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Abstract 

Glycoproteome profiling (glycoproteomics) remains a considerable analytical challenge that 

hinders rapid progress in glycobiology. The complex tandem mass spectra generated from 

glycopeptide mixtures require sophisticated analysis pipelines for structural determination. 

Diverse informatics solutions aiding the process have appeared, but their relative strengths and 

weaknesses remain untested. Conducted through the Human Proteome Project – Human 

Glycoproteomics Initiative, this community study comprising both developers and expert users 

of glycoproteomics software is the first to evaluate the relative performance of current 

informatics solutions for comprehensive glycopeptide analysis. High-quality LC-MS/MS-

based glycoproteomics datasets of N- and O-glycopeptides from serum proteins were shared 

with all teams. The relative team performance for efficient glycopeptide data analysis was 

systematically established through multiple orthogonal performance tests. Excitingly, several 

high-performance glycoproteomics informatics solutions and tools displaying a considerable 

performance potential were identified. While the study illustrated that significant informatics 

challenges remain in the analysis of glycopeptide data as indicated by a high discrepancy 

between the reported glycopeptides, a substantial list of commonly reported high-confidence 

glycopeptides could be extracted from the team reports. Further, the team performance profiles 

were correlated to the many study variables, which revealed important performance-associated 

search settings and search output variables, some intuitive others unexpected. This study 

concludes that diverse informatics solutions for comprehensive glycopeptide data analysis exist 

within the community, points to several high-performance search strategies, and specifies key 

variables that may guide future software developments and assist the experimental decision-

making of practitioners in glycoproteomics. 
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Introduction 

Protein glycosylation, the attachment of complex carbohydrates (glycans) to discrete sites on 

proteins, plays diverse roles in biology1. Glycoproteomics, the system-wide analysis of intact 

glycopeptides, has evolved from proteomics and glycomics by the recognised benefits of 

concertedly studying the glycan structures, their modification sites and their protein carriers at 

scale within a single experiment2, 3. 

Facilitated by recent advances in separation science, mass spectrometry (MS) and informatics, 

glycoproteomics has matured over the past decade and is now ready to tackle biological 

questions and generate new insights into the complex glycoproteome in biological systems 

from a new angle4-7. While liquid chromatography tandem mass spectrometry (LC-MS/MS)-

based glycoproteomics studies routinely report thousands of N- and O-linked glycopeptides8-

13, accurate and confident identification of glycopeptides from large volumes of mass spectral 

data remain a significant bottleneck in the field. The annotation process of glycopeptide tandem 

mass spectra is highly error-prone due to the challenging task of correctly assigning both the 

glycan composition, modification site and peptide carrier14-16. As a result, glycopeptides 

reported in glycoproteomics papers are frequently incorrectly identified or suffer from 

ambiguous annotation even in studies attempting to control the false discovery rate (FDR) of 

such assignments. Isomeric monosaccharide compositions displaying identical elemental 

compositions e.g. hexose (Hex,  C6H10O5) + N-acetylneuraminic acid (NeuAc, C11H17NO8) 

versus deoxyhexose (dHex, C6H10O4) and N-glycolylneuraminic acid (NeuGc, C11H17NO9) 

(Δm = 0 Da), (un)expected peptide side chain modifications e.g. Met oxidation (16 Da) and 

Met alkylation (57 Da) matching monosaccharide mass differences e.g. Hex vs dHex (Δm = 16 

Da), and dHex vs N-acetylhexosamine (HexNAc, Δm = 57 Da), and near-isobaric 

modifications e.g. dHex2 and NeuAc (Δm = 1 Da) that are frequently misassigned as precursor 
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isotope differences, are examples of the informatics challenges associated with glycopeptide 

mass spectral assignment. 

Diverse fragmentation modes including resonance-activation collision-induced dissociation 

(CID) performed on ion trap instruments and beam-type CID (higher-energy collisional 

dissociation, HCD) and electron-transfer dissociation (ETD) typically achieved with 

quadrupole time-of-flight (Q-TOF) and Orbitrap mass spectrometers have proven beneficial 

for large-scale glycopeptide analysis17-20. When applied in concert, these fragmentation 

strategies provide complementary structural information of glycopeptide analytes. In short, 

HCD-MS/MS informs on the peptide carrier and produces useful diagnostic glycan fragment 

ions often sufficient to crudely classify fragment spectra as glycopeptide tandem mass spectra 

and deduce generic glycan compositions, ETD-MS/MS may in favourable cases reveal the 

modification site and peptide identity, while ion trap CID-MS/MS provides details of the 

glycan sequence/composition and topology21, 22. Hybrid-type fragmentation strategies 

including ETciD and EThcD available on the Orbitrap Tribrid systems are becoming popular 

given their ability to generate information-rich chimeric glycopeptide spectra containing 

multiple types of fragments23. Accurate mass measurements (low mass error, often <5 ppm) at 

high resolution of precursor and product ions available on most contemporary instruments are 

essential for glycopeptide analysis at scale. Despite these exciting advances, unambiguous 

glycopeptide identification remains challenging and it is recognised that new innovative 

software solutions for precise glycopeptide identification from MS/MS data are required to 

ensure accurate glycoproteome profiling and reporting to further the glycoproteomics field24. 

Glycoproteomics has recently experienced the development of diverse informatics solutions, 

by both commercial and academic developers, showing promise for precise annotation and 

identification of intact glycopeptides from mass spectral data25, 26. While some of these 

computational tools are already relatively well established and have been applied in many 
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glycoproteomics studies27, the relative performance, strengths and limitations of the software 

solutions available to the community remain untested leaving a critical knowledge gap that at 

present hinders rapid progress in the field. 

Facilitated by the Human Proteome Project – Human Glycoproteomics Initiative, we here 

perform a comprehensive and level community-based evaluation of existing informatics 

solutions for large-scale glycopeptide analysis. While informatics challenges undoubtedly still 

exist in glycoproteomics, our study highlights that a diversity of software solutions, some 

already demonstrating high performance, others a considerable potential, are now available to 

the community. Importantly, our study has identified several key search engines, search 

settings and search strategies that may aid software developers and practitioners alike to 

improve the challenging glycoproteomics data analysis in the immediate future. 

 

Results 

Study design and overview 

Two high-resolution LC-MS/MS data files (hereafter File A and B) of tryptic glycopeptides 

from human serum were acquired on an Orbitrap Fusion Lumos Tribrid mass spectrometer 

(Figure 1a). A synthetic N-glycopeptide (EVFVHPNYSK, Hex5HexNAc4NeuAc2) from 

human vitamin K-dependent protein C was included as a positive control. File A and B were 

generated using HCD-MS/MS fragment ion-triggered-ETciD-CID-MS/MS and -EThcD-CID-

MS/MS, respectively, in attempts to generate data accommodating most informatics solutions 

in the field. Serum is a well-characterised biospecimen displaying high molecular complexity 

and an abundance of both N- and O-glycoproteins28-30. Thus, File A and B displayed 

characteristics (file size, complexity and type) similar to data files typically encountered in 

glycoproteomics31-34. 
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File A and B were shared with all 22 participating teams who classified themselves as either 

developers (9 teams) or expert users (13 teams) of glycoproteomics software (Figure 1b and 

Supplementary Figure S1a-b). All teams were asked to identify intact N- and O-

glycopeptides from the shared data files and then report the identifications and their approaches 

in a common reporting template. Most developers (five teams) and expert users (eight teams) 

had significant experience in glycoproteomics (>10 years). The participants were from North 

America, Europe, Asia, Oceania, and South America (Supplementary Figure S1c-d). 

Only File B was processed by all teams (Supplementary Figure S1e). While most participants 

reported on spectra acquired with multiple fragmentation methods, a few teams used only 

HCD- or EThcD-MS/MS for the glycopeptide identification (Supplementary Figure S1f-g). 

A diversity of search engines was used in the study (Supplementary Figure S1h). Some search 

engines were used as stand-alone tools or in combinations with other search engines while 

others were applied with pre- or post-processing tools to aid the glycopeptide identification 

process (Supplementary Figure S1i). 

File A and B contained a total of 8,737 and 9,776 HCD-MS/MS scans, respectively, of which 

5,485 (62.8%) and 6,148 (62.9%) fragment spectra contained highly specific glycopeptide 

oxonium ions (m/z 138, 204 and 366) used to trigger the subsequent ETciD-, EThcD- and CID-

MS/MS events (Supplementary Figure S2a-b). Within the entire set of potential glycopeptide 

MS/MS spectra (File A/B: 16,445/18,444, considering all fragmentation modes), only a total 

of 3,402 (20.7%) and 4,982 (27.0%) non-redundant (unique) glycopeptide-to-spectrum 

matches (glyco-PSMs) were collectively reported for File A and B by the participants. The 

teams primarily reported on spectra obtained using HCD-MS/MS (File A/B: 47.8%/44.5%) 

and EThcD-MS/MS (File B: 34.1%), while only relatively few teams used high- or low-

resolution CID-MS/MS (File A/B: 9.5%/2.5%, respectively), or ETciD-MS/MS data (File A: 

4.8%). Similar charge distribution was observed for the glycopeptides reported from the 
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different fragmentation modes (Supplementary Figure S2c-d). Glycopeptides carrying four 

charges were most frequently reported. 

In total, 11 search engines were used for the core glycopeptide identification process (Figure 

1b). The developers used 9 different glycopeptide-centric search engines including Team 1: 

IQ-GPA v2.535, Team 2: Protein Prospector v5.20.2336, Team 3: glyXtoolMS v0.1.437, Team 4: 

Byonic v2.16.1638, Team 5: Sugar Qb39, Team 6: Glycopeptide Search v2.0alpha40, Team 7: 

GlycopeptideGraphMS v1.041/Byonic38, Team 8: GlycoPAT v2.042, Team 9: GPQuest v2.043. 

Amongst the 13 expert users, 10 teams (~75%) used Byonic (Team 10, 11, 13, 15-18, 20-22), 

while only a single team used Protein Prospector (Team 12), SugarQB/Sequest HT (Team 14), 

and Mascot (Team 19) (Figure 1b and Supplementary Table S1). 

More than 100 different types of data were collected via the comprehensive reporting template. 

The reports, which were carefully checked for compliance to the study guidelines, covered 

details of the team, identification strategy, and identified glycopeptides (Figure 1c). Amongst 

many other details, information of the search settings was captured including the protease 

specificity, permitted peptide modifications, mass tolerance, post-search filtering criteria 

(Supplementary Table S1), and the applied glycan search space (Supplementary Table S2). 

Most of the 13 key search settings (SS1-SS13, Table 1) varied considerably across teams. 

In addition, 37 types of output data arising from the glycopeptide identification process 

spanning both numerical and categorical variables were captured via the reporting template or 

were manually extracted from the reports (Supplementary Table S3). Data for the numerical 

output variables were compiled and compared (Supplementary Table S4). Analysis of 9 key 

search output variables (SO1-SO9) e.g. observed glycopeptide LC retention time, m/z, actual 

mass error, charge state, glycan mass, and peptide length (Table 1) from File B (processed by 

all teams) revealed that the reported N- and O-glycopeptides, as expected, showed different 

properties including different LC retention times (higher for N-glycopeptides), charge states 
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(higher for O-glycopeptides), actual mass error (lower for N-glycopeptides), peptide length 

(longer O-glycopeptides) and glycan mass (higher for N-glycopeptides) while other properties 

including the observed precursor m/z amongst other traits did not differ between the reported 

N- and O-glycopeptides (Supplementary Figure S3). Analysis of the SO1-SO9 data also 

demonstrated that some teams employed search strategies that led to highly discrepant output. 

For example, and without being able to link these observations directly to performance, the 

developers of Glycopeptide Search (Team 6) and GlycopeptideGraph (Team 7) reported 

glycopeptides with unusually low (average z = ~3+) and high (~5.5+) charge states relative to 

all other teams (~4.5+), Supplementary Figure S3c. These comparisons of output data may 

be valuable for the developer teams to better understand and eventually improve their software. 

The relative team performance was assessed using 11 independent performance tests that 

served to comprehensively evaluate the identification accuracy (specificity) of the reported 

glycopeptides (glycan composition and source glycoprotein) and the glycoproteome coverage 

(sensitivity), two key performance characteristics in glycoproteomics (Figure 1d). 

Specifically, six (N1-N6) and five (O1-O5) independent performance tests were carefully 

designed and applied to assess the relative performance for N- and O-glycopeptide data analysis 

for all teams (Table 2 and Supplementary Table S5-S15). Firstly, the ability to detect the 

synthetic N-glycopeptide spiked into the samples was assessed across teams (N1). Further, the 

glycan compositions (N2, N6, O1, O5) and source glycoproteins (N3, O2) of the reported 

glycopeptides were compared to the previously established serum glycome and against known 

serum glycoproteins4, 28, 44-47. In another test, the glycoproteome coverage was assessed by 

comparing the number of non-redundant glyco-PSMs (unique peptide sequence and glycan 

composition) reported by each team (N4, O3). Finally, the ability of each team to identify 

glycopeptides commonly reported by most participants (“consensus glycopeptides”) was 

assessed (N5, O4). The performance scores were separately compared amongst the developer 
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and user teams (not between the two groups since they were given slightly different tasks) and 

correlated to the search settings (SS1-SS13) and search outputs (SO1-SO9) using seven 

advanced statistical methods to uncover software solutions and search variables for high-

performance glycopeptide data analysis (Figure 1e and Supplementary Table S16-S17). 
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Figure 1. Study overview. a. Two glycoproteomics datasets of human serum (File A and B) 

were shared with all participants. b. The 22 participating teams comprised 9 developers 

(orange) and 13 expert users (blue, team identifiers indicated). Diverse search engines were 

used to complete the study. c. Following the glycopeptide identification process, teams 

completed a common reporting template capturing details of the team and their identification 

strategy including the search settings (SS1-SS13) and search output variables (SO1-SO9), 

Table 1. Reports were carefully checked for compliance with the study guidelines. d. 

Complementary performance tests were used to evaluate the ability of each team to identify N-

glycopeptides (N1-N6) and O-glycopeptides (O1-O5), see Table 2 for performance tests. e. 

The performance profiles were compared across the developers and expert users (not between 

the two groups) and used to rank teams. The performance scores were also tested for correlation 

to the search settings and search output to identify performance-associated variables. 

 

Table 1. Overview of important study variables including key search settings (SS1-SS13) and 

search output variables (SO1-SO9). *Num, numerical variable; Cat, categorical variable. NG, 

N-glycosylation; OG, O-glycosylation. #Average of output data reported by each team. AA, 

amino acid residues. See Supplementary Table S1-S4 for details. The reported glycopeptides 

waere not included as a search output; this search output was instead used to score the 

glycoproteome coverage (see performance test N4 and O3). 

Search setting variables 
Type

* 

Range or definition of category  

(counts of teams) 

SS1 N-glycan search space Num 23 - 381 unique glycan compositions 

SS2 O-glycan search space Num 3 - 223 unique glycan compositions 

SS3 Search engine(s) applied Cat 

Byonic (11), Protein Prospector (2), 

GlycoPAT (1), GlycopeptideGraph (1), 

glyXtoolMS (1), GPQuest (1), Other (5) 

SS4 Type of search engine Cat 
Academic/open access/in-house = 0 (7), 

Commercial = 1 (15)  

SS5 Spectral calibration post-acquisition?  Cat No = 0 (18), Yes = 1 (4) 

SS6 Protease specificity Cat 
Non-tryptic (N- or O-ragged or non-

specific) = 0 (8), Tryptic = -1 (14) 

SS7 Missed cleavages permitted Num 0 - 2 missed cleavages 

SS8 
Variable peptide modification(s) (non-

glycan) 
Num 0 - 14 non-glycan modification types  

SS9 Maximum glycans per peptide  Num 1 - 5 glycans/peptide 

SS10 Maximum other variable modifications Num 0 - 5 variable modifications/peptide 

SS11 Precursor ion mass error permitted Cat 
Low (<5 ppm) = 0 (6), Medium (5-10 

ppm) = 1 (14), High (>10 ppm) = 2 (2) 

SS12 Product ion mass error permitted Cat 
Low (<5 ppm) = 0 (0), Medium (5-10 

ppm) = 1 (9), High (>10 ppm) = 2 (13) 

SS13 
Peptide/protein FDR 

(use of decoys/contaminant database?) 
Cat 

No decoy/contaminant = 0 (3),  

Only decoy or contaminant = 1 (9), 

Both decoy and contaminant = 2 (10) 
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Search output variables 
Type

* 

Range  

(N- or O-glycosylation) 

SO1 Glycopeptide LC retention time# Num 
41.7 - 57.2 min (NG) 

26.2 - 55.8 min (OG) 

SO2 Glycopeptide m/z (observed)# Num 
m/z 712.9 - 1199.4 (NG) 

m/z 619.6 – 1229.0 (OG) 

SO3 Glycopeptide charge state (observed)# Num 
z = 3.9 - 4.3 (NG) 

  z = 3.1 - 5.4 (OG) 

SO4 
Glycopeptide monoisotopic precursor 

selection off by X (positive values)# 
Num 

0 - 2.1 Da (NG) 

0 - 2.0 Da (OG) 

SO5 Glycopeptide mass ([M+H], observed)# Num 
3144.6 - 4913.0 Da (NG)  

1892.9 - 6057.1 Da (OG) 

SO6 
Glycopeptide actual mass error 

(observed, positive values)# 
Num 

0.5 - 2.8 ppm (NG) 

1.1 - 5.9 ppm (OG) 

SO7 Glycopeptide length# Num 
16.9 - 26.8 AA (NG) 

14.5 - 38.9 AA (OG) 

SO8 
Glycan mass (calculated from reported 

glycopeptides)# 
Num 

1880.8 - 2410.1 Da (NG)  

195.8 - 2216.8 Da (OG) 

SO9 Total number of reported glycopeptides  Num 
49 - 2122 glyco-PSMs (NG) 

5 - 578 glyco-PSMs (OG) 

 

Table 2. Overview of the independent performance tests applied to establish the relative team 

performance for N- and O-glycopeptide analysis. Each performance test was used to score each 

team using normalised quantitative values (range 0-1). *The scoring of some tests relied on 

robust literature on human serum glycosylation i.e. Clerc et al., 201628, Sun et al., 201844, Yabu 

et al., 201445, Darula et al., 201646, Yang et al., 201847 and Ye et al., 20194. 

Performance tests Description of scoring 

Tests relevant for the N-glycopeptide analysis 

N1 Synthetic N-glycopeptide  

Average of accuracy (specificity, %) and coverage 

(sensitivity, %) of the identification of the synthetic 

glycopeptide (Supplementary Table S5) 

N2 N-glycan composition* 

Pearson correlation (R2) between expected (based on Clerc 

et al., 201628) and observed glycan distribution in human 

serum (Supplementary Table S6) 

N3 Source N-glycoprotein* 

Specificity and sensitivity of reported source glycoproteins 

relative to expected serum glycoproteins (based on Clerc et 

al., 201628, Sun et al., 201844) (Supplementary Table S7) 

N4 N-glycoproteome coverage 
Number of unique glycopeptides (unique peptide sequence 

+ glycan composition) (Supplementary Table S8) 

N5 

Commonly reported 

‘consensus’  

N-glycopeptides 

Proportion of reported glycopeptides out of the consensus 

glycopeptides commonly reported by most teams (>50% of 

the 22 teams) (Supplementary Table S9) 

N6 
NeuGc and multi-Fuc  

N-glycopeptides  

Average of reported non-NeuGc and non-Fuc ≥2 

containing glyco-PSMs out of total PSMs. Only applicable 

for teams using NeuGc and Fuc ≥2 glycans in glycan 

search space (Supplementary Table S10) 
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Tests relevant for the O-glycopeptide analysis 

O1 O-glycan composition*  

Pearson correlation (R2) between expected (based on Yabu 

et al., 201445) and observed glycan distribution in human 

serum (Supplementary Table S11) 

O2 Source O-glycoprotein* 

Specificity and sensitivity of reported source glycoproteins 

relative to expected serum glycoproteins (based on Darula 

et al. 201646, Yang et al., 201847 and Ye et al., 20194 

(Supplementary Table S12) 

O3 O-glycoproteome coverage  
Number of unique glycopeptides (unique peptide sequence 

+ glycan composition) (Supplementary Table S13) 

O4 

Commonly reported 

‘consensus’  

O-glycopeptides  

Proportion of reported glycopeptides out of the consensus 

glycopeptides commonly reported by most teams (>30% of 

the 20 teams) (Supplementary Table S14) 

O5 
NeuGc and multi-Fuc  

O-glycopeptides 

Average of reported non-NeuGc and non-Fuc ≥2 

containing glyco-PSMs out of total. Only applicable if 

NeuGc and Fuc ≥2 containing glycans were included in 

glycan search space (Supplementary Table S15) 

 

Overview of the reported glycopeptides 

The below analyses were carried out using data reported from File B processed by all teams. 

The total N-glyco-PSMs reported by the 22 teams ranged from 49 to 2,122 covering between 

9 and 168 source glycoproteins (Figure 2a and Supplementary Table S3). In line with 

literature of human serum N-glycosylation28, 29, the reported N-glycopeptides carried mainly 

complex-type N-glycans (92.6%, average of all teams) while only relatively few were reported 

to carry oligomannosidic (6.4%) and truncated (Hex<4HexNAc<4) (1.0%) N-glycans. The 

applied N-glycan search space (the N-glycan database that was searched against) spanned an 

equally wide range from 23 to 381 glycan compositions comprising mostly complex-type N-

glycans (89.1%, average of all teams) and the less heterogeneous oligomannosidic (5.9%) and 

truncated (5.0%) N-glycans. Despite being perceived as an important search variable in 

glycoproteomics, only weak associations were found between the size of the N-glycan search 

space and the reported N-glyco-PSMs (Pearson R = 0.340). Unexpected glycan compositions 

including NeuGc- and multi-Fuc-containing complex-type N-glycans, which are absent or 

negligible features of human serum glycoproteins28,48-50, were not only included in the glycan 
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search space (up to 26.5% and 28.9%, respectively), but also reported (up to 20.6% and 5.0%, 

respectively) by some teams. The absence of NeuGc glycopeptides in the shared MS/MS data 

was supported by a lack of diagnostic fragment ions for NeuGc (m/z 290/308) (data not shown). 

Thus, glycopeptides reported with NeuGc- and multi-Fuc-containing glycans were considered 

as incorrect identifications in this study. 

Collectively, 2,556 unique (non-redundant) N-glycopeptides (defined herein as unique peptide 

sequences and glycan compositions), covering 320 different source N-glycoproteins and 

spanning 424 different N-glycan compositions were reported across all teams (Figure 2b, 

Supplementary Table S6-S7 and Supplementary Table S9). Of these, only 43 N-

glycopeptides (1.7%), 26 source N-glycoproteins (8.1%) and 28 N-glycan compositions (6.6%) 

were commonly reported by at least 75% of the teams. Most identifications were reported by 

less than 25% of the teams. Slightly less discordance was observed when the identifications 

were compared amongst the teams within the developer or expert user groups. Within the 10 

teams using the Byonic search engine, 157 of 1,867 N-glycopeptides (8.4%) were commonly 

reported by at least 75% of the teams, but most identifications were still reported by less than 

25% of the teams. 

Significantly fewer O-glycopeptides were identified by the participants ranging from 5 to 578 

O-glyco-PSMs (Figure 2c and Supplementary Figure S3j). Most O-glycopeptides were, as 

expected, reported to carry Hex1HexNAc1NeuAc1 and Hex1HexNAc1NeuAc2
45, 51. The O-

glycan search space varied from 3 to 223 glycan compositions. Similar to the N-glycopeptide 

analysis, only weak associations were observed between the size of the O-glycan search space 

and the reported O-glyco-PSMs (Pearson R = 0.344). Instead, many other types of associations 

were identified (discussed below). While seven teams included NeuGc in the applied O-glycan 

search space (up to 9.0%), only four teams reported NeuGc O-glycopeptides (up to 7.3%). In 

addition, 12 teams included multi-fucosylated glycans in the O-glycan search space (up to 
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43.5%); 11 of those teams reported multi-fucosylated O-glycopeptides (average of 28.6%, up 

to 61.8%). Both NeuGc and multi-fucosylated O-glycans are absent or negligible features of 

human serum O-glycoproteins as supported by literature45, 51 and by the absence of NeuGc 

diagnostic fragment ions in the analysed MS/MS data as mentioned earlier. In principal, the 

reported multi-fucosylated O-glycan compositions could in some cases arise from discrete O-

glycan sites on the same peptide; however, since O-glycosylation sites were inconsistently 

and/or ambiguously reported between teams (see below) we were not able to assess this aspect 

further. 

Collectively, 1,192 unique O-glycopeptides covering 231 unique source O-glycoproteins and 

288 unique O-glycan compositions were identified, but only relatively few O-glycopeptides 

were commonly reported by the teams. Only 3 O-glycopeptides (0.3%), 6 source O-

glycoproteins (2.6%) and 7 O-glycan compositions (2.4%) were commonly reported by at least 

50% of the teams (Figure 2c). The identification rate of these commonly reported ‘consensus’ 

glycopeptides was marginally higher when assessed within specific subsets of teams. For 

example, 20 of 674 O-glycopeptides (3.0%) were reported by at least 50% of the 10 Byonic 

users; however, most identifications were still reported by less than 25% of those teams. 

Despite the discrepant reporting by teams, a high-confidence list spanning 163 N- and 23 O-

glycopeptides commonly reported by more than 50% and 30% of teams, respectively, could be 

extracted from the team reports. Importantly, these commonly assigned consensus 

glycopeptides mapped to expected serum glycoproteins e.g. α-2-macroglobulin (UniProtKB, 

P01023) and immunoglobulin heavy constant α1 (UniProtKB, P01876) and carried expected 

serum N-glycans e.g. Hex5HexNAc4NeuAc2 (GlyTouCan ID, G09675DY) and 

Hex5HexNAc4Fuc1NeuAc2 (GlyTouCan ID, G22754FQ) and O-glycans e.g. 

Hex1HexNAc1NeuAc1 (GlyTouCan ID, G65285QO) and Hex1HexNAc1NeuAc2 (GlyTouCan 

ID, G84906ML). Further, the N- and O-glycans carried by these consensus glycopeptides were 
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biosynthetically related (Supplementary Figure S4) and were devoid of NeuGc and multi-

Fuc features further supporting their correct identification. These high-confidence 

glycopeptides form an important reference to future studies of the human serum glycoproteome 

and have therefore been made publicly available (GlyConnect Reference ID 2943). 

 

 

Figure 2. Overview of the N- and O-glycopeptide identifications reported by the 22 teams 

completing the study. Team 8 and 9 did not partake in the O-glycopeptide challenge. a. 

Distribution of the reported N-glyco-PSMs (bars), unique source N-glycoproteins (dots) and 

the applied N-glycan search space (mirror, see also Supplementary Table S2-S3) across all 

teams. b. The proportion of common N-glycopeptides, source N-glycoproteins and N-glycan 
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compositions reported across teams. c. Distribution of the reported O-glyco-PSMs (bars), 

unique source O-glycoproteins (dots) and the applied O-glycan search space (mirror, see also 

Supplementary Table S2-S3) across teams. d. The proportion of common O-glycopeptides, 

source O-glycoproteins and O-glycan compositions reported across teams. The high-

confidence ‘consensus’ glycopeptides reported by more than 50% and 30% of all participants 

i.e. 163 N- and 23 O-glycopeptides, respectively, have been made publicly available 

(GlyConnect Reference ID 2943). 

 

Identification of high-performance informatics solutions for N-glycoproteomics 

The relative team performance for accurate and comprehensive N-glycopeptide identification 

was established using six independent performance tests (N1-N6) (Table 2 and 

Supplementary Table S5-S10). Amongst these performance tests, N1 scored the ability of 

teams to accurately identify the synthetic N-glycopeptide in the sample. Similar to the other 

performance tests, the synthetic N-glycopeptide test was used to establish the relative team 

performance (Supplementary Figure S5). Data from N1 also confirmed that glycopeptides 

were preferentially identified in charge 4+ using HCD- and EThcD-MS/MS (even when high-

quality MS/MS data from other charge states and fragmentation modes were available) as 

supported by observations made across the entire dataset (Supplementary Figure S2). 

In line with the literature2, 13, most teams employed HCD- and/or EThcD-MS/MS for the 

glycopeptide identification. While these two fragmentation modes surprisingly displayed 

similar performance in the N- and O-glycan composition tests (N2, O1) and similar N- and O-

glycoproteome coverage (N4, O3), higher scores were achieved for identifications based on 

EThcD- relative to HCD-MS/MS data in the tests addressing the source N-glycoproteins (N3) 

and O-glycoproteins (O2, albeit without reaching statistical significance) (Supplementary 

Figure 6). Importantly, glycosylation site localisation, not tested with this study (discussed 

below), is widely recognised to be more accurately achieved with EThcD-MS/MS data5, 17. 

An elaborate scorecard used to rank the developer and expert user teams was established based 

on the performance tests (Figure 3a). At a glance, the scorecard pointed to considerable team-
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to-team variations in the performance profiles suggesting that the applied software and search 

strategies exhibit markedly different strengths and weaknesses for N-glycopeptide data 

analysis. As an example, the developers of IQ-GPA (Team 1) and GlycoPAT (Team 8) 

performed well (relative to other developer teams) in the N-glycan composition test (N2), while 

Protein Prospector (Team 2) and Byonic (Team 4) performed well in tests scoring the ability 

to identify the source N-glycoproteins (N3) and the N-glycoproteome coverage (N4). 

Overall, Protein Prospector (Team 2, score 0.682), Byonic (Team 4, score 0.676) and 

GlycoPAT (Team 8, score 0.647) were found to be high-performance software solutions for N-

glycopeptide data analysis herein defined as top third of performers. Notably, the scoring did 

not separate these three developer teams by any significant margin, but their overall scores 

were slightly higher than the performance of IQ-GPA (Team 1, score 0.621) and glyXtoolMS 

(Team 3, score 0.580) and significantly higher than the other software (score range 0.296 - 

0.366). In support of this ranking, the four best performing expert user teams were Team 15, 

13 and 11 (Byonic users, score range 0.687 - 0.777) and Team 12 (Protein Prospector user, 

score 0.709). Their overall performance scores were marginally higher than the performance 

of seven other Byonic user teams (Team 10, 16, 17, 18, 20, 21, 22, score range 0.593 - 0.679), 

but significantly higher than teams using SugarQb (Team 14, score 0.172) and Mascot (Team 

19, score 0.413). Despite the similar overall performance amongst most user teams, not least 

the 10 Byonic users, their performance profiles differed markedly across the performance tests. 

We then explored the scores for performance-associated variables including the search settings 

(SS1-SS13) and search output variables (SO1-9) using seven different statistical methods 

(Figure 3b). Many statistically strong relationships were found revealing key performance-

associated variables, some intuitive others rather unexpected, that either positively or 

negatively correlated with the glycopeptide identification efficiency. As an example, the use of 

a decoy and/or contaminant database (SS13) was found to be associated with both a high N-
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glycoproteome coverage (N4) and high performance in the synthetic glycopeptide test (N1). 

Search strategies that allowed for a relatively high diversity and number of non-glycan variable 

peptide modifications (SS8 and SS10) and a low number of glycans per peptide (SS9) were 

also associated with a high N-glycoproteome coverage (N4). As expected, allowing a relatively 

high number of missed peptide cleavages (SS7) and variable non-glycan modifications (SS10) 

in the search strategy correlated with higher glycopeptide FDRs as indicated by a high rate of 

NeuGc and multi-Fuc identifications (low N6 scores) (Supplementary Table S16-17). 

The association analyses also identified many interesting relationships between the search 

output variables and performance (Figure 3b). Intuitively, teams that reported a high number 

of N-glyco-PSMs (SO9) performed well in the synthetic N-glycopeptide test (N1), had a higher 

N-glycoproteome coverage (N4) and identified more consensus N-glycopeptides (N5). Further, 

teams that reported glycopeptides featuring a relatively high glycan mass (SO8) were found to 

more often identify the correct glycan composition (N2) while teams that reported 

glycopeptides exhibiting relatively high molecular masses (SO5) more often identified the 

correct source N-glycoproteins (N3). Glycopeptide analytes with relatively high molecular 

masses (arising from large glycans and/or peptide moieties) are less likely to result in false 

positive identifications due to fewer theoretical glycopeptide candidates (fewer potential false 

positives) in the higher mass range. In addition, early LC retention time (SO1), high charge 

state (SO3), high glycopeptide mass (SO5), high actual mass error (SO6) and high glycan mass 

(SO8) were search output variables closely linked to high N-glycoproteome coverage (N4). 

Teams reporting glycopeptides with high glycopeptide masses (SO5) were more likely to 

identify consensus glycopeptides (N5). Finally, low actual mass error (high mass accuracy, 

SO6) was, as expected, associated with a low identification rate of incorrect NeuGc and multi-

Fuc glycopeptides. In summary, we identified many performance-associated variables useful 

to guide the N-glycopeptide data analysis process in the future (Table 3). 
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Identification of high-performance informatics solutions for O-glycoproteomics 

Protein Prospector (Team 2) displayed the highest performance in tests scoring the ability to 

accurately identify the source O-glycoproteins (O2) and to identify consensus O-glycopeptides 

(O4). On the other hand, IQ-GPA (Team 1) and glyXtoolMS (Team 3) were the best performing 

software in tests scoring the ability to accurately identify the O-glycan compositions (O1) and 

the O-glycoproteome coverage (O3), respectively. Overall, Protein Prospector (Team 2, score 

0.613) and glyXtoolMS (Team 3, score 0.522) were evaluated to be high-performance software 

for O-glycoproteomics (top third performance). Amongst the expert users, Team 13, 15, 17 and 

18 (all Byonic users, score range 0.473-0.701) were found to be in the high-performance band 

(Figure 3c and Supplementary Table S16-17). 

Association analyses showed that accurate identification of the O-glycan compositions (O1) 

was linked to the use of a focused (narrow) O-glycan search space (SS2) and to permitting only 

few missed peptide cleavages (SS7) (Figure 3d). In addition, search strategies permitting 

incorrect precursor selection (SO4) and filtering of O-glycopeptides identified with a low 

actual mass error (SO6) were common approaches used by teams performing well in the O-

glycan composition test (O1). Interestingly, the use of a broad O-glycan search space (SS2) 

was associated with accurate identification of source O-glycoproteins (O2), high O-

glycoproteome coverage (O3), and a high identification rate of consensus O-glycopeptides 

(O4). Further, teams reporting identifications with low actual mass error (SO6) scored well in 

the O-glycan composition test (O1), but, notably, at the cost of a lower O-glycoproteome 

coverage (O3) and fewer consensus O-glycopeptides (O4). In summary, this study has 

identified several performance-associated variables, including many previously unknown 

relationships, that may enhance the O-glycopeptide analysis process in the future (Table 3). 
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Figure 3. Team performance and identification of performance-associated variables (i.e. search 

settings and search outputs) as evaluated using File B. a. Heatmap representation of the 

normalised scores (range 0-1) arising from the six performance tests for N-glycopeptide 

identification (N1-N6) (see Table 3). b. Overview of search settings and search outputs that 

showed significant association (negative or positive) with the performance scores for N-

glycopeptide identification as supported by multiple statistical analyses. c. Heatmap 

representation of the normalised scores (range 0-1) arising from the five performance tests for 

O-glycopeptide identification (O1-O5) (Table 3). Team 8 and 9 did not partake in the O-

glycopeptide challenge. d. Overview of search settings and search outputs that showed 

significant associations with the performance scores for O-glycopeptide identification. See 

Table 1 for search settings and search outputs. See Supplementary Table S17 for statistical 

data. See Supplementary Table S5-S15 for performance data. *Performance score could not 

be determined for these specific teams. #The top third performance scores (white bold) were 

grouped into a high-performance band. 
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Table 3. Search settings and expected search output features associated with high-performance 

glycoproteomics data analysis as supported by multiple association analyses (see Figure 3b, 

3d, Table 1-2 and Supplementary Table S17 for details of study variables and reported 

associations). ‡The search settings outlined here may guide improved search strategies in 

various performance areas of a glycoproteomics experiment. ^These search output features 

may enhance the quality of the glycoproteomics data analysis by enabling informed post-search 

filtering of glycopeptide data. Only high-performance search settings and search outputs 

closely associated with each performance test (correlation observed for at least three of seven 

statistical tests) have been included in this table. The possible compromise of selected search 

strategies on the overall glycoproteomics performance is indicated. NA, not applicable. 

Performance 

area 

Related 

test 

High-performance 

search settings‡ 

High-performance 

search output 

(expected)^ 

Strategy 

may 

compromise 

Efficient N-

glycopeptide 

analysis  

(all-round 

performance) 

Overall 

score 

(N1-N6) 

• Use decoy and/or 

contaminant protein 

database to establish 

peptide/protein FDR 

(SS13) 

• High m/z (SO2) 

• High monoisotopic 

precursor selection off 

by X (SO4) 

• High glycopeptide 

mass (SO5) 

• High number of glyco-

PSMs (SO9) 

NA 

Accurate N-

glycan 

identification  

N2 NA 
• High glycan mass (Da) 

(SO8) 

N-glyco-

proteome 

coverage 

Accurate 

identification 

of source N-

glycoprotein  

N3 NA 

• Late LC retention time 

(SO1) 

• High glycopeptide 

mass (SO5) 

N-glyco-

proteome 

coverage 

High N-

glycoproteome 

coverage 

N4 

• Allow diversity of 

variable non-glycan 

peptide modifications 

(SS8) 

• Few glycans per peptide 

allowed (SS9) 

• Allow a higher number 

of variable non-glycan 

modifications per 

peptide (SS10)  

• Use decoy and/or 

contaminant protein 

database to establish 

peptide/protein FDR 

(SS13) 

• Late LC retention time 

(SO1) 

• High charge stage 

(SO3) 

• High glycopeptide 

mass (SO5) 

• High actual mass error 

(SO6) 

• High glycan mass 

(SO8) 

• High number of glyco-

PSMs (SO9) 

N-

glycopeptide 

identification 

accuracy, 

search time 

Minimise the 

NeuGc and 

multi-Fuc FDR 

N6 
• Allow fewer missed 

cleavages of peptides 

(SS7) 

• Low actual mass error 

(SO6) 

N-glyco-

proteome 

coverage 
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• Allow fewer variable 

non-glycan 

modifications per 

peptide (SS10) 

Efficient O-

glycopeptide 

analysis  

(all-round 

performance) 

Overall 

score 

(O1-O5) 

• Broad glycan database 

(SS2) 

• Few missed cleavages 

allowed (SS7) 

• Allow a higher number 

of variable non-glycan 

modifications per 

peptide (SS10) 

• High peptide length 

(SO7) 

• High number of glyco-

PSMs (SO9) 

Search time 

Accurate O-

glycan 

identification 

O1 

• Use a focused glycan 

database (SS2) 

• Allow fewer missed 

cleavages per peptide 

(SS7) 

• High monoisotopic 

precursor selection off 

by X (SO4) 

• Low actual mass error 

(SO6) 

O-glyco-

proteome 

coverage 

Accuracy 

identification 

of source O-

glycoprotein 

O2 

• Broad glycan database 

(SS2) 

• Trypsin fully specific 

(SS6) 

• Few missed cleavages 

allowed (SS7) 

• Few glycans per peptide 

allowed (SS9) 

• Allow a higher number 

of variable non-glycan 

modifications per 

peptide (SS10) 

• High number of 

glyco-PSMs (SO9) 

O-glyco-

proteome 

coverage, 

search time 

High O-

glycoproteome 

coverage 

O3 
• Broad glycan database 

(SS2) 

• High actual mass error 

(SO6) 

• High number of glyco-

PSMs (SO9) 

O-

glycopeptide 

identification 

accuracy, 

search time 
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Discussion 

This is the first comparative study to objectively discern the strength and weaknesses of current 

informatics solutions for large-scale glycopeptide data analysis. Excitingly, several high-

performance glycoproteomics software and search strategies were identified. Amongst the 9 

developer teams completing this study, Protein Prospector (Team 2) was identified as the top 

performing informatics solution for both N- and O-glycopeptide data analysis. Byonic (Team 

4) also displayed high-performance for N-glycopeptide data analysis, and while this developer 

team only demonstrated moderate performance for O-glycoproteomics, four Byonic user teams 

(Team 13, 15, 17, 18) displayed the highest performance for O-glycopeptide data analysis. 

Protein Prospector52 and Byonic38, developed 10-20 years ago, have pioneered the glycopeptide 

informatics field and are search engines already commonly used in glycoproteomics and in 

studies of other post-translational modifications13, 36, 38. Protein Prospector is an 

academic/open-source tool recognised for its ability to identify modified peptides and their 

modification site(s) from LC-MS/MS data using a probability-difference based scoring 

system36. In fact, Protein Prospector is often a preferred software for the challenging site 

annotation of intact O-glycopeptides in particular when ET(hc)D-MS/MS data are available5. 

However, Protein Prospector does not estimate the FDR of the glycan component of 

glycopeptides which is regarded by the software as a non-descript PTM with an exact mass, 

and the software may appear less user-friendly than competing tools. Facilitated by a user-

friendly and intuitive interface, precise spectral annotation and useful output reports of 

identified glycoproteins and glycopeptides, the commercial Byonic search engine has rapidly 

gained popularity (as illustrated by this study) as it enables relatively straightforward 

identification of peptides with known and unknown modifications including glycosylation 

from different types of MS/MS data. Byonic features useful fine control options that enable 

tailored glycopeptide searches and post-search filtering of search output based on prior 
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knowledge. Byonic scores and annotates multiple types of glycopeptide fragments in attempts 

to deduce the peptide carrier, glycan and modification site, but the FDR is treated identically 

for non-glycosylated peptides and glycopeptides and primarily addresses the correctness of the 

peptide rather than the glycan and site localisation38. 

Notably, GlycoPAT42 (Team 8) and glyXtoolMS 37 (Team 3) were in our study also identified 

as high-performance software solutions for N- and O-glycopeptide data analysis, respectively. 

Furthermore, IQ-GPA35 (Team 1) demonstrated merit for both N- and O-glycoproteomics data 

analysis. While all three software handle high-resolution HCD-, ETciD-, and EThcD-MS/MS 

data, IQ-GPA and GlycoPAT also identify glycopeptides based on high-resolution CID-

MS/MS data and apply a post-search filtering step based on advanced peptide and glycan decoy 

methods to estimate both the peptide and glycan FDR of glycopeptide candidates. The software 

glyXtoolMS instead uses oxonium ions, the Y1-ion (peptide-HexNAc ion), other glycopeptide-

specific fragments, and peptide-specific b- and y-ions, to reduce the false-positive glycopeptide 

identification rate. Excitingly, these three open-source/academic tools were all recently 

developed (< 5 years ago), and thus, hold a considerable potential for future impact in the field. 

This study also revealed several performance-associated search variables important for 

comprehensive and accurate glycopeptide identification. Amongst the observed associations 

related to the search settings, we found that a large glycan and/or protein search space (e.g. 

broad glycan database or permitting multiple missed cleavages and variable non-glycan 

modifications of peptides) as expected is associated with a high glycoproteome coverage, but 

at the cost of high glycopeptide FDRs (high identification rate of NeuGc and multi-Fuc 

glycans) and less accurate identification of the source glycoproteins. Although not tested 

directly with this study, such less restricted search settings also increase the search time. As an 

example of the many performance-associated search outputs that were observed, we found that 

applying a stringent mass tolerance (low mass error) and accepting incorrect precursor peak 
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picking were important variables to achieve confident glycan identification for both N- and O-

glycopeptides. Knowledge of this relationship is particularly useful to reduce the FDR of 

glycopeptides carrying “difficult-to-identify” glycans such as those with near-isobaric masses 

(e.g. NeuAc-R and Fuc2-R, Δm = 1.0204 Da). Several less intuitive performance-associated 

search settings and search outputs were also observed, relationships that will be important to 

guide and improve the pre- and post-search data analysis process in glycoproteomics. 

This community study also illustrated the significant informatics challenges still associated 

with large-scale glycopeptide data analysis as indicated by the dramatic variance of identified 

glycopeptides reported across teams. Notably, high discordance of reported glycopeptides was 

even found between participants using the same software, illustrating that search variables 

other than the search engine also substantially impact the glycopeptide data analysis. While the 

10 Byonic user teams reported a marginally higher rate of consensus glycopeptides, their 

spread in terms of search output data, reported glyco-PSMs and overall performance scores 

was of similar magnitude as the variance observed amongst other expert user teams. The 

variability in the applied search settings and, importantly, at the post-search filtering stage were 

found to be key factors contributing to the discrepant reports. Concertedly, these observations 

point to the importance of using both powerful search engines and tailored search settings and 

post-search filtering criteria to achieve efficient and accurate glycoproteomics data analysis. 

Despite the considerable team-to-team variation, this study produced a consensus list of 163 

N-glycopeptides and 23 O-glycopeptides from serum glycoproteins commonly reported by 

most teams. Importantly, these high-confidence glycopeptides carried biosynthetically-related 

glycans devoid of NeuGc- and multi-Fuc features in line with literature28, 45 and mapped to 

known high-abundance serum proteins4, 28, 44, 46, 47. The consensus list has been made publicly 

available (GlyConnect Reference ID 2943) as it forms an important reference for future studies 

addressing the complexity of the human serum glycoproteome. 
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The design of this study including the sample type and preparation as well as the data collection 

method was chosen to mimic conditions typically encountered in glycoproteomics experiments 

while also aiming to accommodate for most informatic solutions and appeal to practitioners in 

the field. Multiple orthogonal performance tests were applied in attempts to ensure a fair and 

holistic scoring of the search engines and search strategies. Despite these efforts, it cannot be 

ruled out that some informatics solutions and expert users may have been excluded and teams 

disadvantaged by the chosen experimental design and scoring system. The resulting scorecard 

and ranking of software and teams should be viewed in light of these constraints and limitations 

common to most community-based comparison studies founded on communal data files. 

In addition to reporting on the peptide and glycan component of the identified glycopeptides, 

teams were requested to report on site(s) of modification where possible. Since most tryptic N-

glycopeptides only comprise a single sequon, site localisation is primarily a challenge related 

to O-glycopeptide analysis5, 21. Most teams indeed returned data of the O-glycosylation site(s), 

but due to highly discrepant and often inconclusive reporting of such sites and given the paucity 

of literature on serum O-glycosylation sites, we did not score the ability to localise 

glycosylation sites in this study. 

Most software solutions currently available for glycoproteomics data analysis participated in 

this study. However, several glycopeptide search engines e.g. pGlyco53, MSFragger-Glyco54, 

and O-Pair Search55 were unfortunately not represented due to LC-MS/MS data incompatibility 

or due to their development and/or release after the software evaluation period. Highlighting 

the rapid progress in the glycoproteomics informatics field, most of the software solutions that 

participated in this study have been significantly improved and new versions released after the 

evaluation period. For example, the GPQuest v2.0, GlycoPAT v1.0 and Protein Prospector 

v5.20.23 search engines tested herein have been superseded by more recent versions i.e. 

GPQuest v2.1, GlycoPAT v2.0 and Protein Prospector v.6.2.2. Follow-up studies comparing 
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the performance of these very latest glycoproteomics software upgrades and informatics 

solutions not included in this study are therefore warranted. Beyond testing the ability of 

developers and expert users to identify the peptide and glycan component of intact 

glycopeptides from LC-MS/MS data, such future comparative studies should ideally also test 

for their ability to accurately report on the modification site as well as the (relative) quantity of 

the identified glycopeptides. 

In summary, this community study has documented that the field has several high-performance 

informatics tools available for glycoproteomics data analysis and has elucidated many 

performance-associated search strategies and key variables that may guide developers and 

users of glycoproteomics software to improved strategies for large-scale glycopeptide data 

analysis. 
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Online Methods 

Study design and participants 

Calls to join this study as a developer (academic/commercial) or expert user of glycoproteomics 

software were made across the community. In total, 22 teams comprising 9 developer and 13 

expert user teams completed the study. All teams were provided with two communal high-

resolution glycoproteomics LC-MS/MS data files (File A and B) and were asked to identify 

intact glycopeptides from these shared files, and then report back their findings using a 

common reporting template (see PXD024101 via the PRIDE repository). All reports were 

carefully inspected to ensure strict compliance with the study guidelines and to enable a fair 

comparison between teams. While the expert user teams were guaranteed anonymity, the 

developer teams were informed that their software (hence, potentially their identity) would be 

disclosed upon publication. The expert user teams were free to use any search engine(s) at their 

disposal including manual annotation and filtering of search output. Developers were asked to 

return the list of glycopeptide identifications directly from their own software without manual 

post-search filtering. The 9 developer teams employed the following glycopeptide-centric 

search engines: Team 1: IQ-GPA v2.535, Team 2: Protein Prospector v5.20.2336, Team 3: 

glyXtoolMS v0.1.437, Team 4: Byonic v2.16.1638, Team 5: Sugar Qb39, Team 6: Glycopeptide 

Search v2.0alpha 40, Team 7: GlycopeptideGraphMS v1.0/Byonic41, Team 8: GlycoPAT v2.042 

and Team 9: GPQuest v2.043 (see Supplementary Table S1 for details). The relative team 

performance was compared within (not between) the developer and expert user groups. 

Study sample 

In short, a synthetic N-glycopeptide from human vitamin K-dependent protein C (52 fmol, 

EVFVHPNYSK, Hex5HexNAc4NeuAc2) was spiked into human serum (5 µg, product number 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.14.435332doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.14.435332


32 

 

#31876, Thermo Fisher Scientific), the mixture digested using trypsin, and the resulting 

glycopeptides enriched (see Extended methods for details of the study sample and handling). 

Mass spectrometry 

The enriched glycopeptide mixture (~1 μg/injection) was analysed twice using two similar LC-

MS/MS acquisition methods to generate File A and B. For both files, peptides were separated 

using C18 reversed phase nanoLC and detected on a Thermo Scientific™ Orbitrap Fusion™ 

Lumos™ Tribrid™ mass spectrometer using high-resolution MS1 and data-dependent HCD-

MS/MS data acquisition. Product-dependent (oxonium ion) triggered ETciD-/CID-MS/MS 

(Orbitrap) and EThcD-/CID-MS/MS (ion trap) events of glycopeptide precursors were 

scheduled for File A and B, respectively. File A and B were provided to all participants as .raw 

and .mgf files (see Extended methods for LC-MS/MS details). 

Search instructions and reporting template 

All teams were requested to use a fixed protein search space (human proteome, 20,231 

UniProtKB reviewed sequences), but could freely choose the N- and O-glycan search space. 

Teams were asked not to include xylose and any glycan substitutions in the glycan search space. 

The participants reported their team details, identification strategy and identified glycopeptides 

in a common reporting template. All reports were carefully checked for compliance to the study 

guideline (see Extended methods for search and reporting details). 

Compilation and comparison of team data 

Data from the returned reports were compiled (Supplementary Table S1-S2) including the 

reported N- and O-glycopeptides (Supplementary Table S3). Unique identifiers (IDs) for the 

reported glycopeptides and their glycan compositions and source glycoproteins were generated 

to enable comparison across teams. The glycan composition ID was written as 

Hex*HexNAc*Fuc*NeuAc*, where * represents the number of monosaccharide residues. 
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Glycopeptides adducted with Na+ and K+ reported by some teams were grouped with the 

corresponding non-adducted glycan compositions. UniProtKB identifiers were used as the 

source glycoprotein IDs. The glycopeptide IDs were written as the peptide sequence followed 

by the generic glycan composition. Comparisons between the glycan compositions, source 

glycoproteins and glycopeptide IDs reported by the 22 teams were performed using the “pivot 

table” in Excel. Variables from each identifier type were compared as summed counts across 

teams (see Extended methods for details of the data comparison between reports). 

Performance testing 

The relative team performance was assessed using a scoring system composed of multiple 

independent tests designed to holistically score the accuracy (specificity) and coverage 

(sensitivity) of the reported N- and O-glycopeptides. The raw scores from the individual tests 

(N1-N6 and O1-O5) were normalised within the range 0-1. The normalised scores were 

collectively used to establish an overall score (range 0-1) measuring the ability to perform 

efficient N- and O-glycopeptide data analysis. The overall score was utilised to rank the 

developer and expert user teams within each group. The performance tests included the 

synthetic N-glycopeptide test (N1), the glycan composition test (N2 and O1), the source 

glycoprotein test (N3 and O2), the glycoproteome coverage test (N4 and O3), the commonly 

reported (consensus) glycopeptide test (N5 and O4), and the NeuGc and multi-Fuc 

glycopeptide test (N6 and O6). The overall performance scores for N- and O-glycopeptide 

analysis were established by averaging the normalised scores of the individual performance 

tests (see Extended methods for details of the performance tests and the scoring system). 

Statistical analysis 

The normalised scores from each of the performance tasks (N1-N6 and O1-O5) and the overall 

performance scores across all teams were tested for associations with the search settings (SS1-
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SS13) and search output variables (SO1-SO9) using seven statistical methods56. Only strong 

associations observed across a minimum of three different statistical methods were considered 

in this study (see Extended methods for details of the statistical methods).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.14.435332doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.14.435332


35 

 

Supplementary Information 

This study contains supplementary information. Two supporting files have been provided: 1) 

Supplementary information containing Extended methods and Supplementary Figure S1–

S6 (PDF) and 2) Supplementary Table S1–S17 (Microsoft Excel). Further, the LC-MS/MS 

raw data files (File A and B), the common reporting template and the deidentified but otherwise 

unredacted participant reports are available via ProteomeXchange with identifier PXD024101. 

Username: reviewer_pxd024101@ebi.ac.uk, Password: YLk2wW1P. 
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