spreadsheets 
with various structures that strive to make the data clearly readable by humans. This includes 
nested labels, different font sizes, and multiple tables on the same spreadsheet representing 
different parameters (S1A Fig). However, while this approach makes data easy to understand 
to the original experimenters, the practice creates wide variations in data formats and presents 
an intractable problem for large-scale data harmonization, interoperability, and merging. The 
ODC-TBI requires datasets be reformatted into the Tidy format, a standardized data format ideal 
for data storage, aggregation, and multi-dataset analytics [28] (S1B Fig). The ODC-TBI contains 
written tutorials to guide researchers in formatting their data into the Tidy structure. We also 
encourage the upload of dataset-associated data dictionaries (S1C Fig). Data dictionaries help 
provide critical definitions for each variable in the dataset, essential information such as the unit 
of measurement, and additional comments about the experimental protocol that improve the 
interpretability and reusability of the dataset (e.g. reasons for excluding samples). 

 To demonstrate the ODC-TBI, we uploaded and aggregated 11 datasets corresponding 
to 11 prior publications from several labs at the University of California San Francisco [32–42]. 
Additionally, we included an external dataset from a pooled analysis from the University of 
Texas Medical Branch published through ODC-TBI and reused under a creative commons 
(attribution) license (CC-BY 4.0) [43]. The number of animals across all 12 datasets totaled 
N=1250 individual subjects. The datasets were harmonized according to NIH/NINDS common 
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data elements (CDEs) for preclinical TBI which enabled merging of the datasets for multi-
dataset descriptive analytics as presented in Figure 2. The majority of the uploaded data 
corresponded to mouse experiments (86.56%). The rest corresponded to rat experiments 
(13.44%; Fig 2A). 74.88% of the subjects were male while 6.24% were female animals. 
Notably, 18.88% of the records were missing a value for the sex parameter as a result of 
irrecoverable records which is a common issue when collecting datasets from older publications 
(Fig 2B) [44]. The majority of the experiments utilized the controlled cortical impact contusion 
injury model (77.6%) with a smaller number of fluid percussion injury (8.56%), closed head 
injury (6.32%), and closed-head impact model of engineered rotational acceleration (CHIMERA) 
repeated injury models (7.52%; Fig 2C).  

We further visualized the characteristics of the 1082 mouse subjects. While most of the 
mice were wildtype, 17.28% of the subjects were transgenic for immunology-related genes 
which highlights the fact that the summarized studies were primarily focused on immunological 
processes of TBI (Fig 2D). The subject age distribution showed a bimodal distribution with most 
animals falling below 6 months or above 18 months of age, reflecting the nature of the studies 
investigating the effects of age on TBI biology (Fig 2E). Lastly, a variety of acute and chronic 
timepoints were represented in the datasets (Fig 2F). Notable peaks in the timepoint distribution 
included time 0 (often a control timepoint for uninjured animals), 1 day post-injury (dpi), 7 dpi, 
and 28 dpi to measure acute, sub-chronic, and chronic effects of TBI respectively. 

 

Missing Data in Data Structure 
 While working with users to prepare their datasets for upload, we observed that users 
often had questions regarding uploading files that contain empty cells, also termed “missing 
values”. Missing values are to be expected: a single dataset can contain data from multiple 
studies with different outcome measures, resulting in a patchwork of missing and present data. 
Missing Value Analysis (MVA) is an established statistical subfield that involves descriptive 
statistical diagnosis of missingness patterns such as whether data is missing completely at 
random (MCAR), missing at random (MAR), or missing not at random (MNAR or NMAR) 
[44,45]. Identifying the pattern and reasons for missing data is critical for appropriate data 
imputation – the statistical practice of replacing missing values with plausible substitute values 
usually derived from the rest of the data – and multidimensional analytics [44,45]. Dataset-
associated methodology and data dictionary documents on the ODC-TBI can be utilized to 
inform MVA. Here, we highlight common reasons for missingness using the Chou et al 2018 
dataset given the authors’ familiarity with the dataset and the breadth of reasons for 
missingness represented [32]. The simplest visualization for MVA recodes the dataset elements 
(i.e. spreadsheet cells) with a binary code (0 = missing, 1 = present) and produces a plot of 
black and grey for missing elements and present elements respectively. MVA revealed that 61% 
of the elements in the selected dataset are missing values (Fig 3A).  

Reasons for missingness can be quite varied (Fig 3B). Most commonly, measures might 
not be collected at all as part of the experimental design (“Not collected (by design)” white cells 
in Fig 3B). For example, a sample can be used either for immunohistochemistry or for flow 
cytometry but not both. Accordingly, two separate cohorts of animals are required: one planned 
for immunohistochemistry measures and one for flow cytometry. Conversely, there are times 
when an attempt is made to collect the data, but the data is excluded due to technical reasons 
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(“Removed for technical reasons” green cells in Fig 3B). Understanding the circumstances for 
which the data was removed is critical for the process of data imputation. 

In some cases, a variable (i.e. column) may exist in the dataset but not actually be 
applicable, thus leading to an entire column of missing values (“Not applicable” red cells in Fig 
3B). This can also be the result of data harmonization and aggregation when certain columns 
are not applicable to specific data sets. In the Chou et al 2018 dataset, there is a column for the 
“Treatment” CDE. However, no treatments were administered in any of the experiments, and 
accordingly the entire column is missing since the parameter was not applicable to the dataset. 

Another possible reason for missing values is that the data were not recorded or were 
unable to be recovered from past records (“Missing record” blue cells in Fig 3B). In the Chou et 
al 2018 dataset, some subjects are missing the sex variable which corresponds with Fig 2B. In 
this case, the experimental records that we collected the data from did not have the sex 
information readily available.  

 

Multidimensional Analytics Use Case 
To demonstrate the multi-dataset analytic workflow facilitated by the ODC-TBI, we 

aggregated data from three controlled cortical impact studies (i.e. independent experimental 
cohorts of animals) published in Chou et al 2018 and Morganti et al 2015 [32,35]. These studies 
were chosen because basic multivariate approaches require common variables between 
datasets. The selected studies included an injury time course study, an aging study, and a 
treatment study that isolated innate immune cells from injured brain tissue and all measured the 
expression of the following six inflammatory markers by quantitative PCR: IL-1β, TNF-α, iNOS, 
Ym1, CD206, and TGF-β. Using the aggregated data, we performed (1) MVA, (2) missing data 
imputation, (3) principal component analysis (PCA), and (4) syndromic visualization to identify 
salient multidimensional patterns of immune activation across the studies. After the initial 
analysis, we included an additional within-study z-score standardization step between MVA and 
missing data imputation in order to correct for an observed batch effect of study (i.e. study 
effect) (Fig 4A). Broadly, PCA is an unsupervised multivariate technique that combines and 
reduces the input variables into new features while maximizing the variance of the data 
accounted for [46,47]. Syndromic visualization encapsulates a set of plots (e.g. syndromic plots, 
barmaps, heatmaps) developed in the Ferguson lab to intuitively present the PCA results 
[48,49]. 

MVA revealed that the aggregated dataset has 1.3% missingness (Fig 4B). Within the 
Chou et al 2018 data, one of the samples (i.e. rows which correspond to individual mice in the 
selected datasets) was missing values across all six variables. A sample that is missing values 
across all variables cannot be accurately imputed, so we removed the sample from further 
analysis. Two other samples were missing values for Ym1. Harnessing experimenter 
knowledge, we identified that the two values are missing due to technical errors during the 
qPCR procedure. We applied the Little’s statistical test to assess whether the missing data 
pattern significantly deviated from the null assumption of missing completely at random 
(MCAR). The result suggested that the missing data were indeed MCAR (p-value = 0.86) [50], 
indicating that the pattern of missingness was due to random chance and not correlated with the 
values of other variables in the dataset. Importantly, data imputation could accordingly proceed 
without the need to explicitly model the missingness [44,45]. We imputed the two missing values 
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using a multiple imputation method that operates under the MCAR assumption: predictive mean 
matching (PMM). PMM first creates a predictive model from the samples with complete cases 
(rows without missing values) to generate estimates for the missing values, identifies which 
complete samples have observed values closest to the predicted value for the missing entry, 
and then randomly chooses one of the observed values to use for the imputation. We repeated 
the process ten times – a general guideline for multiple imputation of missing data that is 
sufficient for cases where only a small portion (< 10%) of the data is missing [51] – to create ten 
imputed datasets. 

We then performed PCA on each individual imputed dataset with mean centering and z-
scaling of the data (i.e. analogous to running PCA on the correlation matrix of the dataset) to 
examine the relationship between the six inflammatory markers. In brief, during experimental 
design, researchers select outcome measures (i.e. variables) that represent broader domains of 
interest. In our use case, the variables are inflammatory markers that can be categorized into 
pro-inflammatory, anti-inflammatory, and oxidative stress domains [32,35]. PCA transforms the 
variables of this multivariate dataset into a new set of principal components (PCs), also called 
dimensions, that capture the relationship of the analytes. PCA maximizes the variance in the 
data along each PC under the restriction that each component is uncorrelated to the others 
[46,47]. The resulting PCs form data-derived scores determined by patterns in the data (Fig 
4C). We can further visualize the contributions (i.e. loadings) of each of the original variables to 
each PC in the form of a syndromic plot (Fig 4D). 

 To determine whether our imputation method significantly affected our PCA output, we 
tested the similarity of the resultant PCs from PCAs performed on each of the individual PMM-
imputed datasets. We found that the resultant PCAs were almost exactly identical (Congruence 
Coefficient > 0.999 ± 0.001 for each PC; Cattell’s salient similarity = 1 ± <0.001 for each PC). 
Accordingly, we took the mean of the imputed values to create a single imputed, complete 
dataset and then applied PCA for further analysis. 

The resulting loadings of each variable to each PC allowed us to transform the original 
data into PC scores for each subject. Plotting the PC scores on the first two PC axes, we 
observed that the first two components account for variance attributable to study two and study 
one (along PC1 and PC2 respectively; Fig 5A). A two-way analysis of variance (ANOVA) of 
PC1 scores revealed significant main effects of Injury (F(1,93)=8.30, p<0.005) and Study 
(F(2,93)=18.32, p<0.001) and a significant interaction of Injury and Study (F(2,93)=4.84, p<0.05). 
Along PC2, two-way ANOVA similarly revealed significant main effects of Injury (F(1,93)=46.69, 
p<0.001) and Study (F(2,93)=4.64, p<0.05) and a significant interaction of Injury and Study 
(F(2,93)=5.63, p < 0.005). To further emphasize the study effect captured by the PC scores, we 
filtered for all adult sham animals and adult TBI animals at 7 days post-injury across the three 
cohorts. We observed that the TBI animals fell on both sides of the sham animals along PC1, 
suggesting that the PCA had transformed the original data according to variance attributable to 
study as well as biological differences due to injury (Fig 5B).  

To correct for this study effect, we standardized each inflammatory marker into z-scores 
of the distribution of values within the individual studies (i.e. within-study z-score 
standardization; Fig 4A). After the correction, we reperformed PMM imputation and PCA on the 
standardized dataset. Two-way ANOVA on the new PC scores revealed only a main effect of 
Injury along PC1 (F(1,93)=84.42, p<0.001). There were no significant main effects or interactions 
with Study for either PC1 or PC2, suggesting successful correction. Visualization of the study-
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corrected PC scores also showed that PC1 now primarily captured the variance due to injury 
(Fig 5A, 5B), verifying that our within-study z-score standardization helped correct for the 
variance between studies that may have been caused by different experimenters. 

Taking the PCA of the dataset that had been standardized to within-study z-scores and 
then averaged across ten imputations, we plotted the variance accounted for (VAF) by each PC 
on a Scree plot. We observed that the first three PCs (PC1, PC2, PC3) accounted for 83.5% of 
the variance in the aggregated dataset (Fig 6A). We focused our attention on these three PCs 
given they explain the majority of the data variance and have biologically interpretable loading 
patterns; conversely, PC4-6 essentially captured unexplained variance and noise in the data. 
We visualized the loadings of each individual marker to the first three PCs using the 
syndRomics package in R to generate syndromic plots (Fig 6B) [49]. The markers visualized in 
the syndromic plots were those with absolute loadings above a threshold of significance 
(|loading| > 0.2). We also visualized the PCA output as a barmap and heatmap which show the 
loadings for all six inflammatory markers to each PC (Fig 6C; S2 Fig). Authors with domain 
expertise in preclinical TBI neuroinflammation examined the loading patterns and labeled PC1 
as representative of an “overall inflammation” axis with every inflammatory marker loading 
positively and PC2 as representative of the “pro- vs anti-inflammatory” axis with anti-
inflammatory markers (CD206 and TGF-β) loading inversely to pro-inflammatory markers (IL-1β 
and TNF-α). Lastly, PC3 showed iNOS loading almost exclusively, suggesting that iNOS might 
provide unique information about the inflammatory state after injury distinct from the other five 
markers.  

Notably, data aggregation and PCA can increase the sensitivity (increased effect sizes) 
to better distinguish experimental groups as compared to univariate analyses. To illustrate this, 
we mapped the PC scores for adult (3-6mo) and aged (18+ mo) animals in the sham or 7 dpi 
experimental groups from the aggregated dataset (n=47) (Fig 7). We observed that TBI 
increases the inflammatory profile at 7 dpi as represented by an increase in PC1 score (Injury 
main effect: F(1,43)=65.14, p < 0.001). Furthermore, we observed a distinct separation between 
adult and aged animals at 7 dpi along PC2: aged TBI animals have lower PC2 scores as 
compared to adult TBI animals, reflecting an age-driven shift towards pro-inflammation and 
away from anti-inflammation at the sub-chronic timepoint (two-way ANOVA; Injury main effect: 
F(1,43)=7.44, p<0.01; Age main effect: F(1,43)=18.69, p<0.001; Injury and Age interaction: 
F(1,43)=15.02, p<0.001. Tukey HSD: Adult TBI vs Aged TBI, p<0.001). For comparison, we also 
reproduced the univariate analyses from Chou et al 2018 with the individual inflammatory 
markers and the study-specific cohort [32]. We calculated the effect sizes (η2) and 
corresponding observed statistical power (1-β) for the main effects and interactions of Injury and 
Age for PC1, PC2, and each individual marker (Supplementary Table 1). PC1 had the largest 
effect size for Injury (η2 = 0.593) with an observed power of 1.0. Of particular interest to the 
original study which examines Injury and Age interactions, PC2 had the largest effect size for 
the interaction term (η2 = 0.179) with an observed power of 0.96. Importantly, the PCs are 
derived mathematically from correlations in the data and directly model the relationship between 
variables without relying on multiple univariate comparisons which would be prone to false 
positives. PCA thus not only improved sensitivity for the original experimental question but also 
specifically established that age skews sub-chronic inflammation away from anti-inflammation 
and towards pro-inflammation. This was not clearly observed in the original cohort and 
univariate analyses with the individual markers.  
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Altogether, our analyses demonstrate the potential of multidimensional analytics in 
reinforcing inferential reproducibility of previous findings while leveraging heterogeneous 
datasets to identify novel pathophysiological patterns. By establishing a functional infrastructure 
towards the FAIR principles of data sharing to promote data reuse, the ODC-TBI acts as a 
critical bridge for dataset standardization and aggregation to facilitate and accelerate such 
efforts. 

 

Discussion 
The ODC-TBI is a data commons developed for preclinical TBI research designed to (1) 

enable data sharing within the research community [12], (2) support data standardization 
guidelines established by the NINDS [20,21], (3) promote FAIR data sharing principles [25], and 
(4) empower Big Data analytics in preclinical TBI research [10]. Through the ODC-TBI, we 
leverage the heterogeneity of preclinical TBI research to identify common TBI immune 
responses across three different preclinical TBI studies that vary time post-injury, age, and 
treatment. Our multivariate, multidimensional analysis reveals patterns of inflammation that 
corroborate the current paradigm of a pro- and anti-inflammatory axis as well as highlight the 
unique relationship of oxidative stress to other inflammatory markers. The ODC-TBI will enable 
researchers to identify common patterns of TBI pathophysiology persistent across injury 
models, injury parameters, experimental designs, and different research labs themselves by 
harnessing data at the level of the individual subject. 

We recognize that the practice of data sharing is still emerging in many biological fields 
including preclinical TBI. There are perceived risks of data sharing that endure among research 
communities even as publishers and funding agencies have begun to require it [23,31,52]. The 
issues of data security, the possibility of being scooped, or the chance of the data being 
misused or used without proper citation are all common concerns highlighted by several survey 
studies [29,30]. With the ODC-TBI, we ensure that the PI has full control of the accessibility of 
their dataset when sharing their work with their peers in the research community and when they 
publish the datasets to the general public. Additionally, ODC-TBI also tracks which users have 
accessed shared datasets and provides the information to the dataset PIs. During dataset 
publication, PIs provide critical metadata such as dataset authors and contributors, and the 
ODC-TBI generates a unique and persistent digital object identifier (DOI) and citation for the 
dataset. Most importantly, all datasets published through the ODC-TBI are done so under the 
Creative Commons CC-BY 4.0 license, meaning any work utilizing those datasets must properly 
cite them much the same way scientific papers are cited. This provides a novel avenue for 
researchers to benefit from their data as a new citable scientific work product. This has direct 
benefits to the data contributor, as data sharing has been found to be associated with an 
increase in citations for researchers [53]. These requirements are explicitly written as part of the 
data use agreement consented to by all users signing up to the ODC-TBI and provide a key 
layer of accountability. Future features of the ODC-TBI platform will include direct peer-to-peer 
sharing functionalities, further diversifying the methods PIs can upload and share their data in a 
protected manner on ODC-TBI. 

We also realize the importance of supporting and integrating common terminology such 
as CDEs to improve all aspects of FAIR data sharing on the ODC-TBI. Indeed, NINDS and the 
TBI research community have recognized the challenges in data comparison due to the lack of 
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common variable names and definitions; this spurred a concerted multi-center endeavor to 
identify and define CDEs to be adopted by clinical and preclinical TBI researchers [15,20,21]. 
We manually aligned variables in 11 datasets described here to NINDS-defined CDEs prior to 
uploading them to the ODC-TBI. To promote the practice of aligning NINDS-defined CDEs, we 
aim to implement a CDE mapping system on the ODC-TBI built upon the engineering 
framework of the InterLex/NeuroLex system developed by NIF [22]. The feature will enable CDE 
mapping after data upload and allow users to align each variable of a dataset to a dictionary of 
CDEs (including NINDS-defined CDEs). The mapping system would increase the accessibility 
and prominence of the NINDS-defined CDEs and help construct a knowledge base of TBI 
research to make data more findable, interoperable, and reusable. As the number of datasets 
shared on the ODC-TBI grows, it will be possible to further validate the prevalence of NINDS-
defined CDEs as well as identify novel CDEs in TBI research. 

 We expect many datasets uploaded to the ODC-TBI to contain missing values for a 
variety of reasons such as those visualized in Figure 3. MVA is a critical component for Big Data 
analytics; many multivariate techniques as well as common univariate approaches (t-test, 
correlation, ANOVA) require complete datasets for analysis. Most commercial statistics tools 
default to dropping subjects (listwise deletion) with missing values. However, researchers are 
often unaware of the impact of missing values, and the practice of listwise deletion can 
introduce bias and contribute to scientific irreproducibility [44,50]. Understanding the types of 
missingness is essential for selecting which data imputation technique can be applied; various 
imputation techniques contain different assumptions that would invalidate specific analyses if 
they are violated [44,54]. In simple cases such as when the Treatment column is not applicable 
in the study but still kept as a column (red-labeled cells in Fig 3), the missing value can be 
imputed with a control value (e.g. control, naïve, 0). More generally, data imputation depends on 
modeling the correlation between variables, and if two variables are never collected in tandem 
because of experimental design or limitations, then identifying their relationship becomes 
increasingly inaccurate. Recognizing when data is missing because of experimental design is 
critical. To this end, the ODC-TBI supports the upload of dataset-associated methodology and 
data dictionaries that can provide context for researchers to interpret when data imputation is 
appropriate. 

Similarly, the methodology documents and data dictionaries can also highlight the 
reasons data may be missing due to technical reasons. In many cases, data is missing because 
of truly random events (e.g. contamination of a single sample during processing or human error 
performing the experimental protocol). In such cases, the missing data would be classified as 
missing completely at random (MCAR), which permits straightforward approaches to imputing 
missing data without having to incorporate patterns of missingness directly into the analysis 
[44]. In other circumstances, the data might be missing not at random (MNAR): the missingness 
is correlated to one of the other variables of interest or itself. An example of MNAR data is when 
a sample’s protein quantification falls below the detectable range of an assay. Instead of 
keeping a potentially inaccurate value, the experimenter decides to exclude the value 
altogether. Here, the missingness is correlated to the variable itself: the value is missing 
because its value falls below the detectable limit. If we were to impute the missing values 
without regard, we would overestimate the true values of the missing data and bias our 
analyses. With proper documentation, such cases of MCAR, MNAR, and missing at random 
(MAR) data can be identified to better inform the appropriate approach to data imputation and 
avoid grave statistical mistakes in analysis. 
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As an illustration of how ODC-TBI data can be reused for further discovery, we pooled 
data across three cohorts of subjects from prior papers [32,35] and performed multivariate 
analysis. In the original univariate analysis of Chou et al 2018, we observed a general 
impairment of anti-inflammatory markers but no difference in pro-inflammatory markers at 7 
days post-injury in aged animals after TBI [32]. While the univariate analysis suggested a shift in 
pro- vs anti-inflammatory states, at best we could conclude that the anti-inflammatory response 
after TBI was blunted by age. Our multivariate analysis shows that across the three studies, 
there is a distinct PC (PC2) that can be interpreted as the pro- vs anti-inflammatory state as 
measured by CD206, TGF-β, IL-1β, and TNF-α. From PC2, we were able to expand on the 
original results and infer that age does bias sub-chronic inflammation after TBI towards pro-
inflammation. Additionally, while Ym1 is considered an anti-inflammatory marker on myeloid 
cells [55], our results suggest that Ym1 is not as informative as CD206, TGF-β, IL-1β, and TNF-
α in explaining the pro- vs anti-inflammatory state of the tissue. Ym1 could be excluded from 
measurement for studies primarily focused on determining the pro- vs anti-inflammatory state. 
While myeloid cells do not exhibit strictly pro- or anti-inflammatory phenotypes after TBI [35,36], 
our analyses show that in the aggregated dataset, there is a marked inverse relationship 
between pro-inflammatory (IL-1β, TNF-α) and anti-inflammatory markers (CD206, TGF-β). 
Overall, the PCA corroborated and augmented previously published research [32,35] while 
increasing the statistical power and inferential validity by analyzing a larger sample (N = 99) 
through dataset aggregation and directly modeling the underlying patterns with a 
multidimensional approach. 

Additionally, our analysis isolates the expression of iNOS in PC3. While expression of 
iNOS has been correlated with pro-inflammatory responses in innate immune cells after TBI 
[55,56], oxidative stress  is largely considered a related-but-separate secondary injury 
mechanism [57]. Our results reinforce this perspective with innate immune cells because of the 
PCA property that the resultant PCs are uncorrelated. Correspondingly, the PCA supports (1) 
modulating inflammation and oxidative stress as two complementary therapeutic approaches 
and (2) targeting innate immune cells as an intersection of both. Importantly, the data we 
analyzed were obtained specifically from isolated innate immune cells and thus do not capture 
the relationships with other secondary injury mechanisms or other oxidative stress pathways. As 
more datasets are shared and published, further multivariate analyses can be done to associate 
or dissociate secondary injuries more holistically and with greater sensitivity.  

Notably, the analytical workflow presented here can be extended to reveal features 
persistent across laboratories, experimenters, injury parameters, and injury models. This 
approach is powerful because it ultimately leverages the heterogeneity of experimental design 
in preclinical TBI research to find common underlying pathophysiology of TBI. Critically, while 
the PCs are extracted through multivariate statistical techniques, assigning labels and 
contextualizing the PCs with the underlying biology requires a combination of statistical rules 
based in the well-established field of factor analysis [58,59] as well as the specific biomedical 
domain expertise. Data sharing through the ODC-TBI will open avenues of collaboration not 
only between researchers in preclinical TBI but also between computational and molecular 
researchers who can provide complementary expertise towards interpreting results. As more 
studies populate the ODC-TBI, such opportunities and interdisciplinary collaboration will identify 
features of TBI across an even broader array of heterogeneity and uncover possible therapeutic 
targets and biomarkers that would be applicable to a broader patient population. 
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Materials and Methods 
Data Formatting and Upload to the ODC-TBI 
Data from 11 published studies at UCSF were collected from various data sources and 
structured according to the Tidy data format [28]. Variable names were aligned to NINDS 
preclinical TBI CDEs when possible [20,21]. Data was uploaded following the ODC-TBI data 
upload workflow. The specific variables and data analyzed in this paper will be published and 
made accessible on the ODC-TBI. 

 

Data Summarization and Missing Values Visualization 
The datasets were downloaded from the ODC-TBI and aggregated using the open-source 
programming language R [60]. Data summaries were generated using tidyverse [61] for 
dataframe manipulation and ggplot2 [62], RColorBrewer [63], and colorRamps [64] R packages 
for visualization. 

Missing values visualizations were generated using the “vis_miss” function in the naniar R 
package [65]. Labeling of the types of missingness was done manually by relying on researcher 
familiarity with the dataset. 

 

Multidimensional Use Case Workflow 
Quantitative PCR measures of six cytokines (IL-1β, TNF-α, iNOS, Ym1, CD206, and TGF-β) 
from three experiment cohorts [32,35] were combined into a single dataset. A missing values 
visualization was generated using the naniar R package, and rows that were missing values 
across all cytokine variables (i.e. columns) were removed (1 row removed). Little’s missing 
completely at random (MCAR) test was performed using the “LittleMCAR” function in the 
BaylorEdPsych R package [66] to determine whether the pattern of missingness is not MCAR 
(i.e. missing at random (MAR) or missing not at random (MNAR)) [50]. 

To impute missing values, we used the “mice” function in the mice R package [67] with the 
parameters: 10 imputations, predictive mean matching method, and a seed value of 200. Linear 
Principal Component Analysis (PCA) was performed using the “prcomp” function in the stats R 
package [60] with centering and scaling [68,69]. 

To correct for the batch effect (i.e. due to study), we added a z-score standardization step after 
removing the rows missing data across all columns and prior to data imputation. We first 
calculated the mean and standard deviation for each cytokine for each of the three studies. For 
each cytokine datapoint, we then subtracted the respective mean and divided by the standard 
deviation of the study. 

To determine the stability of the PCA results across the 10 imputations generated through mice, 
we utilized the “component_similarity” function in the syndRomics R package [49]. We reported 
the resulting Congruence Coefficient and Cattell’s salient similarity metrics. Because the PCA 
outputs for each imputation were highly similar, we averaged all 10 imputations together to 
generate the final imputed dataset. PCA was then performed on the imputed, averaged dataset 
for further analysis. 
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To visualize the scree plot, we calculated the variance accounted for (VAF) for each principal 
component (PC) from the “sdev” output of “prcomp”: 

VAF� �  ���	�

� Σ����	��⁄ ,  

where � is the PC number and the denominator is the sum of the variance across all PCs. We 
selected the top PCs that collectively explained over 80% of the variance in the data and had 
biological interpretations. PC loadings were calculated and visualized using the 
“syndromic_plot”, “barmap_loading”, and “heatmap_loading” functions in the syndRomics R 
package. PC scores were obtained from the “x” output of “prcomp” which transformed the 
original variables into values along each PC. 

To determine the study and injury effects (Fig 5) and to determine the injury and age effects 
(Fig 7), we performed two-way ANOVA with Tukey HSD posthoc using the “aov” and 
“TukeyHSD” functions in the stats R package respectively. 

To compare effect sizes and observed power, we performed two-way ANOVA for the main 
effects and interaction of Injury and Age on PC1 and PC2 of adult and aged sham animals and 
animals at 7 days post-injury from the aggregated dataset (n = 47). We additionally filtered for 
the Chou et al 2018 cohort (n = 31) and performed two-way ANOVA on the six individual 
inflammatory markers. The effect size (η2) of the Injury effect, Age effect, or interaction was 
calculated from the ANOVA F table as: 

�� � ���� ��� �� ������������ ��� �� ������� 

To obtain observed power, we calculated the partial η2: 

������� ��
� � ���� ��� �� ������������ ��� �� ������� � �������� ��� �� �������� 

We then converted the partial η2
0 (which is based on sample estimates) to the partial η2 based 

on Cohen’s f according to the G*Power manual [70]: 

������� �� � ������� ��
� � �� � ���� �  � �  ������� �

�

�� 

where N is the total number of samples and k is the total number of groups in the experimental 
design. Partial η2 was converted to Cohen’s f: 

� �  � ������� �21 �  ������� �2 

The observed power was then calculated from Cohen’s f using the “pwr.f2.test” function in the 
pwr R package [71].  
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Figure Legends 
Figure 1. Open data commons for Traumatic Brain Injury (ODC-TBI) data flow and accessibility 
summary. (A) Experiments are currently carried out by individual researchers and labs. The 
resulting datasets are commonly preserved within lab resources (e.g. harddrives, lab notebooks, 
etc). The ODC-TBI provides documentation and guidance to help standardize datasets with 
respect to NINDS-defined preclinical common data elements (CDEs). Datasets from multiple 
labs and centers can then be uploaded into the ODC-TBI and shared and combined for further 
analysis. (B) The ODC-TBI has five user types with three steps for security. Each user type has 
different available functions on the site. After an email verification and approval by the ODC-TBI 
committee to ensure the user is a researcher in the TBI field, they become a general member. 
They can then join or create a lab, which requires the lab PI’s approval. Lab members can 
upload and share their data within the lab they have joined. Lastly, PI-level users can also 
initiate the dataset release/publication process, increasing the accessibility of their data to 
others outside of their lab. (C) ODC-TBI consists of four Data Spaces. Each Data Space has 
different levels of accessibility. Datasets are delegated to a Personal space when they are first 
uploaded; Personal datasets are accessible only to the uploader and their lab PI. Datasets are 
shared into the Lab space where they can be accessed by anyone in the lab. Datasets can be 
released into the Community space where other general members can access them. Lastly, PIs 
can publish their datasets which will make the dataset accessible to the general public as citable 
units of research with unique digital object identifiers. 

 

Figure 2. Descriptive summaries of data aggregated from 11 preclinical TBI publications from 
UCSF on the ODC-TBI. (A) The 11 datasets constituted data from 1143 unique animals, 
96.66% of which are mice and the remaining 5.34% of which are rats. (B) 72.53% of the 
subjects were male animals and 6.82% were female. 20.65% of the subjects were missing 
records of male or female. (C) The primary TBI model utilized was the controlled cortical impact 
with 66.4% of experiments utilizing a parietal injury, 6.21% utilizing a frontal injury, and 12.25% 
not listing the site of CCI in the uploaded dataset. Additionally, 6.91% of the data were from a 
closed head injury model and 8.22% of the data were from a repeated closed-head injury model 
utilizing the CHIMERA impactor. (D) Of the mice subjects, 82.72% of the subjects were wildtype 
mice. The remaining subjects included C3-knockout (0.37%), CCR2-knockout (1.57%), CCR2-
rfp transgenic (3.23%), and CX3CR1-gfp and CCR2-rfp transgenic (12.11%). These transgenics 
reflected the interest in inflammatory pathways after TBI in the publications. (E) The mice 
subjects’ age-at-time-of-injury showed a bimodal distribution encompassing young (2-6 mo) and 
old (16+ mo) animals. The age distribution reflected the focus on the effect of aging on TBI 
processes. (F) Data was collected at a variety of timepoints from the mice experiments. The 
timepoints with the greatest number of observations were 0 days post-injury (dpi), 1 dpi, 7 dpi, 
and 28 dpi. The breadth of timepoints reflected time course studies as well as the interest in 
both acute and chronic effects of TBI in the studies. 

 

Figure 3. Missing value visualizations of Chou et al 2018. (A) Typical missing value 
visualization shows which elements (i.e. cells) contain a value and which do not, which are thus 
termed “missing”. The uploaded data showed generally low missingness for variables (i.e. 
columns) corresponding to NINDS CDEs and fairly high missingness for variables 
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corresponding to collected experimental measures. Each row corresponded to an observation, 
in this case a single animal subject. (B) Types of missingness were manually color-coded based 
on the type of missingness. The majority of the missing values were “Not Collected (by design)”; 
the dataset constituted 8 separate experiments, and experimental outcomes were specifically 
collected for subjects belonging to one experiment. The result was an extremely sparse dataset 
by design. Another source of missingness was when a variable is “Not applicable,” which we 
expect in cases when a NINDS-defined CDE is not applicable to the study design. In this 
example, no treatments were given, so the treatment CDE column was entirely missing values. 
Data could also be irrecoverable due to “Missing records,” such as the subject’s sex in this 
example and as reflected in Figure 2B. Lastly, data from experiments could also have been 
“Removed due to technical reasons”. 

 

Figure 4. Multidimensional analytics use case. (A) We implemented an analysis workflow 
including missing data analysis, missing data imputation, principal component analysis (PCA), 
and syndromic visualizations. After an initial analysis, we implemented an additional z-score 
standardization step prior to data imputation to correct for a study effect. (B) Data was 
aggregated from three experiments (figures) from two papers: Chou et al 2018 and Morganti et 
al 2015. Visualization of the missing data show 1.3% of the dataset were missing values. 
Notably, one entire row was entirely missing, and the other two missing values were from the 
Ym1 variable. (C) Conceptual representation of PCA. The original variables (TNF-α, IL-1β, Ym1, 
CD206, TGF-β, and iNOS) were categorized into the domains of pro-inflammation, anti-
inflammation, and oxidative stress based off existing knowledge. PCA captures the underlying 
relationship between the variables – and thus the knowledge domains – to derive new domains 
from the data. (D) The derived PC can be represented as a syndromic plot which visualizes the 
contributions (i.e. loadings) of each variable to the PC. Furthermore, the PC captures a portion 
of the variance in the data which is reflected by the percentage value in the center of the 
syndromic plot. In the example PC, 48% of the variance in the dataset was accounted for, and 
all six of the variables were loading positively. 

 

Figure 5. Change in PC scores after correcting for study. (A) The datapoints mapped onto PC 
space (i.e. PC1 and PC2) grouped by Study and Injury groups. In the uncorrected PC space, 
PC1 primarily captured the variance from Study 2 while PC2 primarily captured the variance 
from Study 1 (left). Two-way ANOVA revealed significant main effects of Study and Injury and 
significant interaction along PC1 (Injury main effect: F(1,93)=8.30, p<0.005; Study main effect: 
F(2,93)=18.32, p<0.001; Injury and Study interaction: F(2,93)=4.84, p<0.05) and PC2 (Injury main 
effect: F(1,93)=46.69, p<0.001; Study main effect: F(2,93)=4.64, p<0.05; Injury and Study 
interaction: F(2,93)=5.63, p < 0.005). After correcting for study, PC1 primarily captured the 
variance between Sham and TBI samples, and neither PC1 nor PC2 appeared to represent the 
variance from a single study (right). Two-way ANOVA revealed only a significant main effect of 
Injury along PC1 (F(1,93)=84.42, p<0.001). (B) The datapoints for animals belonging to similar 
experimental groups mapped onto the uncorrected and study-corrected PC spaces. Before 
correcting for the study effect, adult animals at 7 days post-injury (dpi) from study 1 and study 2 
fell on opposite sides of the sham experimental groups (left). After correcting for study, the 7 dpi 
animals clustered more closely in the PC space and exhibited similar PC1 direction in relation to 
sham animals (right). 
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Figure 6. Syndromic visualization of the principal component analysis (PCA). (A) The scree plot 
after running PCA on the imputed dataset revealed that the first three principal components 
(PCs) account for 83.5% of the variance in the aggregated dataset. (B) Syndromic plot 
visualization showed the significant variable loadings for each PC. PC1 was labeled as overall 
inflammation, PC2 as the pro- vs anti-inflammatory axis, and PC3 as iNOS expression. (C) The 
barmap visualization provides additional information including the variable loadings that were 
below the threshold of significance (0.2) for each PC. The barmap denotes which loadings were 
above the significance threshold with an asterisk. 

 

Figure 7. Validation of results from previous studies with the aggregate analysis. Animals 
corresponding to sham vs TBI at 7 days post-injury and Adult (3mo) vs Aged (18+ mo) 
experimental groups were filtered from the aggregated dataset and mapped onto the study-
corrected PC space. Sham animals clustered closely regardless of age. TBI increased the 
overall inflammation (PC1) for TBI animals (two-way ANOVA; Injury main effect: F(1,43)=65.14, p 
< 0.001) without a significant main effect of Age or interaction. Along PC2, aged animals 
exhibited a shift towards pro-inflammation while adult animals shifted towards anti-inflammation 
at 7 days post-injury (two-way ANOVA; Injury main effect: F(1,43)=7.44, p<0.01; Age main effect: 
F(1,43)=18.69, p<0.001; Injury and Age interaction: F(1,43)=15.02, p<0.001. Tukey HSD: Adult TBI 
vs Aged TBI, p<0.001). 

 

SFigure 1. Data and data dictionary formatting for ODC-TBI upload. (A) Experimental data is 
commonly recorded in spreadsheets with various structures designed to be human-readable 
including multiple tables and nested labels on a single spreadsheet. (B) ODC-TBI requires data 
to be formatted into the Tidy format. The first row contains the variable (i.e. column) names, and 
each column represents one of the dataset variables. Each corresponding row contains the 
values for an observation. (C) ODC-TBI allows the upload of a data dictionary with each 
dataset. The ODC-TBI data dictionary contains the following five columns: VariableName, Title, 
Unit_of_Measure, Description, and Comments.  

 

SFigure 2. Heatmap representation of PCA. The heatmap visualization provides similar 
information as the barmap and shows all variable loadings including those below the threshold 
of significance (0.2) for each PC. The heatmap also shows the loadings for all PCs, including 
PC4, PC5, and PC6. 

 

Supplementary Table 1. Effect size and observed power for Injury and Age effects for PCs and 
univariate inflammatory markers (sorted by descending effect size for each effect). 
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