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Abstract 

Base editors enable direct conversion of one target base into another in a 

programmable manner, but conversion efficiencies vary dramatically among 

different targets. Here, we performed a high-throughput gRNA-target library 

screening to measure conversion efficiencies and outcome product frequencies 

at integrated genomic targets and obtained datasets of 60,615 and 73,303 

targets for ABE and CBE, respectively. We used the datasets to train deep 

learning models, resulting in ABEdeepon and CBEdeepon which can predict 
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on-target efficiencies and outcome sequence frequencies. The software is 

freely accessible via online web server http://www.deephf.com/#/bedeep. 

Introduction 

Base editors are fusion of catalytically impaired Cas9 nuclease and adenosine 

deaminase (ABE) or cytosine deaminase (CBE) that introduce desired point 

mutations in the target region enabling precise editing of genomes 1-5. Base 

editors have been successfully used in diverse organisms including 

prokaryotes, plants, fish, frogs, mammals and human embryos 6-9. Though 

simple in concept, the success of base editing depends on the choice of the 

target sequence. First, efficiency of base conversion varies dramatically among 

different target sequences, and users need to select a target sequence with 

high efficiency. Second, there are often more than one editable nucleotide in 

the editing window and unwanted concurrent mutations should be avoided. 

Experimental evaluation of a target sequence is time-consuming, prompting us 

to develop in silico tools for target sequence evaluation.  

We have previously established a library containing over 80,000 gRNA-target 

sequence pairs, covering ~20,000 human genes 10. In this study, we made use 

of this library to screen both base editors and obtained the outcome product 

frequencies of 60,615 and 73,303 target sequences for ABE and CBE, 

respectively. The resulting outcomes were used to train a deep learning model, 

resulting in ABEdeepon and CBEdeepon which can predict efficiency and 

outcome frequency distributions of ABE and CBE, respectively. These models 

were accessible via http://www.deephf.com/#/bedeep, which will greatly 

facilitate base editor application.  

Results 

Guide RNA-target pair strategy for test of conversion efficiency and 

outcomes 
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Figure 1. High-throughput screen of on-target efficiencies and 
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outcomes 

(a) Schematic of the pooled pairwise library screen. A library of 80,263 gRNA-

target pairs was packed into viruses and transduced into cells expressing 

ABE or CBE base editors. The integrated target sites were PCR-amplified for 

deep-sequencing analysis. Red arrows indicate primers for target site 

amplification; stars indicate nucleotide conversion. (b) Deep-sequencing 

results revealed that A to G conversion (red letter) for ABE and C to T 

conversion for CBE occurred. A to non-G and C to non-T conversions are 

shown in blue. (c) C to T or A to G conversion efficiency at different position. 

(d, e) Effect of the sequence context surrounding the target nucleotide (red) 

on the conversion efficiency at protospacer positions 4 to 9.  

 

A previously generated library 10 containing over 80,000 gRNA-target sequence 

pairs was used for ABE and CBE screening. Optimized version of ABE 

(ABEmax) and CBE (AncBE4max)11 was used in this study. Because of the 

large size, we used the Sleeping Beauty (SB) transposon 12-14 to integrate each 

base editor into the genome and generated single cell-derived cell lines. Next, 

we evaluated the nucleotide conversion efficiency with three targets at different 

time points. As expected, the efficiency increased over time for all three targets 

(Supplementary Fig. 1). One target displayed ~100% gene conversion at day 

7. We selected day 5 to measure editing efficiency for the library.  

We packaged the gRNA-target library into lentiviruses and transduced them 

into recipient cells. Five days after transduction, genomic DNA was extracted, 

and synthesized targets were PCR-amplified for deep-sequencing (Fig. 1a). 

The reads containing canonical base editing (A to G for ABE, C to T for CBE) 

and unedited reads were used for outcome frequency distribution. A target 

efficiency can be calculated by 1 subtract unedited outcome frequency (see 

Data analysis section of Methods part). The screening assay was 

experimentally repeated twice, and conversion efficiency in two independent 
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replicates showed high correlation for both ABE and CBE (Spearman 

correlation, 0.891 for ABE and 0.934 for CBE). Data from the two replicates 

were combined together for subsequent analysis. We obtained valid 

efficiencies (reads number>100) of 60,615 targets with 5,761,833 outcomes for 

ABE and 73,303 targets with 5,513,919 outcomes for CBE.  

 

Figure 2. Conversion efficiency influenced by nucleotides on the target 

sequence. 

Sequence preferences at each position in efficient (top 20%) vs. inefficient 

(bottom 20%) targets for ABE (a) and CBE (b). The target nucleotide position 

is shown on the top. Nucleotide position on the targets is shown below. The 

log odds ratios of nucleotide frequencies between efficient and inefficient 

target sequences are represented on the y axis. Target nucleotide position is 
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indicated by red lines. 

Sequencing results revealed that A to G conversion for ABE and C to T 

conversion for CBE occurred (Fig. 1b). Although infrequent, C to non-C 

conversion for CBE and A to non-A conversion for ABE could also be observed 

(Fig. 1b). The ABE products (purity ranging from 98.43% to 99.69%) were purer 

than CBE (purity ranging from 95.55% to 97.78%, Supplementary Fig. 2), 

consistent with a previous report 2. We also observed indels with mean 

efficiency of 0.13 for ABE and mean efficiency of 0.16 for CBE, whereas mean 

frequency of background indels in the plasmid library was 0.06. 

Positional effects on nucleotide conversion efficiency  

The large-scale dataset generated here allowed us to analyze the positional 

effects on nucleotide conversion efficiency. The five most efficient positions for 

nucleotide conversion are 4-8 for both ABE and CBE with PAM at position 21-

23 (Fig. 1c), consistent with previously reported editing windows 2, 11. Next, we 

investigated the influence of nearby nucleotides on conversion efficiency for 

position 4-9. Both nucleotides surrounding the target A influenced conversion 

efficiency with the upstream nucleotide having a stronger influence for ABE. 

The upstream nucleotide preference followed the order T>C>G>A (Fig. 1d). In 

contrast, only upstream nucleotide surrounding the target C influenced 

conversion efficiency for CBE following the preference order T>C>A>G (Fig. 

1e).  

Next, we investigated nucleotide preferences at each position in the target 

sequences associated with high editing efficiencies. The results revealed that 

ABE editing efficiencies were strongly influenced by both upstream and 

downstream nucleotides immediately adjacent to the target nucleotide (target 

nucleotide, ±1 bp, Fig. 2). The nearby nucleotides A and G have negative 

influence on editing efficiency, while the nearby T have positive influence on 

editing efficiency. The upstream C has positive influence on editing efficiency 

for target nucleotide positions 5 and 6, but has negative influence on target 
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nucleotide positions 4 and 7. The downstream C has positive influence on 

editing efficiency. CBE editing efficiencies were only strongly influenced by the 

upstream nucleotide immediately adjacent to the target nucleotide (target 

nucleotide, +1 bp, Fig. 2). The upstream nucleotides A and G have negative 

influence on editing efficiency, while the upstream T have positive influence on 

editing efficiency. Upstream C has positive influence on editing efficiency for 

target nucleotide positions 5-7, but has negative influence on target nucleotide 

position 4.  

Correlation of editing efficiency between SpCas9 and base editors 

The gRNA-target library in this study was recently used to screen for SpCas9 

nuclease 10, allowing us to investigate the efficiency correlation between 

SpCas9 and base editors. We calculated the correlations between SpCas9 

nuclease and base editors for each quartile of base editor efficiencies. The 

correlation (R<0.15) was low for both ABE and CBE (Supplementary Fig. 3a-b). 

We also calculated the correlations between SpCas9 nuclease and base 

editors for each quartile of SpCas9 efficiencies. Although the corrections were 

low, quartile 1 achieved much higher correlation than other quartiles for both 

ABE and CBE (R=0.21 for ABE, R=0.23 for CBE, Supplementary Fig. 3c-d).  

We further investigated the relationship between SpCas9 mean efficiencies and 

base editor mean efficiencies for each quartile of base editor efficiencies. The 

results revealed that SpCas9 efficiency was similar in each quartile of base 

editor efficiency (Supplementary Fig. 4a-b). We also investigated the 

relationship between SpCas9 mean efficiencies and base editor mean 

efficiencies for each quartile of SpCas9 efficiencies. The results revealed that 

quartile 2-4 achieved similar mean efficiency, while quartile 1 achieved a little 

lower mean efficiency (Supplementary Fig. 4c-d). Collectively, these data 

suggested SpCas9 efficiency and base editor efficiency had a very low 

correlation for a target. 
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Figure 3. Evaluation of ABEdeepon for editing efficiency and outcome 

prediction 

(a) Example of ABEdeepon prediction for a given target. Measured 
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efficiencies are listed for comparison. Original target sequence is underlined. 

(b) Evaluation of ABEdeepon for conversion efficiency with testing dataset. 

(c) Evaluation of ABEdeepon for conversion outcome sequence frequencies 

with testing dataset. (d, f, h) Evaluation of ABEdeepon for conversion 

efficiency with endogenous editing dataset generated in HEK293T, U2OS 

and HCT116 cells, respectively. (e, g, i) Evaluation of ABEdeepon for 

conversion outcome sequence frequencies with endogenous editing dataset 

generated in HEK293T, U2OS and HCT116 cells, respectively. 

Developing models for prediction of on-target efficiencies and outcomes 

Next, we developed models for prediction of on-target efficiencies and outcome 

sequence frequencies. Since a target generally contains multiple editable 

nucleotides, there might exit multiple editing outcome sequences. We first 

programmed this conversion scheme to obtain all possible editing outcome 

sequences, and then assigned the measured editing frequency to each 

outcome sequence. We used the ABE editing datasets to train a shared 

embedding based deep learning model. The targets were randomly split to 

56,432 (5,390,492 outcomes) for training, 1,152 (98,958 outcomes) for internal 

validation, and 3,031 (272,383 outcomes) held out for testing. The resulting 

model was named “ABEdeepon” which can predict editing efficiencies and 

outcome sequence frequencies (Fig. 3a). ABEdeepon achieved a Spearman 

correlation of 0.892 (r=0.878, MSE=0.024) for prediction of editing efficiency 

with testing dataset (Fig. 3b). To evaluate the performance for prediction of 

outcome frequency distribution, we tested 2,342 targets with at least 4 

outcomes and achieved mean Spearman correlation of 0.872 (r=0.920, 

MSE=0.011, KL divergence=0.003, Fig. 3c). To test whether ABEdeepon works 

in other cell types, we used the same library to generate datasets in HeLa cells 

and obtained 58,445 valid targets with 6,292,774 outcomes (reads 

number≥100). We extracted 2,636 targets present in HeLa testing dataset as 

external testing dataset. The editing efficiency prediction achieved Spearman 
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correlation of 0.886 (r=0.830, MSE=0.024) and the outcome frequency 

distribution prediction achieved mean Spearman correlation of 0.857 (r=0.883, 

MSE=0.020, KL divergence=0.004, Supplementary Fig. 5a-b).  

To evaluate the performance of ABEdeepon for endogenous targets, we 

collected endogenous editing data generated in HEK293T, U2OS and HCT116 

cells from literatures 15 and evaluated these datasets with our model, achieving 

high correlation for efficiencies (Spearman correlation: 0.747-0.797) and mild 

or high correlation for outcomes (mean Spearman correlation: 0.441-0.901, Fig. 

3d-i). To evaluate the performance of the ABEdeepon in induced pluripotent 

stem cells (iPSCs), we generated dataset for 23 endogenous targets in human 

iPSCs. ABEdeepon achieved weak Spearman correlation of 0.227 for efficiency 

prediction probably due to the very low base editing efficiency in iPSCs, and 

mild mean Spearman correlation of 0.574 for outcome frequency prediction 

(Supplementary Fig. 5c-d). 

Parallelly, we used the CBE editing datasets to train a shared embedding based 

deep learning model. The targets were randomly split to 68,244 (5,140,905 

outcomes) for training, 1,393 (97,841 outcomes) for internal validation, and 

3,666 (275,173 outcomes) held out for testing. The resulting model was named 

“CBEdeepon” which can predict editing outcome sequence frequencies (Fig. 

4a). CBEdeepon achieved a Spearman correlation of 0.851 (r=0.874, 

MSE=0.027) for prediction of editing efficiency with testing dataset (Fig. 4b). To 

evaluate the performance for prediction of outcome frequency distribution, we 

tested 3,179 targets with at least 4 outcomes and achieved mean Spearman 

correlation of 0.845 (r=0.919, MSE=0.009, KL divergence=0.005, Fig. 4c). To 

test whether CBEdeepon works in other cell types, we used library to generate 

datasets in HeLa cells and obtained 56,529 valid target with 4,213,361  
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Figure 4. Evaluation of CBEdeepon for editing efficiency and outcome 

prediction 

(a) Example of CBEdeepon prediction for a given target. Measured 

efficiencies are listed for comparison. Original target sequence is underlined. 

(b) Evaluation of CBEdeepon for conversion efficiency with testing dataset. 

(c) Evaluation of CBEdeepon for conversion outcome sequence frequencies 

with testing dataset. (d, f, h) Evaluation of CBEdeepon for conversion 

efficiency with endogenous dataset generated in HEK293T, U2OS and 

HCT116 cells, respectively. (e, g, i) Evaluation of CBEdeepon for conversion 

outcome sequence frequencies with endogenous dataset generated in 

HEK293T, U2OS and HCT116 cells, respectively. 

outcomes (reads number≥100). We extracted 2,827 targets present in HaLa 

testing dataset as external testing dataset and achieved Spearman correlation 

of 0.864 (r=0.761, MSE=0.110) for efficiency prediction, and mean Spearman 

correlation of 0.788 for outcome distribution prediction (r=0.736, MSE=0.042, 

KL divergence=0.012, Supplementary Fig. 6a-b).  

To evaluate the performance of CBEdeepon for endogenous targets, we 

collected endogenous editing data generated in HEK293T, U2OS and HCT116 

cells from literature 15 and evaluated with our model, achieving mild correlation 

for efficiencies (Spearman correlation: 0.457 to 0.673) and high correlation for 

outcomes (mean Spearman correlation: 0.588-0.763, Fig. 4d-i). To evaluate the 

performance of the CBEdeepon in induced pluripotent stem cells (iPSCs), we 

generated dataset for 24 endogenous targets in human iPSCs. CBEdeepon 

achieved mild Spearman of 0.525 for efficiency prediction and mean Spearman 

correlation of 0.558 for outcome frequency prediction (Supplementary Fig. 6c-

d). 

We finally investigated the positional effects of target nucleotides on prediction. 

ABEdeepon achieved a good Spearman correlation (>0.5) from position 4 to 

12, whereas CBEdeepon achieved a good Spearman correlation (>0.5) from 
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position 3 to 18 (Supplementary Fig. 7a-b). Altogether, our results 

demonstrated that both ABEdeepon and CBEdeepon models perform well for 

prediction of conversion efficiency and outcome sequence frequencies. 

Discussion 

Successful application of base editors requires a rigorous understanding of 

intended and unintended genome editing. Several groups have offered online 

tools or software for gRNA design, including iSTOP 16, beditor 17, BE-Designer 

18 and BEable-GPS 19. These design rules conform to base editing 

requirements that the editable base falls within maximum activity window, but 

none of them can predict the editing activity and outcome frequencies. To solve 

this problem, we proposed shared embedding based deep learning models, 

ABEdeepon and CBEdeepon, to predict editing efficiencies and outcomes. We 

achieved high performance for prediction of base editing outcomes (mean R: 

0.79-0.87 for high-throughput datasets) and efficiencies (R: 0.85-0.89 for high-

throughput datasets). During our manuscript revision, two groups developed 

tools named BE-Hive 13 and DeepBaseEditor 14 which achieved comparable 

performance to our models for prediction of editing efficiencies and outcomes. 

The BE-Hive used carefully designed hand-crafted features to develop machine 

learning models for prediction of base editing outcomes (median r: 0.86-0.99) 

and efficiency (r: 0.53-0.80) 13. The DeepBaseEditor followed the author's 

previous method 20, extracting features using convolutional neural networks, 

which also achieved high performance for prediction of base editing outcomes 

(pooled r: 0.95 for high-throughput datasets) and efficiency (R: 0.72-0.79 for 

high-throughput datasets) 14. The application of these models together will 

enhance the prediction ability and facilitate selection of targets with high 

efficiency and desirable outcome sequences. 

The shared embedding based deep learning models used here has a simple 

yet elegant structure which unifies on-target and off-target input in form. It can 

be seamlessly extended to other versions of base editors, such as 
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SauriABEmax, SauriBE4max, SaKKH-BE3, BE4-CP, dCpf1-BE and eA3A-BE3 

21-25. It may also be used to generate models to predict editing outcomes for 

Cas9 and Cas12 nucleases.  

Methods 

Cell culture and transfection  

HEK293T cells and HeLa cells (ATCC) were maintained in Dulbecco’s Modified 

Eagle Medium (DMEM) supplemented with 10% FBS (Gibco), while human 

iPSCs were cultured on Matrigel-coated plates (ESC qualified, BD Biosciences, 

San Diego, CA) using hESC mTeSR-1 cell culture medium (StemCell 

Technologies, Vancouver, Canada) at 37 °C and 5% CO2. All media contained 

100 U/ml penicillin and 100 mg/ml streptomycin. For transfection, HEK293T 

cells and HeLa cells were plated into 6-well plates, DNA mixed with 

Lipofectamine 2000 (Life Technologies) in Opti-MEM according to the 

manufacturer’s instructions, while iPSCs using Lipofectamine 3000 (Life 

Technologies). Cells were tested negative for mycoplasma.  

Plasmid construction 

SB transposon (pT2-SV40-BSD-ABEmax and pT2-SV40-BSD-BE4max) was 

constructed as follows: first, we replaced the NeoR gene (AvrII-KpnI site ) on 

pT2-SV40-NeoR with BSD, resulting in pT2-SV40-BSD vector; second, 

backbone fragment of pT2-SV40-BSD was PCR-amplified with Gibson-SV40-

F and Gibson-SV40-R, and ABEmax fragment was PCR-amplified from 

pCMV_ABEmax_P2A_GFP (Addgene#112101) with Gibson-ABE/BE4-F and 

Gibson-ABE/BE4-R, and BE4max fragment was PCR-amplified from 

pCMV_AncBE4max (Addgene#112094) with Gibson-ABE/BE4-F and Gibson-

ABE/BE4-R; third, the backbone fragments were ligated with ABEmax and 

BE4max using Gibson Assembly (NEB), resulting in pT2-SV40-BSD-ABEmax 

and pT2-SV40-BSD-BE4max, respectively. 

Generation of cell lines expressing ABEmax or BE4max  
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HEK293T cells and HeLa cells were seeded at ~40% confluency in a 6-well 

dish the day before transfection, 2 μg of SB transposon (pT2-SV40-BSD-

ABEmax or pT2-SV40-BSD- BE4max) and 0.5 μg of pCMV-SB100x were 

transfected using 5 μl of Lipofectamine 2000 (Life Technologies). After 24 h, 

cells were selected with 10 μg/ml of blasticidin for 10 days. Single cells were 

sorted into 96-well plates for colony formation. Conversion efficiency was 

performed to screen cell clones with high levels of ABEmax and BE4max 

expression.  

The gRNA-target library construction 

The on-target library design and construction were described previously10. 

Briefly, full-length oligonucleotides were PCR-amplified and cloned into 

Lentiviral vector by Gibson Assembly (NEB). The Gibson Assembly products 

were electroporated into MegaX DH10BTM T1R ElectrocompTM Cells (Invitrogen) 

using a GenePulser (BioRad) and grown at 32 °C, 225 rpm for 16 h. The 

plasmid DNA was extracted from bacterial cells using Endotoxin-Free Plasmid 

Maxiprep (Qiagen). 

Lentivirus production  

Lentivirus production was described previously10. Briefly, 12 μg of plasmid 

library, 9 μg of psPAX2, and 3 μg of pMD2.G (Addgene) were transfected into 

a 10-dish HEK293T cells with 60 μl of Lipofectamine 2000. Virus were 

harvested twice at 48 h and 72 h post-transfection. The virus was concentrated 

using PEG8000 (no. LV810A-1, SBI, Palo Alto, CA), dissolved in PBS and 

stored at -80 °C. 

Screening experiments in HEK293T and HeLa cells 

HEK293T or HeLa cells expressing ABEmax or BE4max were plated into 15 

cm dish at ~30% confluence. After 24 h, cells were infected with gRNA library 

with at least 1000-fold coverage of each gRNAs. After 24 h, the cells were 

cultured in the media supplemented with 2 µg/ml of puromycin for 5 days. Cells 
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were harvested and the genomic DNA was isolated using Blood & Cell Culture 

DNA Kits (Qiagen). The integrated region containing the gRNA coding 

sequences and target sequences were PCR-amplified using primers Deep-seq-

library-F/R with Q5 High-Fidelity 2X Master Mix (NEB). We performed 60-70 

PCR reactions using 10 µg of genomic DNA as template per reaction for deep 

sequencing analysis. The PCR conditions: 98 °C for 2 min, 25 cycles of 98 °C 

for 7 s, 67 °C for 15 s and 72 °C for 10 s, and the final extension, 72 °C for 2 

min. The PCR products were mixed and purified using Gel Extraction Kit 

(Qiagen). The purified products were sequenced on Illumina HiSeq X by 150-

bp paired-end sequencing.  

Data analysis 

FASTQ raw sequencing reads were processed to identify gRNA editing activity 

and editing outcomes. The nucleotides in a read with quality score < 10 was 

masked with a character "N". Due to the integrated design strategy, we first 

separated a read to designed gRNA region, scaffold region, and target region 

to extract the corresponding sequence. The designed gRNA was then aligned 

to the reference gRNA library to mark the reads. The target sequence was 

compared to the designed gRNA to mark all types of conversion (i.e., canonical 

A-G, C-T conversions and non-canonical A-C/T, C-A/G, G-A/T, T-A/C 

conversions at each position). We screened out gRNAs with a total valid 

reading of less than 100. Then, the efficiency for a specific conversion type at 

a position can be calculated by the following formula:  

conversion efficiency at spesific position 

=  
NO. of converted reads in a conversion type at spesific position

𝑁𝑂. 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑙𝑖𝑑𝑒𝑑 𝑟𝑒𝑎𝑑𝑠
 

However, the conversion efficiency was very low for non-canonical conversions 

(mean efficiency < 0.005). Thus, we only consider the canonical conversions 

for the outcome frequency distribution analysis. Theoretically, the canonical 

editing combinations of 20 bases is at most 2^20. However, we found that 

positions 1-2 and 18-20 always contain only one conversion. If there exist 
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canonical bases, positions 3-17 may have multiple conversions at the same 

time. Therefore, we programmed this conversion scheme to obtain all possible 

editing outcomes and assign true editing frequencies to the outcomes that exist 

in the sequencing data and assign 0 frequencies to the outcomes not found in 

the sequencing data. Then, the editing frequency of a gRNA-outcome can be 

described as: 

specific gRNA_outcome frequency =  
NO. of reads in a specific editing outcome

𝑁𝑂. 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑙𝑖𝑑𝑒𝑑 𝑟𝑒𝑎𝑑𝑠
 

Note that the non-converted targets were also considered as an editing 

outcome. So, the editing efficiency for a target can be simply calculated by the 

following formula: 

conversion efficiency =  1 − non-converted outcome frequency 

 

Encoding 

Drawing on concepts from the field of natural language processing (NLP), 

nucleotides A, C, G, and T can be regarded as words in a DNA sequences. 

Therefore, we can widely use algorithms in the NLP field to solve prediction 

tasks in the CRISPR field, especially the use of embedding algorithms to get 

the continuous representation of discrete nucleotide sequences 26. Unlike the 

common efficiency prediction that only needs to input one single sequence for 

regression models, in this research, both the gRNA-outcome pairs (for 

BEdeepon) and gRNA-target pairs (for BEdeepoff) has two different sequences 

as inputs. For gRNA-outcome pairs, there are four words in the index 

vocabulary (i.e., A, C, G, and T). So, the vocabulary can be described as: 

𝐷 = {1: 𝐴, 2: 𝐶, 3: 𝐺, 4: 𝑇} 

So, an input sequence can be described as:  

𝒙𝒊  =  {𝑥𝑖0, 𝑥𝑖1 ⋯𝑥𝑖𝑡, ⋯ 𝑥𝑖(𝑇−𝟏)}, 

where 𝑖 ∈ {1,2}  denotes the 𝑖 -th sequence in an gRNA-outcome pair or an 

gRNA-target pair, 𝑥𝑖𝑡  is the 𝑡 -th element of the 𝑖 -th sequence, 𝑇  is the 

sequence length. For example, for a gRNA-outcome 
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pair GTGGAACATCCACTTGACCTAGG (seq1, gRNA + NGG) and 

GTGGAGCGTCCACTTGACCTAGG (seq2, one outcome) can be encoded as: 

𝒙𝟏 = [3, 4, 3, 3, 1, 1, 2, 1, 4, 2, 2, 1, 2, 4, 4, 3, 1, 2, 2, 4, 1, 3, 3] (i.e., seq1) 

and  

𝒙𝟐 = [3, 4, 3, 3, 1, 1, 2, 3, 4, 2, 2, 1, 2, 4, 4, 3, 1, 2, 2, 4, 1, 3, 3] (i.e., seq2),  

respectively.  

 

Shared embedding 

Inspired by the algorithms in the recommender system 27 and click-through rate 

(CTR) 28 prediction modeling, both the generalization capacity and training 

speed will benefit from the sharing of the same embedding matrix instead of 

training independent embedding matrices for each input. In this research, a 

discrete nucleotide encoding 𝑥𝑖𝑡 is projected to the dense real-valued space 

𝐄𝒊 ∈  ℝ𝑇×𝑚 (𝑚 is a hyperparameter corresponds to the embedding dimension) 

to get the embedding vector 𝐞(𝑥𝑖𝑡) . Then a final embedding matrix 𝐄  is 

needed to get the combined information from those two embedding matrices 

by: 

𝐄 = 𝑔(𝐄𝟏, 𝐄𝟐)  (1) 

where 𝑔 can be sum, mean, or even a simple concatenate function. However, 

the sum or mean function is more suitable because it can reduce the redundant 

features in 𝐄𝟏and 𝐄𝟐. We choose the sum function here for simplicity. 

 

Feature extraction and model prediction 

Long-short-term memory network (LSTM) and gated recurrent unit network 

(GRU) are a type of recurrent neural networks (RNN) algorithms used to 

address the vanishing gradient problem in modelling time-dependent and 

sequential data tasks 29. Usually, a bidirectional manner was used to capture 

the information from the forward and backward directions of a sequence, which 

is biLSTM or biGRU. Our work and others' work have shown that, as an 

important component, biLSTM can be used alone or with convolutional neural 
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network (CNN) to achieve good performances in various regression and 

classification tasks involving biological sequences 10, 30-32. Here, we tried 

biLSTM, biGRU, and the newly proposed transformer structure 33, and found 

biLSTM had the fastest convergence speed. The input and output of biLSTM 

can be described by the following equations: 

𝒉𝑡
⃑⃑⃑⃑ = 𝐿𝑆𝑇𝑀⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑(𝒆(𝑥𝑡⃑⃑  ⃑), 𝒉𝑡−1

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  )  (2) 

𝒉𝑡
⃐⃑ ⃑⃑⃑ = 𝐿𝑆𝑇𝑀⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ (𝒆(𝑥𝑡⃐⃑ ⃑⃑ ), 𝒉𝑡−1

⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑) (3) 

Thus, the output context vectors of biLSTM are 𝒉0 = [𝒉0
⃑⃑ ⃑⃑ ; 𝒉𝐿−1

⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ] , 𝒉1 =

[𝒉1
⃑⃑⃑⃑ ; 𝒉𝐿−2

⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ], etc. Thus, we can concatenate the forward and backward hidden 

state as 𝐇 = {𝒉0, 𝒉1, ⋯ , 𝒉𝐿−1}, which contains the bidirectional information in 

the shared embedding feature matrix. Before the fully connected layers, we 

tried different input features based on the trade-off of the convergence speed 

and the performance of the model. The aforementioned features are last hidden 

unit, max pooling operation on 𝐇, and average pooling on 𝐇. The equations 

are as following: 

𝒉𝐿𝑎𝑠𝑡 = [𝒉𝐿−1
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑; 𝒉𝐿−1

⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ] (4) 

F𝑀𝑎𝑥𝑃𝑜𝑜𝑙 = max𝑡=1
𝐿−1 𝒉𝑡 (5) 

F𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙 = mean𝑡=1
𝐿−1 𝒉𝑡  (6) 

 

We observed that the last hidden state is the only need to obtain an optimal 

performance, i.e., 

𝑠 = 𝜎(𝑓(𝒉𝐿𝑎𝑠𝑡)) (7) 

where, 𝑓 is fully connected layers, 𝜎 is the leaky_relu activation function and 

𝑜 is the output score for a specific gRNA-outcome pair.  

It should be noted that the gRNA + NGG in a set of gRNA-outcome pairs (a 

gRNA batch with 𝐾 samples) are all the same, and the outcome sequences 

are converted from the same target, so the output scores of a gRNA-batch can 

be denoted as 𝒔 = [𝑠1, 𝑠2, ⋯ , 𝑠𝐾]. Then, a softmax activation function can be 
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applied to 𝒔 to get the predicted frequency distribution with a sum of 1 for the 

gRNA-outcome pair (Eq. 8, 9). 

𝑞𝑖  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒔)𝑖 =
𝑒𝑠𝑖

∑  𝐾
𝑗=1 𝑒𝑠𝑗

 (8) 

𝒒 =  ∑  

𝐾

𝑗=1

𝑞𝑖 = 1 (9)  

We have described in the Data Analysis section, that the conversion efficiency 

of a gRNA can be calculated by the formula: 

conversion efficiency =  1 − non-converted outcome frequency 

If we let 𝑞0  be non-converted outcome frequency in 𝒒 . Then, the predicted 

efficiency 𝑦̃ will be 1 − 𝑞0.  

Combined weighted loss function 

For the on-target models, a calculated true gRNA-outcome frequency 

distribution can be denoted as 𝒑 = [𝑝1, 𝑝2, ⋯ , 𝑝𝐾] . So, it’s naturally to apply 

Kullback–Leibler (KL) divergence loss function to minimize the difference 

between the predicted frequency distribution 𝒒  and the true frequency 

distribution 𝒑. The standard KL divergence loss function 𝐷𝐾𝐿(𝒑||𝒒) is defined 

as: 

𝐷𝐾𝐿(𝒑||𝒒) = ∑𝑝𝑖

𝐾

𝑗=1

log (
𝑝𝑖

𝑞𝑖
) (10) 

Basically, we wanted that a gRNA-outcome pair with a large number of reads 

in a gRNA batch has a more accurate prediction value. The weight of a sample 

loss was re-assigned depending on its corresponding read counts 𝑤𝑖 . The 

modified loss function of Eq.10 is: 

𝐿1 = 𝐷𝐾𝐿(𝒑||𝒒) = ∑𝑤𝑖𝑝𝑖

𝐾

𝑗=1

log (
𝑝𝑖

𝑞𝑖
) (11) 

A number of studies 34 have shown that multi-task learning architecture can 

significantly improves the stability and generalization capacity of the model. In 

addition to KL divergence loss (which measures the difference between the two 

probability distributions as a whole), the mean squared error (MSE) loss 
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function also helps to minimize the difference between each of the 𝑝𝑖, 𝑞𝑖 pairs 

individually. So, we adopted the MSE loss in a weighted manner: 

𝐿2 = 
1

2𝐾
∑𝑤𝑖( 𝑝𝑖 − 𝑞𝑖)

2

𝐾

𝑗=1

 (12) 

Then, the final loss function can be denoted as follows in Eq. 13: 

𝐿𝑡𝑜𝑡𝑎𝑙 = ∑𝑤𝑖𝑝𝑖

𝐾

𝑗=1

log (
𝑝𝑖

𝑞𝑖
) + 

1

2𝐾
∑𝑤𝑖( 𝑝𝑖 − 𝑞𝑖)

2

𝐾

𝑗=1

 (13) 

The loss function for the off-target model is simply the ordinary MSE loss.  

 

Training setting 

Both the on-target and off-target datasets were randomly split into two parts, 

one for training, and the other for holdout testing. Since there are a large 

number of gRNA-outcome pairs (over 5.5 million) in the on-target dataset, we 

did not conduct cross-validation training for this dataset but used more external 

datasets to test the generalization capacity of the models. The sample size of 

off-target datasets is around 50,000, so the stability of model performance was 

estimated by a 10-fold shuffled validation together with the external integrated 

and endogenous datasets. The ABEdeepon and CBEdeepon models share the 

following hyperparameters: embedding dimension, 64; LSTM hidden unites, 

128; LSTM hidden layers, 1; dropout rate, 0.5; fully connected layers,1 

(2*128->1). The ABEdeepoff and CBEdeepoff models share the following 

hyperparameters: embedding dimension, 256; LSTM hidden unites, 512; LSTM 

hidden layers, 1; dropout rate, 0.5; fully connected layers, 2 (6*256->3*256->1). 

For all the models, the Adam optimizer was used with a customized learning 

rate decay strategy that gradually reduce the learning rate from 0.001, 0.0001, 

0.00005 to 0.00001. 

Tools used in the study 

BWA-0.7.17 was used to identify the designed gRNA35. PyTorch 1.6 36 was 

used for building deep learning models.  
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