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Abstract 

Base editors, including adenine base editors (ABEs) and cytosine base editors 

(CBEs), are valuable tools for introducing point mutations, but they frequently 

induce unwanted off-target mutations. Here, we performed a high-throughput 

gRNA-target library screening to measure editing efficiencies at integrated 

genomic off-targets and obtained datasets of 48,632 and 52,429 off-targets for 

ABE and CBE, respectively. We used the datasets to train deep learning models, 

resulting in ABEdeepoff and CBEdeepoff which can predict editing efficiencies 

at off-targets. These tools are freely accessible via online web server 
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http://www.deephf.com/#/bedeep. 

Introduction 

Base editors enable programmable conversion of a single nucleotide in the 

mammalian genome and have a broad range of research and medical 

applications. They are fusion proteins that include a catalytically impaired Cas9 

nuclease (Cas9D10A) and a nucleobase deaminase 1, 2. Cas9D10A nuclease and 

a ~100 nucleotide guide RNA (gRNA) forms a Cas9D10A-gRNA complex, 

recognizing a 20 nucleotide target sequence followed by a downstream 

protospacer adjacent motif (PAM) 3-5. Once the Cas9D10A-gRNA complex binds 

to target DNA, it opens a single-stranded DNA loop 3. The nucleobase 

deaminase modifies the single-stranded DNA within a small ∼5 nucleotide 

window at the 5′ end of the target sequence 1, 2. Two classes of base editors 

have been developed to date: cytidine base editors (CBEs) convert target C:G 

base pairs to T:A 1, and adenine base editors (ABEs) convert A:T to G:C 2. Base 

editors have been successfully used in diverse organisms including 

prokaryotes, plants, fish, frogs, mammals, and human embryos 6-9. 

As a major concern of base editing, off-target editing can occur on genomic 

sequences that are similar to the 20-nucleotide target sequence 10, 11. 

Experimental evaluation of a target sequence is time-consuming, prompting us 

to develop in silico tools for target sequence evaluation. We recently used a 

high-throughput strategy for gRNA-target library screening for SpCas9 activity 

12. In this study, we designed libraries of gRNA-off-target sequence pairs and 

performed high-throughput screen, obtaining  48,632 and 52,429 valid off-

targets for ABE and CBE, respectively. The resulting datasets were used to train 

deep learning models, resulting in ABEdeepoff and CBEdeepoff which can 

predict editing efficiency at potential off-targets for ABE and CBE, respectively.  

Results 

A guide RNA-target pair strategy for test of editing efficiency at off-targets 
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Figure 1. High-throughput screen of conversion efficiencies at off-
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targets 

(a) A gRNA group of pairwise library for off-target screening. Black ellipses 

indicate mutations; red arrows indicate primers for target site amplification. 

(b) Deep-sequencing results reveal that A to G conversion for ABE and C to 

T conversion (red letter) for CBE occurred. Mismatched nucleotides and 

inserted nucleotides are indicated by lowercase letters; deletion is indicated 

by “-”. On: on-target sequence; 1mis: 1bp mismatch; 1del: 1 bp deletion; 1ins: 

1 bp insertion. (c, d) Effects of the mutation type on nucleotide conversion 

efficiency. Mix: mismatches mixed with indels; On: on-target; N: 23 bp 

random sequence as negative control. (e, f) Positional effect on conversion 

efficiency for 1 bp mismatch, 1 bp insertion and 1 bp deletion. 

To investigate editing efficiency at off-targets, we designed two gRNA-target 

pair libraries with one for ABE and one for CBE (Fig. 1a). Each library contains 

91,566 gRNA-target pairs, distributed among 1,383 gRNA groups for ABE and 

1,378 gRNA groups for CBE. Each group contains one gRNA-on-target pair 

and multiple gRNA-off-target pairs. The mutation type included mismatches (1-

6 bp mismatches per off-target, 71,099 for ABE and 70,594 for CBE), deletions 

(1-2 bp per target, 6,521 for ABE and 6,759 for CBE), insertions (1-2 bp per 

target, 11,396 for ABE and 11,562 for CBE) and mismatches mixed with 

insertions/deletions (indels, 1-2 bp mismatches plus 1-2 bp indels, total mutant 

nucleotides are 2-3 bp, 888 for ABE and 881 for CBE). We also designed non-

target sequences as control (279 for ABE and 392 for CBE).  

To make the high-throughput data more reproducible, we first generated a 

panel of single cell-derived clones that stably express ABE or CBE base editors. 

Optimized version of base editors (ABEmax for ABE; AncBE4max for CBE) 13 

were used in this study. Because of the large size, we integrated base editors 

into the genome by using the Sleeping Beauty (SB) transposon system 

(Supplementary Fig. 1a) 14-16. We tested conversion efficiency in each clone 
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and selected an efficient clone for each base editor (Supplementary Fig. 1b-c).  

 

Figure 2. Evaluation of ABEdeepoff/CBEdeepoff for efficiency 

prediction at off-targets 
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(a) Evaluation of ABEdeepoff prediction for different mutation types with 

testing dataset. N: 23 bp random sequence as negative control. (b) 

Evaluation of ABEdeepoff prediction for conversion efficiency at six groups of 

integrated off-targets. (c) Evaluation of CBEdeepoff prediction for different 

mutation types with testing dataset. (d) Evaluation of CBEdeepoff prediction 

for conversion efficiency at six groups of integrated off-targets. R: Spearman 

correlation, r: Pearson correlation. 

We packaged the gRNA-target pair library into lentiviruses and transduced 

them into recipient cells. Five days after transduction, genomic DNA was 

extracted, and synthesized off-targets were PCR-amplified for deep-

sequencing (Fig. 1a). Deep sequencing results revealed that A to G conversion 

for ABE and C to T conversion for CBE occurred (Fig. 1b). In this study, an off-

target efficiency was defined as No. of edited reads divided by the No. of total 

valid reads. The screening assay was experimentally repeated twice, and 

editing efficiency in two independent replicates showed high correlation 

(Spearman correlation, 0.956 for ABE and 0.965 for CBE). Data from the two 

replicates were combined together for subsequent analysis. We obtained valid 

ABE efficiencies (reads number>100) of 48,632 for off-targets, 1,052 for on-

targets and 153 for non-target controls. We obtained valid CBE efficiencies 

(reads number>100) of 52,429 for off-targets, 1,030 for on-targets and 220 for 

non-target controls. 

The large-scale datasets generated here allowed us to analyze the effects of 

mutation type on editing efficiency. For both base editors, editing efficiencies 

decreased with an increasing number of mismatches (Fig. 1c-d). Deletions had 

a stronger influence than insertions and mismatches. The overall influence of 

mutation type on ABE could be ranked as 6mis > 5mis > 4mis > 2del > 3mis > 

mix > 2ins > 1del > 2mis > 1ins > 1mis (Fig. 1c); the overall influence of mutation 

type on CBE could be ranked as 6mis > 5mis > 4mis > 2del > 3mis > mix > 2ins 

2mis > 1del > 1ins > 1mis (Fig. 1d). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.14.435296doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.14.435296
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

Next, we investigated the positional effects of mutation on editing efficiency. For 

both base editors, one mismatch only had minimal influence on editing 

efficiency at positions 14 and 15 but not at other positions; one insertion had 

minimal influence at the PAM-distal region but had stronger influence at 

positions 12-19; one deletion had mild influence at the PAM-distal region but 

had a stronger influence at PAM-proximal region (Fig. 1e-f). Interestingly, 

mutations at positions 19-20 had less influence than those at other seed region. 

Two mismatches had a stronger influence on editing efficiency when they both 

occurred on the seed region for both base editors (Supplementary Fig. 2a-b). 

Developing models for prediction of editing efficiency at off-targets 

Next, we used ABE off-target editing datasets to train a shared embedding 

based deep learning model where a gRNA-off-target pair was considered as a 

unique sequence and used as input (Supplementary Fig. 3). The shared 

embedding design encoded the input gRNA and off-target sequences in the 

same scheme, and then embedded the representation vectors in the same 

matrix space. Both generalization ability and training speed will benefit from 

sharing the same embedding matrix instead of training an independent 

embedding matrix for each input. The gRNA-off-target pairs and non-target 

controls (48,632+153=48,785) were randomly split to two parts: one contained 

41,906 for tenfold cross-validation with shuffling, and the other contained 4,879 

for holdout testing (which were never seen by the model). The resulting model 

was named “ABEdeepoff” which can predict editing efficiency at a potential off-

target. The model achieved high correlation for 1-2 bp mismatch, 1 bp insertion 

and 1 bp deletion (R>0.7), mild correlation for 2 bp insertions (R=0.57), weak 

correlation for 2 bp indels, 3 bp mismatches and mix mutations (R>0.3) and 

very weak correlation for the remaining mutations (R<0.03, Fig. 2a). These 

results suggest that ABEdeepoff performed well for off-targets with high editing 

efficiency but not with low editing efficiency.  

Next, we evaluated the performance of the model with six groups of integrated 
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off-target datasets collected from literature 10, 17, and achieved Spearman 

correlation values that varied from 0.702 to 0.905 (Fig. 2b). Finally, we 

evaluated the performance of our model with 14 groups of endogenous off-

target datasets collected from literature 17. We achieved a mild correlation 

(R>0.4) for seven targets and weak correlation for the remaining targets 

probably due to the low editing efficiencies measured at these off-targets 

(Supplementary Fig. 4). 

Parallelly, we used the CBE off-target editing datasets to train a shared 

embedding based deep learning model. The gRNA-off-target pairs and non-

target controls (52,429+220=52,649) were randomly split to two parts: one 

contained 47,384 for tenfold cross-validation with shuffling, and the other 

contained 5,265 for holdout testing. The resulting model was named 

“CBEdeepoff” which can predict editing efficiencies at potential off-targets. The 

model achieved high correlation (R>0.6) for 1-2 bp mismatch, 1-2 bp insertion, 

1 bp deletion and mix mutations, mild correlation (R>0.4) for 3 bp mismatches 

and 2 bp deletions, and very weak correlation (R<0.2) for the remaining 

mutations (Fig. 2c). These results can be explained by that CBEdeepoff 

performed well for off-targets with high editing efficiency but not with low editing 

efficiency.  

Next, we evaluated the performance of the model with six integrated groups of 

off-target datasets collected from literature 11, 17, and achieved Spearman 

correlation values varied from 0.607 to 0.863(Fig. 2d). Finally, we evaluated the 

performance of the model with seven groups of endogenous off-target datasets 

collected from literature 17. We achieved mild correlation (R>0.4) for four targets 

and weak correlation for the remaining targets probably due to the very low 

editing efficiencies measured at these off-targets (Supplementary Fig. 5). 

ABEdeepoff /CBEdeepoff can be used together with Cas-OFFinder 18 and 

CRISPRitz 19. Both of the software can rapidly identify potential off-targets 
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based on sequence similarity in the whole genome, and ABEdeepoff 

/CBEdeepoff can calculate editing efficiency for each sequence to define the 

potential off-targets (Fig. 3). The output file of Cas-OFFinder and CRISPRitz 

can be used as input file for ABEdeepoff or CBEdeepoff. We finally provided an 

online webserver named BEdeep, which is available at 

http://www.deephf.com/#/bedeep. 

 
Figure 3. Example of ABEdeepoff for off-target identification. 

A target sequence is input into Cas-OFFinder or CRISPRitz to identify off-

targets in human genome based on sequence similarity. Here we set up the 

parameters as maximal 2 mismatches, 1 deletion and 1 insertion. The output 

file containing potential off-targets is used as input file for ABEdeepoff. 

ABEdeepoff calculates editing efficiency for each potential off-targets.  

Discussion 

Off-target editing is always a major concern of genome editing. As Cas9-

deaminase fusion proteins, both ABE and CBE base editors can induce 

sequence independent and dependent off-target mutations 10, 11, 20-22. By 
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engineering deaminases, sequence independent off-target mutations can be 

minimized to background level 20, 23. However, how to minimize sequence 

dependent off-target mutations is a challenge because eukaryote genomes 

contain hundreds of sequences similar to the target sequences. In this study, 

we developed models to predict editing efficiencies on potential off-targets for 

both ABE and CBE, facilitating users to select highly specific targets.  

The shared embedding based deep learning models used here has a simple 

yet elegant structure which unifies on-target and off-target input in form. It can 

be seamlessly extended to other versions of base editors, such as 

SauriABEmax, SauriBE4max, SaKKH-BE3, BE4-CP, dCpf1-BE and eA3A-BE3 

24-28. It may also be used to generate models to predict editing outcomes for 

Cas9 and Cas12 nucleases.  

Methods 

Cell culture and transfection  

HEK293T cells (ATCC) were maintained in Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with 10% FBS (Gibco) at 37 °C and 5% CO2. All media 

contained 100 U/ml penicillin and 100 mg/ml streptomycin. For transfection, 

HEK293T cells were plated into 6-well plates, DNA mixed with Lipofectamine 

2000 (Life Technologies) in Opti-MEM according to the manufacturer’s 

instructions. Cells were tested negative for mycoplasma.  

Plasmid construction 

SB transposon (pT2-SV40-BSD-ABEmax and pT2-SV40-BSD-BE4max) was 

constructed as follows: first, we replaced the NeoR gene (AvrII-KpnI site ) on 

pT2-SV40-NeoR with BSD, resulting in pT2-SV40-BSD vector; second, 

backbone fragment of pT2-SV40-BSD was PCR-amplified with Gibson-SV40-

F and Gibson-SV40-R, and ABEmax fragment was PCR-amplified from 

pCMV_ABEmax_P2A_GFP (Addgene#112101) with Gibson-ABE/BE4-F and 

Gibson-ABE/BE4-R, and BE4max fragment was PCR-amplified from 
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pCMV_AncBE4max (Addgene#112094) with Gibson-ABE/BE4-F and Gibson-

ABE/BE4-R; third, the backbone fragments were ligated with ABEmax and 

BE4max using Gibson Assembly (NEB), resulting in pT2-SV40-BSD-ABEmax 

and pT2-SV40-BSD-BE4max, respectively. 

Generation of cell lines expressing ABEmax or BE4max  

HEK293T cells were seeded at ~40% confluency in a 6-well dish the day before 

transfection, 2 μg of SB transposon (pT2-SV40-BSD-ABEmax or pT2-SV40-

BSD- BE4max) and 0.5 μg of pCMV-SB100x were transfected using 5 μl of 

Lipofectamine 2000 (Life Technologies). After 24 h, cells were selected with 10 

μg/ml of blasticidin for 10 days. Single cells were sorted into 96-well plates for 

colony formation. Conversion efficiency was performed to screen cell clones 

with high levels of ABEmax and BE4max expression.  

The gRNA-off-target library construction 

The off-target library was designed as follows: both ABEs and CBEs libraries 

contained 91,556 oligonucleotides, distributed among 1,383 and 1,378 gRNA 

groups for ABEs and CBEs, respectively; for ABEs, the off-target library 

included 51,170 1bp-mismatch, 10,889 2bp-mismatch, 10,310 1bp-insertion, 

4,960 1bp-deletion, 2,261 3bp-mismatch, 2,264 4bp-mismatch, 2,255 5bp-

mismatch, 2,260 6bp-mismatch, 1,086 2bp-insertion, 1,561 2bp-deletion, 888 

mix, 279 non-target and 1,383 on-target; for CBEs, the off-target library 

included 50,676 1bp-mismatch, 11,054 2bp-mismatch, 10,481 1bp-insertion, 

5,128 1bp-deletion, 2,221 3bp-mismatch, 2,226 4bp-mismatch, 2,203 5bp-

mismatch, 2,214 6bp-mismatch, 1,081 2bp-insertion, 1,631 2bp-deletion, 881 

mix, 392 non-target and 1,378 on-target; each oligonucleotide chain contained 

left sequence (tgtggaaaggacgaaacacc), gRNA sequence 

(NNNNNNNNNNNNNNNNNNNN), BsmBI site (gttttgagacg), Barcode 1 

(NNNNNNNNNNNNNNNNNNNN), BsmBI site  (cgtctcgctcc), Barcode 2 

(NNNNNNNNNNNNNNN), target sequence 

(gtactNNNNNNNNNNNNNNNNNNNNNgg), and right sequence 
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(cttggcgtaactagatct ). The off-target library was constructed as follows: first, full-

length oligonucleotides were PCR-amplified and cloned into BsmBI site of 

LentiGuide-U6-del-tracRNA vector by Gibson Assembly (NEB), named 

LentiGuide-U6-gRNA-target ; second, the tracRNA were PCR-amplified and 

cloned into BsmBI site of LentiGuide-U6-del-tracrRNA vector by T4 DNA ligase 

(NEB).The Gibson Assembly products or T4 ligation products were 

electroporated into MegaX DH10BTM T1R ElectrocompTM Cells (Invitrogen) 

using a GenePulser (BioRad) and grown at 32 °C, 225 rpm for 16 h. The 

plasmid DNA was extracted from bacterial cells using Endotoxin-Free Plasmid 

Maxiprep (Qiagen). 

Lentivirus production  

Lentivirus production was described previously12. Briefly, for individual sgRNA 

packaging, 1.2 μg of gRNA expressing plasmid, 0.9 μg of psPAX2 and 0.3 μg 

of pMD2.G (Addgene) were transfected into HEK293T cells by Lipofectamine 

2000 (Life Technologies). Medium were changed 8 hours after transfection. 

After 48h, virus supernatants were collected. For library packaging, 12 μg of 

plasmid library, 9 μg of psPAX2, and 3 μg of pMD2.G (Addgene) were 

transfected into a 10-dish HEK293T cells with 60 μl of Lipofectamine 2000. 

Virus were harvested twice at 48 h and 72 h post-transfection. The virus was 

concentrated using PEG8000 (no. LV810A-1, SBI, Palo Alto, CA), dissolved in 

PBS and stored at -80 °C. 

Analysis of individual gRNA conversion efficiency 

HEK293T cells expressing ABEmax or BE4max were seeded at ~40% 

confluency in a 24-well dish the day before infection. After the infection of 

gRNA-target paired lentivirus, genomic DNA was extracted at suitable time 

points using QuickExtract DNA Extraction Solution (Epicentre). We amplified 

the target sequence by PCR with Q5 High-Fidelity 2X Master Mix (NEB). PCR 

products were purified with Gel Extraction Kit (Qiagen) and Sanger-sequenced. 

According to “.ab1” sequencing file, the conversion efficiency was compared. 
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Screening experiments in HEK293T 

HEK293T cells expressing ABEmax or BE4max were plated into 15 cm dish at 

~30% confluence. After 24 h, cells were infected with library with at least 1000-

fold coverage of each gRNAs. After 24 h, the cells were cultured in the media 

supplemented with 2 µg/ml of puromycin for 5 days. Cells were harvested and 

the genomic DNA was isolated using Blood & Cell Culture DNA Kits (Qiagen). 

The integrated region containing the gRNA coding sequences and target 

sequences were PCR-amplified using Q5 High-Fidelity 2X Master Mix (NEB). 

We performed 60-70 PCR reactions using 10 µg of genomic DNA as template 

per reaction for deep sequencing analysis. The PCR conditions: 98 °C for 2 min, 

25 cycles of 98 °C for 7 s, 67 °C for 15 s and 72 °C for 10 s, and the final 

extension, 72 °C for 2 min. The PCR products were mixed and purified using 

Gel Extraction Kit (Qiagen). The purified products were sequenced on Illumina 

HiSeq X by 150-bp paired-end sequencing.  

Data analysis 

FASTQ raw sequencing reads were processed to identify gRNA-off-target 

editing activity. The nucleotides in a read with quality score < 10 was masked 

with a character "N". Due to the integrated design strategy, we first separated 

a read to designed gRNA region, scaffold region, and target region to extract 

the corresponding sequence. The designed gRNA was then aligned to the 

reference gRNA library to mark the reads. The target sequence was compared 

to the designed gRNA to mark if the target was edited. We screened out gRNAs 

with a total valid reading of less than 100. Then, the efficiency for a specific 

gRNA-off-target pair can be calculated by the following formula:  

editing efficiency =  
NO. of edited reads 

𝑁𝑂. 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑙𝑖𝑑𝑒𝑑 𝑟𝑒𝑎𝑑𝑠
 

Encoding 

Drawing on concepts from the field of natural language processing (NLP), 

nucleotides A, C, G, and T can be regarded as words in a DNA sequences. 
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Therefore, we can widely use algorithms in the NLP field to solve prediction 

tasks in the CRISPR field, especially the use of embedding algorithms to get 

the continuous representation of discrete nucleotide sequences 29. Unlike the 

common efficiency prediction that only needs to input one single sequence for 

regression models, in this research, the gRNA-off-target pair has two different 

sequences as inputs. For gRNA, there are four words in the index vocabulary 

(i.e., A, C, G, and T); but after alignment, there might exist DNA bulge or RNA 

bulge and thus lead to a “-” word to represent the insertion or deletion in the 

gRNA or off-target sequence. So, the vocabulary can be described as: 

𝐷 = {1: 𝐴, 2: 𝐶, 3: 𝐺, 4: 𝑇, 5: −} 

The input sequence can be described as:  

𝒙𝒊  =  {𝑥𝑖0, 𝑥𝑖1 ⋯𝑥𝑖𝑡, ⋯ 𝑥𝑖(𝑇−𝟏)}, 

where 𝑖 ∈ {1,2} denotes the 𝑖-th sequence in an gRNA-off-target pair, 𝑥𝑖𝑡 is 

the 𝑡-th element of the 𝑖-th sequence, 𝑇 is the sequence length. For example, 

ACGCTTCATCA-ATGTTGGGATGG (seq1, gRNA + NGG) and ACGC-

TCATCAaAaGTT-GGATGG (seq2, off-target) can be encoded as: 

𝒙𝟏 = [1, 2, 3, 2, 4, 4, 2, 1, 4, 2, 1, 𝟓, 1, 4, 3, 4, 4, 3, 3, 3, 1, 4, 3, 3] (i.e., seq1) 

and  

𝒙𝟐 = [1, 2, 3, 2, 𝟓, 4, 2, 1, 4, 2, 1, 1, 1, 1, 3, 4, 4, 𝟓, 3, 3, 1, 4, 3, 3] (i.e., seq2), 

respectively. 

Shared embedding 

Inspired by the algorithms in the recommender system 30 and click-through rate 

(CTR) 31 prediction modeling, both the generalization capacity and training 

speed will benefit from the sharing of the same embedding matrix instead of 

training independent embedding matrices for each input. In this research, a 

discrete nucleotide encoding 𝑥𝑖𝑡 is projected to the dense real-valued space 

𝐄𝒊 ∈  ℝ𝑇×𝑚 (𝑚 is a hyperparameter corresponds to the embedding dimension) 

to get the embedding vector 𝐞(𝑥𝑖𝑡)   Then a final embedding matrix 𝐄  is 

needed to get the combined information from those two embedding matrices 
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by: 

𝐄 = 𝑔(𝐄𝟏, 𝐄𝟐)  (1) 

where 𝑔 can be sum, mean, or even a simple concatenate function. However, 

the sum or mean function is more suitable because it can reduce the redundant 

features in 𝐄𝟏and 𝐄𝟐  We choose the sum function here for simplicity. 

Feature extraction and model prediction 

Long-short-term memory network (LSTM) and gated recurrent unit network 

(GRU) are a type of recurrent neural networks (RNN) algorithms used to 

address the vanishing gradient problem in modelling time-dependent and 

sequential data tasks 32. Usually, a bidirectional manner was used to capture 

the information from the forward and backward directions of a sequence, which 

is biLSTM or biGRU. Our work and others' work have shown that, as an 

important component, biLSTM can be used alone or with convolutional neural 

network (CNN) to achieve good performances in various regression and 

classification tasks involving biological sequences 12, 33-35. Here, we tried 

biLSTM, biGRU, and the newly proposed transformer structure 36, and found 

biLSTM had the fastest convergence speed. The input and output of biLSTM 

can be described by the following equations: 

𝒉𝑡
⃑⃑⃑⃑ = 𝐿𝑆𝑇𝑀⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑(𝒆(𝑥𝑡⃑⃑  ⃑), 𝒉𝑡−1

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  )  (2) 

𝒉𝑡
⃐⃑ ⃑⃑⃑ = 𝐿𝑆𝑇𝑀⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ (𝒆(𝑥𝑡⃐⃑ ⃑⃑ ), 𝒉𝑡−1

⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑) (3) 

Thus, the output context vectors of biLSTM are 𝒉0 = [𝒉0
⃑⃑ ⃑⃑ ; 𝒉𝐿−1

⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ] , 𝒉1 =

[𝒉1
⃑⃑⃑⃑ ; 𝒉𝐿−2

⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ], etc. Thus, we can concatenate the forward and backward hidden 

state as 𝐇 = {𝒉0, 𝒉1, ⋯ , 𝒉𝐿−1}, which contains the bidirectional information in 

the shared embedding feature matrix. Before the fully connected layers, we 

tried different input features based on the trade-off of the convergence speed 

and the performance of the model. The aforementioned features are last hidden 

unit, max pooling operation on 𝐇, and average pooling on 𝐇. The equations 

are as following: 
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𝒉𝐿𝑎𝑠𝑡 = [𝒉𝐿−1
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑; 𝒉𝐿−1

⃐⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ] (4) 

F𝑀𝑎𝑥𝑃𝑜𝑜𝑙 = max𝑡=1
𝐿−1 𝒉𝑡 (5) 

F𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙 = mean𝑡=1
𝐿−1 𝒉𝑡  (6) 

 

A max pooling and average pooling function were applied separately to 𝐇 to 

obtain more useful features, and combine them with the final hidden state to 

produce the concatenated feature: 𝒄 =  [𝒉𝐿𝑎𝑠𝑡; F𝑀𝑎𝑥𝑃𝑜𝑜𝑙; F𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙] , the 

predicted efficiency 𝑜 for a specific gRNA-off-target pair can be obtained by: 

𝑜 = 𝜎(𝑓(𝒄)) (7) 

where, 𝑓 is fully connected layers, 𝜎 is the sigmoid activation function. 

Considering that the sample sizes of off-target types vary greatly, in order to get 

better prediction results for the types with small sample sizes, we use the 

weighted MSE as the loss function. 

Training setting 

Off-target datasets were randomly split into two parts, one for training, and the 

other for holdout testing. The stability of model performance was estimated by 

a 10-fold shuffled validation together with the external integrated and 

endogenous datasets. The ABEdeepoff and CBEdeepoff models share the 

following hyperparameters: embedding dimension, 256; LSTM hidden unites, 

512; LSTM hidden layers, 1; dropout rate, 0.5; fully connected layers, 2 

(6*256->3*256->1). For all the models, the Adam optimizer was used with a 

customized learning rate decay strategy that gradually reduce the learning rate 

from 0.001, 0.0001, 0.00005 to 0.00001. 

Tools used in the study 

BWA-0.7.17 was used to identify the designed gRNA37. PyTorch 1.6 38 was 

used for building deep learning models. The global algorithm of pairwise2 in 

BioPython 1.7.8 were used for getting the alignment result of off-target 

sequence.  
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Data and code availability 

The raw sequencing data have been submitted to the NCBI Sequence Read 

Archive (‘SRA PRJNA587328 

[https://dataview.ncbi.nlm.nih.gov/object/19730669]’). The other data for the 

present study is available from the corresponding author upon reasonable 

request. 
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