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Abstract 
Resistance to anti-estrogen therapy is an unsolved clinical challenge in successfully treating 
ER+ breast cancer patients. Acquisition of mutations can confer heritable resistance to cancer 
cells, enabling their clonal selection to establish a drug-resistant population. Recent studies 
have demonstrated that cells can tolerate drug treatment without any genetic alterations too; 
however, the mechanisms and dynamics of such non-genetic adaptation remain elusive. Here, 
we investigate coupled dynamics of epithelial-mesenchymal transition (EMT) in breast cancer 
cells and emergence of reversible drug resistance. Our mechanism-based model for the 
underlying regulatory network reveals that these two axes can drive one another, thus 
conferring bidirectional plasticity. This network can also enable non-genetic heterogeneity in 
a population of cells by allowing for six co-existing phenotypes: epithelial-sensitive, 
mesenchymal-resistant, hybrid E/M-sensitive, hybrid E/M-resistant, mesenchymal-sensitive 
and epithelial-resistant, with the first two ones being most dominant. Next, in a population 
dynamics framework, we exemplify the implications of phenotypic plasticity (both drug-induced 
and intrinsic stochastic switching) and/or non-genetic heterogeneity in promoting population 
survival in a mixture of sensitive and resistant cells, even in the absence of any cell-cell 
cooperation. Finally, we propose the potential therapeutic use of MET (mesenchymal-
epithelial transition) inducers besides canonical anti-estrogen therapy to limit the emergence 
of reversible drug resistance. Our results offer mechanistic insights into empirical observations 
on EMT and drug resistance and illustrate how such dynamical insights can be exploited for 
better therapeutic designs. 
 
Keywords Phenotypic plasticity; Drug-tolerant persisters; Non-genetic heterogeneity; 
Epithelial-Mesenchymal Transition; Drug resistance. 
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Introduction 

Emergence of drug resistance remains the biggest hurdle in clinical management of cancer. 
It has been largely tacitly assumed that the acquisition of genomic mutations is a necessary 
and sufficient condition for drug resistance. However, recent studies across multiple cancers 
have suggested a set of alternative non-genetic mechanisms that can facilitate the survival of 
cancer cells in the presence of cytotoxic therapies (1). These non-genetic mechanisms do not 
entail changes in genotype (underlying DNA sequence), but in the manifestation of phenotype 
(2, 3) through epigenetic or transcriptional reprogramming and/or cell-state transitions (4–8). 
Unlike genetic changes which are ‘hard-wired’ and irreversibly passed to further generations, 
the non-genetic changes are reversible and stochastic in nature and thus not necessarily 
heritable. None of the existing therapies has been yet shown to be capable of outsmarting this 
adaptive ability of cancer cells to alter their phenotype without modifying their genotype. 
Instead, drug treatment can promote such cell-state transitions, thus potentially worsening the 
disease progression (9). Thus, despite major advancements in targeted therapy, mechanisms 
of non-genetic heterogeneity and reversible drug resistance remain largely elusive. 

Tamoxifen was the first targeted therapy for breast cancer which was given to ER+ (Estrogen 
receptor-positive) breast cancer patients to bind to Estrogen Receptor (ER) and antagonize 
the proliferative ability potentiated by binding of ER to growth hormone estrogen (10). Estrogen 
receptor alpha (ERα) is one of the two forms of ER that lies upstream to various genomic and 
non-genomic signalling pathways that control cellular proliferation and survival, essentially 
regulating the growth of normal breast tissue and tumor (10). ERα is considered as a key 
prognostic marker; increased response to anti-estrogen therapies (such as tamoxifen) and 
better patient survival is associated with higher levels of ERα (11). However, one-third of 
women treated with tamoxifen for five years have recurrent disease within 15 years, with a 
majority of them being metastatic (10, 12). Thus, development of acquired resistance to 
tamoxifen limits its efficacy. 

One of the molecules associated with tamoxifen insensitivity is ER-α36, a variant form of ERα 
(also known as ER-α66) (13, 14). As compared to ER-α66, ER-α36 lacks both transcriptional 
activation domains (AF-1 and AF-2) but retains the DNA-binding and ligand-binding domains. 
ER-α36 has been associated with activating downstream signaling pathways that promote cell 
proliferation, highlighting its potential role in development of drug resistance against anti-
estrogen treatment (15–17). Mechanistically, ER-α36 has been shown to be transcriptionally 
activated by tamoxifen (18) but inhibited by ER-α66 (19). 

Another process associated with tamoxifen resistance is epithelial-mesenchymal transition 
(EMT) (20, 21), a cell plasticity program involved with drug resistance across cancers (22, 23). 
Loss of ERα induced changes concomitant with EMT (24). Consistently, tamoxifen-resistant 
cells were seen to grow loose colonies with weak cell-cell adhesion, typical of EMT (25). On 
the other hand, EMT-inducing transcription factors such as SLUG, ZEB1 and SNAIL are 
known to drive tamoxifen resistance (26–28). This bidirectional coupling between ERα and 
EMT pathways is reinforced by analysis of 118 breast tumor specimens showing specific 
association of ER-α36 with various EMT markers such as MMP9, SNAIL1 and VIM (29). 
However, given that EMT is a reversible phenomenon where cancer cells can stably acquire 
one or more hybrid epithelial/ mesenchymal phenotypes too (30), many questions remain: a) 
can EMT drive acquisition of reversible resistance to tamoxifen, i.e. can the reverse of EMT – 
Mesenchymal-Epithelial Transition (MET) – restore tamoxifen sensitivity? b) can tamoxifen 
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resistance drive a partial or full EMT? and c) do cells need to undergo a full EMT to gain 
tamoxifen resistance, or can epithelial and hybrid E/M cells also possibly show those traits?  

Here, we develop a mechanism-based model based on a gene regulatory network among 
known between components of EMT and tamoxifen resistance (TamR) associated pathways. 
Dynamical simulations of this network reveals different “attractors” (expression patterns) that 
can emerge, thus enabling the (co)-existence of various states along EMT and TamR axes : 
ES (epithelial – Tam sensitive), ER (epithelial – Tam resistant), HS (hybrid – Tam sensitive), 
HR (hybrid – Tam resistant), MS (mesenchymal – Tam sensitive) and MR (mesenchymal – 
Tam resistant). Further, the emergent dynamics of the coupled processes of EMT and TamR 
facilitates either process to be able to drive another one, thus enabling cells to switch among 
multiple phenotypes along these interconnected axes and driving non-genetic heterogeneity. 
Finally, we develop a population dynamics model to decipher the contribution of intrinsic and 
tamoxifen-induced phenotypic plasticity and non-genetic heterogeneity in a cell population. 
Our simulations suggest that the long-term maintenance of TamR cells in a population can 
arise from many possible scenarios: a) non-genetic heterogeneity in sensitivity to tamoxifen 
in the initial cell population, b) phenotypic plasticity enabled by EMT and/or drug treatment. 
Thus, the emergence of TamR can be potentially curtailed through combinatorial targeting 
both EMT and ERα pathways. 

 

Results 

Crosstalk between EMT and Estrogen receptor signaling result in multiple phenotypes 
showing broad association between EMP and drug resistance in ER+ breast cancer 

First, we identified a gene regulatory network (GRN) that captures known interactions among 
various players involved in EMT and in tamoxifen resistance. This network incorporates the 
reported interactions among estrogen receptor molecules ERα66 and ERα36, and EMT 
regulators SLUG, ZEB1 and miR-200 (Fig 1A). ERα66 can repress ERα36 expression in an 
estrogen-independent manner (19), and activate its own expression (31). ERα66 can also 
exert controls over the EMT axis by repressing SLUG (32). SLUG and ZEB1 are key EMT-
inducing transcription factors that can regulate the expression of ERα66 and ERα36, thereby 
controlling tamoxifen resistance. SLUG and ZEB1 can repress ERα66 (28, 33), while ERα36 
can enhances the expression of ZEB1 through SNAIL and/or by suppression of CDH1 (18, 
34, 35). ZEB1 and miR-200 form a mutually inhibitory self-activatory feedback loop, and in 
conjunction with their interaction with SLUG, they determine the EMT phenotype of a cell (35). 

To elucidate the emergent dynamics of this GRN, we simulated it using RACIPE (Random 
Circuit Perturbation) - a computational framework that solves a set of coupled ODEs (Ordinary 
differential equations) to examine the various phenotypic states enabled by the GRN, by 
sampling an ensemble of kinetic parameter sets from a biologically relevant parameter range 
(36). For each distinct parameter set, it then solves the ODEs to obtain possible steady states. 
For certain parameter sets, more than one steady state (phenotype) is achieved, suggesting 
possible stochastic switching among those states under the influence of biological noise.  

Upon simulating our GRN using RACIPE, we observed multiple cell states that are visualized 
qualitatively as a hierarchically clustered heatmap (Fig 1B). Qualitatively, ZEB1, SLUG and 
ERα36 are often co-expressed and similarly, ERα66 and miR200 are co-expressed. The 
existence of these two major expression patterns is corroborated by K-means clustering  (Fig 
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S1A). Co-expression of ERα66 and miR200 can be construed as an Epithelial Sensitive (ES) 
phenotype, given that the presence of ERα66 associates with response to an anti-estrogen 
drug (e.g. Tamoxifen). However, in cases when ERα36 is higher, such cells are less likely to 
respond to an anti-estrogen compound and will exhibit drug tolerance or resistance. Thus, co-
expression of ZEB1 and SLUG with ERα36 is interpreted as a Mesenchymal-Resistant (MR) 
phenotype. Further, we defined different cell states along the EMT and the drug resistance 
(TamR) axes. EM score is defined as the difference in normalized values of ZEB1 and miR-
200; similarly, resistance score is defined as difference in normalized values of ERα36 and 
ERα66. Higher EM scores correspond to a mesenchymal phenotype, and higher resistance 
scores correspond to a resistant phenotype. A hierarchically clustered heatmap on the EM 
and resistance scores confirmed the existence of the ES and the MR phenotypes, along with 
the indication of other relatively less prevalent cell states such as Epithelial-Resistant (ER), 
Hybrid-Sensitive (HS) and Hybrid-Resistant (HR) phenotypes (Fig S1B).  

Next, we plotted a normalized frequency histogram for the EM score of steady-state solutions 
obtained via RACIPE. The resultant distribution was visibly trimodal in nature (Fig 1C) with 
two dominant peaks corresponding to epithelial and mesenchymal phenotypes. The middle 
peak was smaller, suggesting the smaller abundance of hybrid E/M phenotypes expressing 
intermediate values of ZEB1 and miR-200, as earlier postulated (35) (Fig S1C). Similarly, the 
normalized frequency histogram of resistance score was bimodal, corroborated by existence 
of two distinct clusters along the ERα66-ERα36 axes (Fig S1C). To better visualize the various 
phenotypes enabled by the GRN, we performed UMAP analysis on the steady states and 
colored the individual steady states by either EM score or Resistance score. A qualitative 
comparison of the two UMAP plots revealed that the epithelial cluster was more likely to be 
sensitive while the mesenchymal cluster was more likely to be resistant (Fig 1D). The hybrid 
E/M (H) phenotype can be either Resistant (R) or Sensitive (S) (Fig 1D, S1D).  

To further quantify the association between phenotypes on EM and resistance axes, we 
plotted the individual steady state solutions on these axes as a scatter plot. Discretization of 
the phenotypes along these axes (see Methods), and defined six possible distinct phenotypes 
– ES (Epithelial-Sensitive), ER (Epithelial-Resistant), HS (Hybrid-Sensitive), HR (Hybrid -
Resistant), MS (Mesenchymal-Sensitive), and MR (Mesenchymal-Resistant) (Fig 1E). The ES 
and MR phenotypes were the most dominant while MS was the least prevalent. This analysis 
indicates that while there exists a strong association with the EM status and drug (tamoxifen) 
resistance at a cellular level (r = 0.806, p < 0.01), other phenotypes – ES, HR, HS and MS – 
may exist too, therefore highlighting the non-binary and semi-independent nature of EM 
phenotypes and its association with tamoxifen resistance.  

Next, we assessed the molecular profiling of the six identified phenotypes. ZEB1 levels 
showed a monotonic increase in expression levels across the phenotypes ES, ER, HS, HR, 
MS and MR (Fig 1F). Intriguingly, SLUG levels, which was not used for classification of either 
EM or Resistance scores, appeared to be significantly higher in all the resistant states for a 
given EM phenotype, especially the hybrid E/M phenotype (Fig 1F). SLUG has previously 
been shown to be associated hybrid E/M states (35). Based on these observations, SLUG can 
be considered as a key player in driving resistance, especially in hybrid E/M phenotypes.  
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Finally, we examined whether this strong association between EM and Resistance scores/ 
phenotypes is specific to the network topology of this GRN only. To test this hypothesis, we 
created an ensemble of 100 randomized GRNs controlling for the total number of nodes in the 
network, net number of activation and inhibitory edges, and in and out degree of each node. 
We ran RACIPE simulations on this ensemble of networks and calculated the correlation 
coefficient between the EM and Resistance scores. The resulting distribution is centered 
around 0, and the ‘wild type’ GRN (Fig 1A) had the strongest correlation among the ensemble 
(Fig 1G), depicting the uniqueness of this network topology to this strong association. Further, 
we assessed the impact of other indirect gene regulatory links for ERα36, such as its self-
activation and its ability to suppress the activity of ERα66 (16, 37). Addition of these links 
individually or in combination resulted in qualitatively similar results in the form of clustered 
heatmap and UMAP plots (Fig S2), suggesting that the GRN in Fig 1A is sufficient to capture 
fundamental features of EMP and reversible drug resistance observed in ER+ breast cancer.  

Figure 1: Emergent dynamics of coupled EMT-ERα signaling network. A. Gene 
regulatory network (GRN) showing crosstalk between EMT and Estrogen receptor (ERα) 
signaling. Green arrows represent activation links; red hammers represent inhibition. B. 
Heatmap of stable steady-state solutions for network shown in A, obtained via RACIPE. C. 
Density histogram of EM Score (= Zeb1 – miR-200) and Resistance Score (= ERα36 – ERα66) 
fitted to 3 and 2 gaussian distributions respectively. Red dotted lines show segregation 
between phenotypes: Epithelial (E), Hybrid (H) and Mesenchymal (M) for EM score, and  
Resistant (R) and Sensitive (S) phenotype for the latter. D. UMAP dimensionality reduction 
plots for steady-state solutions states obtained by RACIPE colored by either EM Score or 
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Resistance score. E. Scatter plot showing corresponding EM Score and resistance score for 
all RACIPE solutions, and six biological phenotypes. Spearman correlation coefficient (ρ) and 
corresponding p-value are reported. F. Gene expression levels in six biologically defined 
phenotypes. Dotted line represents the monotonic increase in levels of ZEB1 across the 
phenotypes. Standard deviation is plotted as error bars. G. Density distribution of Spearman 
correlation coefficients (ρ) across an ensemble of 100 randomized versions of the GRN shown 
in A. Red line shows the correlation coefficient of the wild-type network shown in A.  

 

Clinical data support the predicted association between EMT and loss in ERα activity  

As a preliminary validation of our model predictions, we probed the association between EMT 
programme and the loss in ERα activity with a concurrent gain in tamoxifen resistance 
markers. Specifically, we investigated clinical datasets of ER+ breast cancer patients treated 
with tamoxifen and observed that ESR1 (gene for ERα) levels were significantly negatively 
correlated with ZEB1 and SNAI2 (SLUG) levels, as well as with single-sample GSEA 
(ssGSEA) scores for MSigDB hallmark EMT signature (Fig 2A). Similarly, ssGSEA scores for 
signatures of resistance to tamoxifen at a proteomic level (TamRes) (38) were found to 
positively correlate with the levels of ZEB1, SNAI2 and MSigDB hallmark EMT programme 
(Fig 2B). Further, CDH1, a well-known epithelial marker (E-cadherin), was found to positively 
correlate with ESR1 levels, as well as with ssGSEA scores for MSigDB late estrogen 
response. Consistently, VIM, a canonical mesenchymal marker, showed negative correlation 
with the ssGSEA scores for MSigDB late estrogen response (Fig 2C).  

Figure 2: Gene expression analysis of publicly available datasets. A. Correlation of ESR1 
with ZEB1, SNAI2 (SLUG) and activity of MSigDB Hallmark EMT signature (ssGSEA scores) 
in a cohort of 87 ER+ breast cancer patients (GSE6532). B. Correlation of Tamoxifen 
Resistance (ssGSEA scores) signature with expression of ZEB1 and SNAI2 and activity of 
Hallmark EMT signature in primary breast tumors treated with tamoxifen in adjuvant setting 
(GSE9195). C. Correlation of ESR1 expression levels and estrogen response activity with 
CDH1 and VIM in tumor samples from 298 ER+ patients treated with tamoxifen for 5 years. 
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D. Diagonal correlation matrix between expression levels (ZEB1, SLUG, VIM, CDH1, ESR1), 
EMT scoring metrics (76GS, MLR and KS), gene set activity estimation (ER early response, 
ER late response, Tamoxifen resistance, Hallmark EMT signatures) for 60 samples of micro-
dissected tumour biopsies (GSE1378) and whole tissue tumour biopsies (GSE1379)  from a 
cohort of patients treated with Tamoxifen for 5 years. Spearman correlation coefficient (ρ) and 
corresponding p-value for scatter plots are reported. 

 

Next, for a more comprehensive analysis of such correlations, we investigated pairwise 
correlations among expression levels of ESR1, canonical mesenchymal (SLUG, VIM, ZEB1) 
and epithelial (CDH1) genes, three EMT scoring metrics (76GS, KS, MLR) (39), and four gene 
set activity estimation via ssGSEA scores (ERα early response, ERα late response, Tamoxifen 
resistance and Hallmark EMT). Across patient samples irrespective of whether the samples 
were micro-dissected tumour biopsies or whole tissue tumour biopsies, we observed an 
expected positive correlation among EMT metrics, mesenchymal markers and ssGSEA 
scores for hallmark EMT (Fig 2D). ESR1 gene expression levels usually correlated negatively 
with mesenchymal markers and/or EMT scoring metrics. Conversely, Tamoxifen resistance 
signature correlated positively with the mesenchymal markers and EMT ssGSEA scores, but 
negatively with ESR1 (Fig 2D). Put together, this analysis supports our prediction about an 
association between activation of EMT programme and compromised ERα signaling activity. 

 

Reciprocal driving of the EMT programme by suppressing Estrogen receptor activity 
and vice versa  

After investigating the correlations among EMT and tamoxifen resistance axes, we inspected 
whether these processes could drive one another. To understand the effects of perturbations 
of the EM axis on estrogen signaling axis and drug resistance, we first simulated 
overexpression (OE) and downexpression (DE) of ZEB1. Over expression of ZEB1 led to a 
significant increase in the frequency of MR phenotype with concurrent decrease in ES, HR 
and ER phenotypes (Fig 3A). Opposite trends were seen on in ZEB1 DE case, as expected. 
An increase in MR phenotype upon ZEB1 over-expression indicates that as cells are driven to 
undergo EMT via ZEB1, they lose their sensitivity to anti-estrogen drugs. This change should 
reflect as a decrease in estrogen signaling activity in cells. To test this hypothesis, we analyzed 
publicly available gene expression data for ER+ breast cells/cell lines induced to undergo 
EMT. In HMLE cells where EMT was induced by over-expression of Twist, Snail or Slug, 
ssGSEA scores for Hallmark EMT gene list showed significant increase in enrichment levels 
in the EMT program with a concurrent decrease in the activity of gene lists representing early 
Estrogen Receptor response and late Estrogen Receptor response (Fig 3B). Similarly, in other 
datasets, EMT induction via TGFb, Twist, Gsc or Snail in HMLE cells, or that via Six1 over-
expression in MCF7 (ER+ breast cancer cell line) cells showed reinforcing trends including 
enrichment of the Tamoxifen Resistance program (Fig 3C, S3A). Over-expression of SNAIL 
in MCF10A upregulated ZEB1 and the EMT program and had downregulation of CDH1 levels 
as well as a concurrent drop in Estrogen Receptor activity (both early response and late 
response) (Fig S3B). Interestingly, SLUG levels were reduced upon SNAIL over-expression, 
reminiscent of reports about mutual repression between SNAIL and SLUG (40). Given that 
SLUG can induce a partial EMT while SNAIL is likely to induce more of a complete EMT (35, 
41), these results together suggest that drug resistance can be achieved even through a partial 
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EMT state, and that SNAIL and SLUG may follow different paths in the multi-dimensional EMT 
landscape, both of which can confer tamoxifen resistance to ER+ breast cancer cells.  

Next, we inquired whether perturbing the levels of ERα66 could lead to a more mesenchymal 
phenotype by inducing either a partial or complete EMT. We simulated the GRN by RACIPE 
with both over-expression (OE) and down-expression (DE) of ERα66, and observed that the 
over-expression of ERα66 caused a marked reduction in the levels of all resistant phenotypes 
with a concomitant increase in epithelial sensitive (ES) phenotypes (Fig 3D). Conversely, 
downregulation of ERα66 gene caused a significant drop in the prevalence of ES phenotype 
with cells being pushed towards an ER, HR or MR phenotype (Fig 3D). Thus, the impact of 
ERα66 down-regulation can be multi-faceted where it could drive the system towards a more 
resistant state without changing the EMT status (i.e. to ER phenotype) or could push the cells 
to a resistant state by making cells more mesenchymal. Interestingly, when ERα was silenced 
in MCF7 cells, there was a marked increase in the levels mesenchymal genes such as SLUG, 
VIM and ZEB1 with a significant decrease the levels of CDH1 (Fig 3E). The effect of ERα 
silencing was also observed in decreased early and late Estrogen receptor activities, and a 
concurrent increase in the activity levels of the EMT hallmark gene signature (Fig 3E). This 
result establishes that ERα silencing alone can drive EMT and consequently exhibit a drug 
resistant phenotype. Further, we observed that in resistant MCF7 cells derived from the 
sensitive parental population, the estrogen response pathways were significantly suppressed, 
together with upregulation of EMT program (Fig 3F). In another dataset consisting of sensitive 
and resistant cells, both CDH1 and ESR1 levels were significantly lower in resistant cells and 
SLUG was significantly upregulated (Fig S3C). Although ZEB1 and VIM were not significantly 
upregulated, the overall EMT program was higher in resistant cells than in sensitive breast 
cancer cells (Fig S3C). Given the profiles of CDH1, ZEB1, ESR1 and VIM in these MCF7 
cells, they could be construed as a hybrid-resistant (HR) phenotype, at least at a bulk level. 

Further, we evaluated whether these trends were also preserved at a single cell level. We first 
investigated the 10 cell sequencing data of ER+ breast cancer cells (42). The 2D scatter of 
activity levels of epithelial and mesenchymal genes revealed an expected negative correlation 
denoting the reciprocal epithelial and mesenchymal phenotypes (Fig 3G). Intriguingly, we 
found that epithelial cells were more likely to harbor a responsive estrogen receptor pathway 
(Fig 3G). Further, the activities of early and late estrogen receptor hallmark genes showed a 
strong positive correlation with the 76GS EMT scoring method where higher scores indicate a 
more epithelial phenotype (Fig S3D). The activity of BRCA specific ESR1 regulon was also 
found to be significantly positively correlated with 76GS EMT scoring metric, suggestive of  an 
active estrogen receptor signaling in epithelial cells rather than mesenchymal ones (Fig S3D). 
Finally, we examined if EMT induction at a single cell level could itself drive a suppression of 
the estrogen receptor pathway activity. In MCF7 cells treated with TGFb to induce EMT, we 
plotted the EMT program activity as a function of pseudo-time as reported earlier (43). EMT 
activity score showed a significant positive correlation with the pseudo-time, establishing 
pseudo-time as a proxy for EMT progression. Upon coloring by the BRCA specific ESR1 
regulon activity, we found that lower values of EMT activity were more likely to be associated 
with a higher ESR1 regulon activity level (Fig 3H). We confirmed this observation by plotting 
the activities of early and the late estrogen receptor hallmark genes and the ESR1 regulon 
with pseudo-time. All of them showed a significant negative correlation with pseudo-time, 
further supporting the earlier observation (Fig S3E).  Overall, we demonstrated that induction 
of EMT can suppress estrogen signaling axis and vice versa, resulting in concurrent change 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.14.435359doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.14.435359
http://creativecommons.org/licenses/by-nc-nd/4.0/


in cellular phenotypes along both the EMP axis and in levels of drug resistance in ER+ breast 
cancer cells (Fig 3I). 

 

Figure 3: Induction of EMT can drive suppression of Estrogen signaling and vice versa.  
A. Impact of over-expression/down-expression of ZEB1 levels in RACIPE simulations on 
frequencies of different biological phenotypes. Error bars denote standard deviation across 
n=3 replicates. B. Experimental data (GSE43495) for EMT induction via Twist, Snail or Slug 
in HMLE cells and the concurrent decrease in the magnitude of early and late estrogen 
response. C. Experimental data showing EMT induction via TGFβ, Twist, Gsc and Snail in 
HMLE epithelial cells and the concurrent decrease in the magnitude of early and late estrogen 
response (GSE24202). D. Same as A. but for over-expression/down-expression of ERα66. E. 
Experimental data showing differences in gene expression levels of Cdh1, Vim, Snai2 (Slug), 
Vim and Zeb1 and change in magnitude of early and late estrogen response and the EMT 
programme (ssGSEA on MSigDB Hallmark EMT signature) in control and ERα silenced MCF7 
cells (GSE27473). F. Experimental data showing differences in activity levels of early ER 
response, late ER response and EMT programme in sensitive and resistant MCF7 cell lines 
(GSE67916). For A-F, * denotes a statistically significant difference between the control and 
perturbed/induced case assessed by a two-tailed Students t-test assuming unequal variances. 
G. Scatter plot showing association between activity of early estrogen response and cells with 
varying positions on a 2D epithelial-mesenchymal plane (GSE147356). Spearman’s 
correlation coefficient between epithelial and mesenchymal scores, and corresponding p-
value are reported. H. Scatter plot showing activity of EMT signature in TGFβ treated MCF7 
individual cells in pseudo time and the concurrent decrease in BRCA ESR1 regulon activity. 
Color bar represents the range of activity level of the ESR1 regulon (GSE147405). I. 
Schematic showing bidirectional associations between the EMP and the drug resistance 
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programme, i.e. induction of EMT drives a switch to a therapy-resistant state, and acquisition 
of therapy resistance often drives EMT. 

 

Stochastic transitions between different phenotypes on EMT and drug resistance axes  

Next, we investigated whether under the influence of biological noise (44), these different 
phenotypes can switch among one another on EMT and/or tamoxifen resistance axes. We 
identified the parameter sets simulated via RACIPE that gave rise to multi-stability (i.e. more 
than one steady state solutions, depending on the initial condition chosen) and performed 
stochastic simulations. 

We first characterized the proportion of parameter sets simulated by RACIPE that are mono-
stable vs multi-stable. Approximately two-third (~65%) of the parameter sets were found to be 
bistable, followed by 20% parameter sets exhibiting tristability, and 8% monostable cases (Fig 
4A), indicating that the GRN simulated is poised for multistability. Within the monostable 
solutions obtained, {ES} and {MR} are the most predominant phases. Among bistable cases, 
the most common resultant phase is that of {ES, MR}, followed by {HS, MR} and by {ES, HR} 
Finally, among tristable cases, {ES, HR, MR} phase is the most predominant followed by {ES, 
ER, MR} and then by {ES, HS, MR} (Fig 4A). Put together, these results suggest that epithelial 
sensitive and mesenchymal resistant are likely to be most frequent subpopulations in a given 
cancer cell populations, with smaller proportions of hybrid E/M cells which may be tamoxifen- 
sensitive or tamoxifen-resistant. 

We focused on tristable parameter sets that contain ES and MR phenotypes and can enable 
transition between them through an intermediate state. We considered a representative 
parameter set from the {ES, HR, MR} phase, and plotted the levels of EM Score (ZEB1 – 
miR200 levels on log2 scale) and the Resistance score (ERα36 – ERα66 levels on log2 scale), 
sampling multiple possible initial conditions. As expected, we observed three distinct levels in 
steady-state EM scores, corresponding to one each in the E, H or M region. The resistance 
score also showed three distinct levels; however, two of them were classified as R phenotype 
with one of them as S (Fig 4B). Stochastic simulations for this parameter set revealed noise-
induced switching from a mesenchymal-resistant (MR) phenotype to an epithelial-sensitive 
(ES) phenotype through a hybrid-resistant (HR) phenotype (Fig 4C). The existence of these 
three states was further corroborated by plotting the marginal distribution of the EM Score 
obtained from the time profile, that revealed three peaks with varying EMT scores (Fig 4D).  

Next, we constructed landscapes to interpret cell-state transitions possible in the co-existing 
phenotypic combinations of {ES, HS, MR} and {ES, HR, MR}. To do so, we simulated the 
system from multiple initial conditions under the influence of noise, and obtained the pseudo 
potential of the points in state-space as the negative log of the probability of occurrence. We 
observed that for the representative case from the phase {ES, HS, MR}, trajectories that 
started out as hybrid-sensitive phenotype (HS) switched to a mesenchymal-resistant (MR) 
phenotype (Fig 4E, top), thus unraveling the dynamic nature of the observed cell states. The 
landscape constructed for this parameter set revealed 3 distinct valleys or “attractors” – ES, 
HS and MR (Fig 4E, bottom). For a representative parameter set from the phase {ES, HR, 
MR}, we again saw 3 distinct EM states and the corresponding expected resistant states (Fig 
4F, top). The three “attractors” observed here was shifted along the axis of the resistance 
score – from < 0 for HS to > 0 to HR (Fig 4F, bottom vs. Fig 4E, bottom). Similar dynamics 
were observed for other kinetic parameter sets belonging to these two tristable phases (Fig 
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S4A, B). A key difference noted in the HS and HR states was the levels of SLUG, suggesting 
SLUG as a potential marker for hybrid E/M resistant phenotype (Fig 4G).  

These results demonstrate that the different states in the two-dimensional space of EMT and 
tamoxifen resistance (i.e. non-genetic heterogeneity) can also switch among one another (i.e. 
phenotypic plasticity) under stochastic variations in gene expression and/or biochemical rates. 
It should be noted that these state transitions can also be driven through external perturbations 
such as treatment with TGFβ or with anti-estrogen treatments such as tamoxifen. Simulations 
shown here demonstrate the paths cells traverse through while transitioning to other state(s). 

 

Figure 4: Stochastic stimulations showing dynamic state transitions among different 
biological phenotypes. A. Fraction of RACIPE parameter sets resulting in monostable and 
multi-stable solutions (bi-, tri-, others) and the frequency distribution of phases that compose 
the monostable and multi-stable solution sets. B. System dynamics for a representative {ES, 
HR, MR} parameter set showing the existence of the 3 biological EM phenotypes (E, H, M) 
and resistant (R) and sensitive (S) phenotypes when started from multiple initial conditions.  
C. Time course showing the transition of the system from a MR to an ES phenotype through 
a HR state under the influence of noise. Sensitivity score is defined as negative of the 
tamoxifen resistance score, i.e. ERα66 – ERα36. D. Marginal distribution of the EM score from 
the time course shown in C; 3 peaks denote existence of 3 distinct states along EM spectrum. 
E. (top) Stochastic time series for multiple initial conditions tracking EM and Resistance scores 
in a representative parameter set from the {ES, HS, MR} phase. (bottom) Landscape obtained 
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by simulation of that parameter set with valleys representing stable states possible in the 
system. F. Same as E. but for a representative parameter set from the {ES, HR, MR} phase. 
G. Changes in SLUG levels as the system transitions from ES to MR phenotype through either 
HS or HR state. HR state is characterized by high levels of SLUG compared to HS cell state. 
Students’ t-test results show the level of statistical significance between various comparisons. 

 

Complementary roles of heterogeneity and plasticity for the tumour survival of ER+ 
breast cancer cells under anti-estrogen treatments 

After elucidating the emergent intra-cellular dynamics of the coupled gene regulatory network 
(GRN) of EMT and ERα signaling, we probed the effect of the dynamical traits of this network 
– phenotypic plasticity and non-genetic heterogeneity – at a cell population level.  To gain a 
better understanding of how these two cell-autonomous traits (a) heterogeneity in sensitivity 
of a cell towards a drug, and b) ability of cells to switch bidirectionally between a sensitive and 
a resistant phenotype) can influence the long-term survival of a cell population, we developed 
a simple mathematical model involving only 2 components – drug sensitive (S) cells and drug 
resistant (R) cells. Although non-cell autonomous phenomenon such as competition and/or 
cooperation between sensitive and resistant cells (45–47) have been extensively observed 
and mathematically modelled, it remains unclear how plasticity and/or heterogeneity in cell 
populations might contribute to long term population survival, even in absence of such non-
cell autonomous behaviors. 

In this modeling framework, cells can belong to either a sensitive (S) phenotype or a resistant 
(R) phenotype. The degree of sensitivity of a cell to a drug is defined by a “resistance score” 
which is sampled from a gaussian distribution with a given mean and standard deviation. 
Heterogeneity in the system is modelled via changing the standard deviation of the gaussians 
from which the resistance score is sampled. The sensitivity of each cell (probability that the 
cell escapes drug-induced killing) depends on the resistance score through a sigmoidal curve 
(Fig 5A), reminiscent of typical IC50 curves. Further, the cells can switch from a sensitive to 
a resistant phenotype with a given probability PSR and can switch back with a probability PRS, 
thus introducing plasticity into the system (Fig 5A). These probabilities can depend on various 
external conditions such as drug exposure time and/or drug concentration.  

Simulations for this model showed that in the absence of any drug, an initially fully sensitive 
population of cells with no heterogeneity (resistance score for all cells < 0, std. dev. = 0) and 
no plasticity (PSR = PRS =0) could grow to and eventually saturate to a population size close to 
the carrying capacity (105 cells) (Fig S5A; blue curve). However, the presence of drug can 
eliminate this population of non-plastic and homogeneous drug-sensitive cells (Fig S5A; green 
curve); the rate of elimination depends on intrinsic growth and death rates of cells (Fig S5A; 
orange and violet curves). Next, we characterized the role of increasing heterogeneity in a 
system devoid of plasticity (PSR = PRS =0). We observed that increasing heterogeneity (shown 
by different standard deviation values) can delay the time taken to eliminate a population of 
cells, but it was not sufficient in enabling the survival of population, as long as the population 
overall is predominantly sensitive as per the survival probability curve (Fig 5B, S5B-E).  
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Next, we examined the influence of plasticity in the absence of heterogeneity (std. dev. = 0). 
For PSR = 0 (no switching from a sensitive to a resistant phenotype), irrespective of the value 
of PRS, the cell population is eliminated (Fig 5C; blue and orange curves). For PRS = 0 (no 
switching from resistant to sensitive population), if the probability of switching from sensitive 
to resistant is very high (PSR = 1), the population of cells survive. However, increasing values 
of PRS can decrease the final population size (Fig 5C; green and purple profiles). Further, we 
performed an exhaustive analysis of the PSR - PRS plane with values ranging from 0 to 1 with 
steps of 0.1 and colored the matrix based on the final population size at time t = 100 steps. 
We first performed this analysis for two extreme values of heterogeneity (std. dev. = 0 and 1). 
We observed that in presence of higher heterogeneity, population survival and growth was 
seen for more combinations of (PSR, PRS) values (compare Fig 5D; top and bottom panels). 
Further, if PSR << PRS , an increase in heterogeneity alone cannot rescue the population and 
the population is eliminated. On the other hand, if PSR >> PRS, the population survives and 
reaches near maximum colony sizes (close to carrying capacity in the system) (Fig 5D). These 
trends were qualitatively similar for other levels of heterogeneity (Fig S6) as well, highlighting 
potentially universal organizing principles in determining cancer cell population fitness. 

Figure 5: Effect of heterogeneity and plasticity on tumor survival in the presence of an 
anti-estrogen drug. A. Schematic for model formulation showing inter-conversions between 
sensitive and resistant phenotypes (transition probabilities: PSR, PRS). Heterogeneity in the cell 
population is modelled by standard deviation (Std. dev.) of Gaussians from which  resistance 
scores are sampled. Survival probability of cells is a function of resistance score approximated 
as a sigmoidal curve (shown in red). B. Effect of heterogeneity on population sizes over time, 
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starting with an initially all sensitive cell population and at PSR = PRS = 0. C. Effect of plasticity 
on population sizes over time starting with an initially all sensitive cell population and no 
heterogeneity (Std. dev. = 0). D. Population sizes (at time(t) = 100) as a function of PSR and 
PRS at two different heterogeneity levels, starting with an initially all sensitive cell population. 
Dotted lines indicate a qualitative boundary between tumor survival and elimination scenarios. 
E. Distinct qualitative scenarios – collapse of initial population of cells, maintenance of the cell 
population around starting initial conditions (in the time frame considered) and net growth in a 
population of cells leading to survival of the tumour – at varying levels of PSR and PRS. All 
simulations start with a fixed heterogeneity (Std. dev. = 0.5) and a fully sensitive population. 
F. Population sizes over time as a function of varying values of (PSR, PRS). All simulations start 
with no heterogeneity (Std. dev. = 0) and a fully sensitive population.  

Finally, we characterized different qualitative properties exhibited by a cell population under 
varying values of PSR and PRS , but at a fixed heterogeneity level. To visualize the proportion 
of cells in the sensitive and the resistant component separately, we plotted a 3D histogram 
showing the temporal evolution of cell population, colored by corresponding resistance scores. 
For an intermediate value of heterogeneity, depending on the relative values of PSR and PRS , 
three distinct qualitative outcomes for cell population are possible: a) it can be eliminated 
completely, b) it can maintain its critical population size similar in magnitude to the initial 
number of cells, c) it can increase rapidly to saturate at a higher value to establish a colony 
(Fig 5E). Next we explored the effect of relative and absolute values of PSR and PRS on the 
overall population dynamics of the system. In absence of heterogeneity, as a representative 
case, we simulated various scenarios where the ratio PSR/PRS was fixed to be 0.5, 1 or 2. When 
PSR/PRS = 0.5, the population always collapsed irrespective of absolute values of PSR and PRS 

(Fig 5F). However simulation cases that had higher absolute values of PSR and PRS showed a 
slower rate of extinction; this trend was seen also for PSR/PRS = 1 and 2 (Fig 5F). These cases 
highlight that not only the relative rates of plasticity in either direction (S to R or vice-versa), 
but also absolute residence times (proxied by PSR and PRS) can influence population dynamics, 
by modulating the time of exposure of cells to the therapy. As expected, higher PSR/PRS 
increases the propensity of population survival, and thus a faster growth curve and higher 
colony size. Collectively, these results indicate the complementary roles of heterogeneity and 
plasticity in the cell population to determine the survival probability of a population of cancer 
cells in the presence of an anti-estrogen therapy such as tamoxifen.  

 

“What does not kill [cancer cells] makes them stronger” – the influence of drug-induced 
plasticity and intrinsic non-genetic heterogeneity in population survival 

As described above, depending on the absolute values of PSR and PRS, a population of cells 
can collapse, grow a colony or maintain the population size around the initial value. The last 
case is likely to be a metastable state as under the effect of intrinsic noise, the population can 
be pushed to be eliminated completely or grow and saturate to carrying capacity of the system. 
This feature enables us to define the extinction probability for a cell population, for a set of 
simulations from specified initial conditions. Extinction probability is defined as the fraction  of 
cases in which the population is eliminated after a long time. For most values of PSR and PRS 

the extinction probability is either 0 (population always grows and establishes a fixed colony) 
or is 1 (population is eliminated), under the influence of no heterogeneity (std. dev. =0). We 
explored whether increasing heterogeneity can have an extinction probability between 0 and 
1. As a representative case, we found that starting from an initially all sensitive population 
(resistance score < 0), with PSR = 0.5 and PRS = 1, intermediate heterogeneity level (std. dev. 
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= 0.65) led to extinction of the population (Fig 6A, left; extinction probability = 1.0). However, 
increasing the heterogeneity (std. dev. = 0.7) led to a decrease in extinction probability (0.43 
+/- 0.03) with the surviving cases saturating at a population level of ~750 cells (Fig 6A, middle). 
A further increase in heterogeneity further reduced extinction probability (0.14 +/- 0.02) 
concomitant with an increasing saturating population size of ~1500 cells (Fig 6A, right). These 
simulations illustrate a protective role of non-genetic heterogeneity in maintaining a cancer 
cell population, under the influence of therapy, especially at high enough intrinsic switching 
rate of cells to a resistant state, due to stochastic dynamics of phenomenon such as EMT. 

Next, we investigated the effect of initial fraction of “pre-existing resistant cells” (48) on the 
population extinction probability. At fixed heterogeneity (std. dev. = 0.8) and plasticity levels    
(PSR = PRS = 0.2), starting with only sensitive cells (resistance score < 0), the extinction 
probability was 0.49 +/- 0.03, but increasing the initial fraction to 0.25 (i.e. 25% of initial cells 
have resistance score > 0) caused a modest decrease in extinction probability (0.40 +/- 0.03) 
(Fig6B), as compared to the impact of heterogeneity, where a decrease of approximately 60% 
was noted for extinction probability (Fig 6A). A further increase in this initial fraction also had 
a similar weak effect in changing either the extinction probability (0.31 +/- 0.04) or the final 
population size (Fig 6B). This analysis revealed that the initial fraction of reversibly resistant 
cells is perhaps a weaker factor, especially at lower intrinsic transition probabilities between 
sensitive and resistant cells.  
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Figure 6: Different mechanisms promoting survival of a cancer cell population in the 
presence of an anti-estrogen drug. A. Simulations showing increase in survival probability 
(decrease in extinction probability) of a cancer cell population with varying heterogeneity levels 
(Std. dev. = 0.65, 0.70 and 0.75) starting form an all sensitive population and fixed values of 
PSR and PRS at 0.5 and 1.0 respectively. B. Simulations showing a modest increase in the 
survival probability of a cell population with varying levels of initially resistant cells (initial 
fraction = 0.0, 0.25 and 0.50) and fixed values of PSR and PRS at 0.5 and 1.0 respectively. 
Orange ribbon represents the collection of all states that survive and form a colony and blue 
ribbon for all those cases that are eventually eliminated. The dark line represents the mean 
and the band represents the std. dev. around that mean for an ensemble of simulations. C. 
Final population sizes (at time(t) = 100) as a function of PSR & PRS at two different heterogeneity 
levels (Std. dev. = 0, 1) and two different levels of drug induced plasticity (0 and 1) starting 
with an initially all sensitive cell population. Dotted lines indicate a qualitative boundary 
between cases where a tumour survives or is eliminated by the presence of the drug. 

Finally, we investigated the effect of drug-induced plasticity (i.e. externally induced transitions 
from a sensitive to a resistant state) (9) on the cell population dynamics. In our model, sensitive 
cells that can survive drug exposure in stipulated time have a probability to switch to resistant 
state. We monitored the final population size with varying levels of drug induced plasticity (0 
and 1) at two different levels of heterogeneity (std. dev. = 0 or 1). We observed that under high 
drug-induced plasticity conditions, especially with smaller PRS values, a marked increase in 
final population size was observed, irrespective of the extent of heterogeneity (Fig 6C, S7).  

Put together, these observations show diverse mechanisms that can promote the survival of 
a cancer cell population under the influence of various anti-estrogen drugs: a) non-genetic 
heterogeneity in initial cell population, including the percentage of de novo reversibly resistant 
cells, and b) stochastic switching between cell states (ES, MR) under the influence of noise, 
maintaining a dynamic equilibrium of sensitive and resistant cells, and c) drug-induced switch 
to a reversible resistant state for cells that do not die upon exposure of the drug, i.e. cells that 
tend to follow the Nietzsche’s proposal of “what does not kill me makes me stronger” (49).  

 

Combinatorial strategies to target a plastic and heterogeneous cancer cell population 

After deciphering multiple possible routes to long-term sustenance of a resistant population 
which can lead to tumor growth, we investigated what mechanisms can be efficiently deployed 
to target a plastic and heterogeneous cancer cell population. From our network simulations 
and follow-up analysis of bulk and single-cell transcriptomic data, we established a consistent 
association between epithelial state and higher drug sensitivity, as well as a mesenchymal 
one exhibiting recalcitrance to tamoxifen (Fig 1, 2). Thus, in our cell population dynamics 
framework, we incorporated the effect of an MET-inducer, i.e. an external signal that increased 
PRS, just as drug-induced switching increased PSR. Thus, this MET-induced sensitivity forced 
cells to switch from a more mesenchymal (i.e. resistant) to an epithelial (i.e. sensitive) cells, 
thus reducing the fraction of resistant cells in the population.  

To simulate the effects of such a scenario, we first chose a representative parameter set that 
enabled a surviving population of cells, with a larger frequency of sensitive cells than resistant 
ones (Fig 7A, i). Upon introducing drug induced plasticity into the system, we observed faster 
saturation, and a changed demographic with most of the population consisting of resistant 
cells (Fig 7A, ii). Upon introduction of the MET inducer in the absence of drug induced 
plasticity, the population undergoes a rapid collapse as the cells are sensitized to the drug, 
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causing drugs to kill the cells (Fig 7A, iii). However, in the presence of drug induced plasticity, 
the population undergoes a relatively slower collapse as these two factors (drug-induced 
plasticity and MET-induced sensitivity) are opposing in nature (Fig 7A, iv).  

This behaviour is generally conserved across multiple parameter values corresponding to 
heterogeneity and plasticity (std. dev., PSR, PRS). Irrespective of the extent of heterogeneity, 
we see a larger combination of (PSR, PRS) values in the PSR - PRS plane allowing for population 
collapse in the presence of MET-induced sensitivity as compared to the control case (Fig 7B). 
These observations suggest that strategies that can revert the influence of therapy-induced 
plasticity to alter the population demographic to higher proportion of sensitive cells can be 
applied together with canonical anti-estrogen therapies to halt the dynamic adaptability of cell 
population, thus “trapping” them in a drug-sensitive state. In the current paradigm, ‘tolerant’ 
cells which are able to escape being killed upon drug exposure are very likely to switch to a 
resistant state, given the coupled EMT-estrogen signaling coupling, thus adding to existing 
tumor burden. However, alleviating this side-effect of the drug-induced plasticity through MET 
inducers which may sensitize the population, can be a more efficient therapeutic combination. 

 

 

Figure 7: MET inducer,  in conjunction with anti-estrogen drugs, can potentially limit 
the survival of cancer cell population. A. Temporal evolution of a population of cancer cells 
(resistant and sensitive both) under different levels of drug induced plasticity (0 and 1) and 
MET induced sensitivity (0 and 1). Simulations were performed starting form an all sensitive 
population and fixed values of PSR and PRS at 0.2 and 0 respectively. B. Final population sizes 
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(at time(t) = 100) as a function of PSR and PRS 2 different levels of drug induced plasticity (0.1 
and 1) and 2 different levels of MET induced drug sensitivity (0 and 1) starting with an initially 
all sensitive cell population with no heterogeneity in the system. Dotted lines indicate a 
qualitative boundary between cases where a tumour survives or is eliminated by the presence 
of the drug. 

 

Discussion 

Drug resistance, similar to many hallmarks of cancer, has traditionally been presumed to have 
a strong genetic underpinning. Thus, drug-resistant cells in a tumor population have been 
thought of containing pre-existing (de novo) mutations or in acquired mutations during the 
course of therapy (2). However, over the past decade, accumulating experimental/preclinical 
and clinical evidence of non-genetic, stochastic and reversible modes of drug resistance – 
labelled often as Drug-tolerant persisters (DTPs) – have been reported in vitro and in vivo (5, 
50–53), reminiscent of similar observations in microbial systems (54). DTPs have been also 
shown to give rise to stable drug-resistant phenotypes involving genetic changes upon 
prolonged growth (53), highlighting the importance of realizing different timescales over which 
cellular adaptation can occur. While short-term changes are often phenotypic in nature and 
involve foraging of the phenotypic landscape, long-term survival strategies may involve 
genomic changes to enable being trapped in the “attractors” explored during short-term 
foraging. While such transitions to a persister (reversibly resistant) cell state have been largely 
associated with epigenetic reprogramming (2), recent studies show significant variation in 
transcriptional programme of such cells too as compared to sensitive cells from the same 
genetic background (48, 55–57), suggesting a critical role of transcriptional regulation in the 
emergence of reversible therapy-resistance (i.e. persistence), a “bet-hedging” strategy to 
ensure survival in time- and/or space-varying environments (54). 

Here, we have identified one such transcriptional programme in ER+ breast cancer cells that 
can cause a reversible resistance to the treatment of tamoxifen, an anti-estrogen therapeutic. 
Our results suggest that EMT and resistance to tamoxifen can drive each other; thus offering 
a mechanistic explanation for empirical observations showing that cells undergoing EMT are 
more resistant to tamoxifen (20), and that tamoxifen-resistant cells are EMT-like (21, 25). 
Notwithstanding this broad association between the two axes, which was validated in bulk and 
single-cell transcriptomic data, our model predicts the co-existence of and stochastic switching 
among six possible phenotypes – epithelial sensitive (ES), epithelial resistant (ER), hybrid 
sensitive (HS), hybrid resistant (HR), mesenchymal sensitive (MS), and mesenchymal 
resistant (MR) (Fig 8A). Thus, a progression to a full EMT need not be required for acquiring 
resistance to tamoxifen, and the association between at least a full EMT and drug resistance 
can be semi-independent, as seen for coupled EMT-stemness dynamics in vitro and in vivo 
(58, 59). Our stochastic simulations showed that cells can switch from an ES to MR state via 
HS or HR states, highlighting two alternative paths to acquire resistance. But whether cells 
show hysteresis in these paths (i.e. how reversible or irreversible can such transitions be) 
need to be investigated more carefully experimentally. Future efforts should focus on drawing 
more comprehensive landscapes for transitions along coupled axes of plasticity such as EMT, 
immune evasion, stemness and metabolic reprogramming (60), besides drug resistance. We 
also proposed SLUG as a marker for hybrid E/M and tamoxifen resistant phenotype, which 
may help explain association of worse clinicopathological features with high SLUG levels (35).  
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While our model extensively features the connections among five players (ZEB1, SLUG, miR-
200, ERα66 and ERα36) transcriptionally and their corresponding emergent phenotypes and 
dynamics, development of EMT and/or drug resistance is a much more complex process. 
Despite this limitation, the model simulations offer profound conceptual contributions. First, we 
postulate a putative mechanism that can explain diverse experimental observations and 
proposes a mutual dependence of two axes of plasticity that are crucial in cancer progression. 
Such models can help guide future experimental studies to investigate this coupling more 
comprehensively. Second, these specific molecular players can be thought of representative 
of various functional modules, and the fundamental feature of multistability demonstrated here 
can help conceptualize reversible phenotypic plasticity and non-genetic heterogeneity along 
multiple axes, as live-cell imaging and single-cell RNA-seq data becomes more prominent. 
Third, the population dynamics framework used here offers insights into how bidirectional 
plasticity and non-genetic heterogeneity can contribute to survival of a tumor cell population 
as well as the phenotypic demographic of the tumor colony. 

The population dynamics framework has been maintained intentionally simple. Such simple 
frameworks are quite powerful in explaining many experimental phenomenon, as shown 
recently by Rehman et al. (51), where they could explain the maintenance of clonal complexity 
after drug treatment in tumors in vivo using a population dynamics model that assumes that 
all cells in the population are equally potent to switch to a reversibly resistant state and the 
choice of cell survival is completely independent of genetic background. One complexity that 
can be added to our model is the effect of ecological interactions between the two species – 
sensitive and resistant cells – such as cooperation or competition for resources (45–47). Other 
adaptation of the model can be to include cell-state transition probabilities as a function of 
relative stability of states calculated from the landscape estimated for an intracellular GRN. 
Similarly, death rate incorporated in our model can depend on internal challenge faced by cells 
during the metastatic cascade, such as anoikis and/or interaction with various immune cells. 

Our population dynamics framework suggests that phenotypic plasticity (reversible transitions 
between drug-resistant and -sensitive phenotypes) and non-genetic heterogeneity (pre-
existing reversibly resistant cells) can promote the survival of tumor population under drug 
treatment, with a higher contribution coming from plasticity, especially a switch from sensitive 
to resistant state. While heterogeneity aids in tumor survival, plasticity is crucial for the effects 
of heterogeneity to have a significant impact in terms of tumor fitness and survival. We found 
that the tumor size is maximum at an optimal plasticity level, beyond which the effect of 
plasticity, while still present, is reduced. These observations are consistent with reports about 
intermediate levels, not extremely high levels, of chromosomal instability being associated 
with the worst clinical outcomes (61). Furthermore, composition of final tumor population after 
a prolonged treatment was found to be variable from purely resistant to purely sensitive. 
Overall, the maintenance of long-term ‘resistance’ can be achieved via multiple paths: a) non-
genetic heterogeneity in initial cell population, b) stochastic transitions among sensitive and 
resistant states driven by processes such as EMT, maintaining a dynamic equilibrium of cell 
subpopulations (30) and c) drug-induced transitions to a reversibly resistant state (Fig 8B). 

Based on these features, we conceptually integrated the effect of MET on drug resistance, i.e. 
the broad association of an epithelial phenotype with a drug-sensitive state. We observed that 
MET inducers can minimize the impact of switch from sensitive to resistant phenotype, and 
can thus counteract the impact of both drug-induced plasticity and population heterogeneity 
to a large extent. Whether such combinatorial strategies are likely to be more effective 
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simultaneously or sequentially (62, 63)  is a question beyond the scope of this study, but can 
be answered by developing a multi-scale model including non-cell autonomous effects such 
as cooperation or competition, building on the principles of multistable regulatory networks 
and consequent phenotypic plasticity and non-genetic heterogeneity elucidated here. Future 
efforts to improve the predictability of such models will require rich dynamic experimental data 
based on which the observed cellular behavior can be realized in hyperspace of phenotypes 
obtained via mechanism-based and/or data-based investigation of regulatory networks.  

                

Figure 8: Schematic depicting dynamical traits of coupled EMT-ERα signaling network 
and its implications in tumor survival. Α. Landscape showing multiple phenotypes defined 
on EMT and drug resistance axes: ES (epithelial-sensitive) and MR (mesenchymal-resistant) 
phenotypes are more dominant (witnessed by depth of the valley in the landscape). Arrows 
induced transitions under the influence of noise or drug among six phenotypes (ES, ER, HS, 
HR, MS, MR). B. Population dynamics showing multiple parallel paths to long-term resistance 
(pre-existing reversibly resistant cells, stochastic switching and dynamic equilibrium, and drug-
induced plasticity) and the predicted effect of combinatorial therapy (anti-estrogen therapy + 
MET inducers) to drive population collapse. 
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