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Abstract8

Studies of hippocampal learning have obtained seemingly contradictory results, with manipulations that9

increase coactivation of memories sometimes leading to differentiation of these memories, but sometimes10

not. These results could potentially be reconciled using the nonmonotonic plasticity hypothesis, which posits11

that representational change (memories moving apart or together) is a U-shaped function of the coactivation12

of these memories during learning. Testing this hypothesis requires manipulating coactivation over a wide13

enough range to reveal the full U-shape. To accomplish this, we used a novel neural network image synthesis14

procedure to create pairs of stimuli that varied parametrically in their similarity in high-level visual regions15

that provide input to the hippocampus. Sequences of these pairs were shown to human participants during16

high-resolution fMRI. As predicted, learning changed the representations of paired images in the dentate17

gyrus as a U-shaped function of image similarity, with neural differentiation occurring only for moderately18

similar images.19
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1 Introduction21

Humans constantly learn new facts, encounter new events, and see and hear new things. Successfully managing22

this incoming information requires accommodating the new with the old, reorganizing memory as we learn23

from experience. How does learning dynamically shape representations in the hippocampus? Our experiences24

are encoded in distributed representations (Polyn, Natu, Cohen, & Norman, 2005; Johnson, McDuff, Rugg, &25

Norman, 2009), spanning populations of neurons that are partially reused across multiple memories, leading to26

overlap. As we learn, the overlapping neural populations representing different memories in the hippocampus27

can shift, leading to either integration, where memories become more similar to one other, or differentiation,28

where memories become more distinct from one another (for reviews, see Duncan & Schlichting, 2018; Brunec,29

Robin, Olsen, Moscovitch, & Barense, 2020; Ritvo, Turk-Browne, & Norman, 2019).30

Whether memories integrate or differentiate depends on whether the synapses that are common across the31

different memories strengthen or weaken. Traditional Hebbian learning models hold that synaptic connections32

strengthen when the pre-synaptic neuron repeatedly stimulates the post-synaptic neuron, causing them to fire33

together (Buonomano & Merzenich, 1998; Caporale & Dan, 2008; Feldman, 2009; Hebb, 1949). In other34

words, coactivation of neurons leads to strengthened connections between these neurons. This logic can scale35

up to the level of many synapses among entire populations of neurons, comprising distributed representations. A36

greater degree of coactivation among representations will strengthen shared connections and lead to integration.37

Consistent with this view, arbitrary pairs of objects integrate in the hippocampus following repeated temporal38

or spatial co-occurrence (e.g., Deuker, Bellmund, Schröder, & Doeller, 2016; Schapiro, Kustner, & Turk-39

Browne, 2012). Moreover, new information that builds a link between two previously disconnected events can40

lead the representations of the events to integrate (Collin, Milivojevic, & Doeller, 2015; Milivojevic, Vicente-41

Grabovetsky, & Doeller, 2015; Tompary & Davachi, 2017). In other cases, however, coactivation produces the42

exact opposite outcome — differentiation. For example, hippocampal representations of two faces with similar43

associations (Favila, Chanales, & Kuhl, 2016) and of two navigation events with similar routes (Chanales, Oza,44

Favila, & Kuhl, 2017) differentiate as a result of learning. Further complicating matters, some studies have45

found that the same experimental conditions can lead to integration in some subregions of the hippocampus46

and differentiation in other subregions (Dimsdale-Zucker, Ritchey, Ekstrom, Yonelinas, & Ranganath, 2018;47

Molitor, Sherrill, Morton, Miller, & Preston, 2020; Schlichting, Mumford, & Preston, 2015).48

Such findings challenge Hebbian learning as a complete or parsimonious account of hippocampal plas-49

ticity. They suggest a more complex relationship between coactivation and representational change than the50

linear positive relationship predicted by classic Hebbian learning. We recently argued (Ritvo et al., 2019) that51
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this complex pattern of data could potentially be explained by the nonmonotonic plasticity hypothesis (NMPH;52

Detre, Natarajan, Gershman, & Norman, 2013; Hulbert & Norman, 2015; Newman & Norman, 2010; Ritvo et53

al., 2019), which posts a ‘U-shaped’ pattern of representational change as a function of the degree to which two54

memories coactivate (Fig. 1). According to the NMPH, low levels of coactivation between two memories will55

lead to no change in their overlap; high levels of coactivation will strengthen mutual connections and lead to in-56

tegration; and moderate levels of coactivation (where one memory is strongly active and the unique parts of the57

other memory are only moderately active) will weaken mutual connections and lead to differentiation, thereby58

reducing competition between the memories for later retrieval attempts (Hulbert & Norman, 2015; Ritvo et59

al., 2019; Wimber, Alink, Charest, Kriegeskorte, & Anderson, 2015). As discussed in Ritvo et al. (2019), the60

NMPH can explain findings showing that a shared associate leads to differentiation (Schlichting et al., 2015;61

Favila et al., 2016; Chanales et al., 2017) by positing that the shared associate results in a moderate level of62

coactivation. Likewise, the NMPH can explain findings showing that a shared associate leads to integration63

(Schlichting et al., 2015; Collin et al., 2015; Milivojevic et al., 2015) by positing that the shared associate64

results in a high level of coactivation.65

Importantly, although the NMPH is compatible with findings of both differentiation and integration, the66

explanations provided above are post hoc and do not provide a principled test of the NMPH’s core claim that the67

function relating coactivation to representational change is U-shaped. If there were a way of knowing where on68

the x-axis of this function an experimental condition was located (note that Fig. 1 has no units), we could make69

a priori predictions about the learning that should take place, but practically speaking this is impossible: A wide70

range of neural findings on metaplasticity (summarized by Bear, 2003) suggest that the transition point on the71

U-shaped curve between synaptic weakening (leading to differentiation) and synaptic strengthening (leading to72

integration) can be shifted based on experience. In light of this constraint, Ritvo et al. (2019) argue that the key73

to robustly testing the NMPH account of representational change is to obtain samples from the full x-axis of74

the U-shaped curve and to look for a graded transition where differentiation starts to emerge at higher levels of75

memory coactivation and then disappears for even higher levels of memory coactivation.76
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Figure 1: Explanation of why moderate levels of visual similarity lead to differentiation. Inset (bottom left) depicts
the hypothesized nonmonotonic relationship between coactivation of memories and representational change from pre- to
post-learning in the hippocampus. Low coactivation leads to no representational change, moderate coactivation leads to
differentiation, and high coactivation leads to integration. Network diagrams show activity patterns in high-level visual
cortex and the hippocampus evoked by two stimuli (A and B) with a moderate level of visual similarity that are presented
as a ‘pair’ in a statistical learning procedure (such that B is reliably presented after A). Note that the hippocampus is
hierarchically organized into a layer of perceptual conjunction units that respond to conjunctions of visual features and a
layer of context units that respond to other features of the experimental context (McKenzie et al., 2014). Before statistical
learning (left-hand column), the hippocampal representations of A and B share a context unit (because the items appeared
in the same experimental context) but do not share any perceptual conjunction units. The middle column (top) diagram
shows network activity during statistical learning, when the B item is presented immediately following an A item; the
key consequence of this sequencing is that there is residual activation of A’s representation in visual cortex when B is
presented. The colored arrows are meant to indicate different sources of input converging on the unique part of each item’s
hippocampal representation (in the perceptual conjunction layer) when the other item is presented: green = perceptual
input from cortex due to shared features (this is proportional to the overlap in the visual cortex representations of these
items); orange = recurrent input within the hippocampus; purple = input from residual activation of the unique features
of the previously-presented item. The purple input is what is different between the pre-statistical-learning phase (where
A is not reliably presented before B) and the statistical learning phase (where A is reliably presented before B). In this
example, the orange and green sources of input are not (on their own) sufficient to activate the other item’s hippocampal
representation during the pre-statistical-learning phase, but the combination of all three sources of input is enough to
moderately activate A’s hippocampal representation when B is presented during the statistical learning phase. The middle
column (bottom) diagram shows the learning that will occur as a result of this moderate activation, according to the NMPH:
The connection between the (moderately activated) item-A hippocampal unit and the (strongly activated) hippocampal
context unit is weakened (note that this is not the only learning predicted by the NMPH in this scenario, but it is the
most relevant learning and hence is highlighted in the diagram). As a result of this weakening, when item A is presented
after statistical learning (right-hand column, top), it does not activate the hippocampal context unit, but item B still does
(right-hand column, bottom), resulting in an overall decrease in the overlap of the hippocampal representations of A and
B from pre-to-post learning.

No existing study has demonstrated the full U-shaped pattern for representational change; that is what we77

set out to do here, using a statistical learning paradigm. Fig. 1 illustrates the NMPH’s predictions regarding78

how pairing two items (A and B) in a visual statistical learning paradigm (such that B reliably follows A) can79

affect the similarity of the hippocampal representations of A and B. The figure depicts a situation where items80

A and B have moderate visual similarity, and statistical learning leads to differentiation of their hippocampal81

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 14, 2021. ; https://doi.org/10.1101/2021.03.13.435275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.13.435275


representations (because item A’s hippocampal representation is moderately activated during the presentation of82

item B). Crucially, the figure illustrates that there are three factors that influence how strongly the hippocampal83

representation of item A co-activates with the hippocampal representation of item B during statistical learning:84

(1) overlap in the high-level visual cortex representations of items A and B; (2) recurrent input from overlapping85

features within the hippocampus; and (3) residual activation of item A’s representation in visual cortex (because86

item A was presented immediately before item B). Thus, if we want to parametrically vary the coactivation of87

the hippocampal representations (to span the full axis of Fig. 1 and test for a full ‘U’ shape), we need to88

vary at least one of these three factors. In our study, we chose to focus on the first factor (overlap in visual89

cortex). Specifically, by controlling the visual similarity of paired items (c.f. Molitor et al., 2020), we sought to90

manipulate overlap in visual cortex and (through this) parametrically vary the coactivation of memories in the91

hippocampus.92

To accomplish this goal, we developed a novel approach for synthesizing image pairs using deep neural93

network (DNN) models of vision. These models provide a link from pictures to rich quantitative descriptions94

of visual features, which in turn approximate some key principles of how the visual system is organized (e.g.,95

Güçlü & van Gerven, 2015; Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016; Luo, Li, Urtasun, & Zemel,96

2016; Zeiler & Fergus, 2014; Cichy et al., 2016; de Beeck, Torfs, & Wagemans, 2008; Khaligh-Razavi &97

Kriegeskorte, 2014; Kriegeskorte, 2009, 2015; Kubilius, Bracci, & de Beeck, 2016). Most critically, later DNN98

layers correspond most closely to higher-order, object-selective visual areas (Eickenberg, Gramfort, Varoquaux,99

& Thirion, 2017; Güçlü & van Gerven, 2015; Jozwik, Kriegeskorte, Cichy, & Mur, 2019; Khaligh-Razavi &100

Kriegeskorte, 2014), and when neural networks are optimized to match human performance, their higher layers101

predict neural responses in higher-order visual cortex (Cadieu et al., 2014; Yamins et al., 2014). We reasoned102

that synthesizing pairs of stimuli that parametrically varied in their feature overlap in the upper layers of a DNN103

(Szegedy et al., 2015) would also parametrically vary their neural overlap in the high-level visual regions that104

provide input to the hippocampus.105

Image pairs spanning the range of possible representational overlap values were synthesized according to106

the procedure shown in Fig. 2A and B and embedded in a statistical learning paradigm (Schapiro et al., 2012).107

During fMRI, participants were given a pre-learning templating run (where the images were presented in a ran-108

dom order, allowing us to record the neural activity evoked by each image separately), followed by six statistical109

learning runs (where the images where presented in a structured order, such that the first image in a pair was110

always followed by the second image), followed by a post-learning templating run (Fig. 2C). We hypothesized111

that manipulating the visual similarity of the paired images would allow us to span the x-axis of Fig. 1 and reveal112

a full U-shaped curve going from no change to differentiation to integration. An important caveat in this regard113
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Figure 2: Schematic of image synthesis algorithm, fMRI task design, and behavioral validation. (A) Our image
synthesis algorithm starts with two visual noise arrays that are updated through many iterations (only three are depicted
here: i, ii, and iii), until the feature activations from selected neural network layers (shown in yellow) achieve an intended
Pearson correlation (r) value. (B) The result of our image synthesis algorithm was eight image pairs, that ranged in
similarity from completely unrelated (similarity level 1, intended r among higher-order features = 0) to almost identical
(similarity level 8, intended r = 1.00). (C) An fMRI experiment was conducted with these images to measure neural
similarity and representation change. Participants performed a monitoring task in which they viewed a sequence of
images, one at a time, and identified infrequent (10% of trials) grey squares in the image. Unbeknownst to participants,
the sequence of images in structured runs contained the pairs (i.e., the first pairmate was always followed by the second
pairmate); the images in templating runs were pseudo-randomly ordered with no pairs, making it possible to record the
neural activity evoked by each image separately. (D) A behavioral experiment was conducted to verify that these similarity
levels were psychologically meaningful. Participants performed an arrangement task in which they dragged and dropped
images in a workspace until the most visually similar images were closest together. From the final arrangements, pairwise
Euclidean distances were calculated as a measure of perceived similarity. (E) Correlation between model similarity level
and distance between images (in pixels) in the arrangement task. On the left, each point represents a pair of images, with
distances averaged across participants. In the center, each trendline represents the relationship between similarity level
and an individual participants’ distances. The rightmost plot shows the magnitude of the correlation for each participant.
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is that some hippocampal subregions might be better suited to show the U-shape than others: Prior work has114

shown that there is extensive variation in overall activity (sparsity) levels across hippocampal subregions, with115

CA2/3 and DG showing much sparser codes than CA1 (Duncan & Schlichting, 2018; Barnes, McNaughton,116

Mizumori, Leonard, & Lin, 1990). To the extent that overall levels of representational coactivation are higher117

in CA1 than CA2/3 and DG (i.e., falling on the rightmost side of Fig. 1), it might be harder to observe the ‘dip’118

in the U-shaped curve corresponding to differentiation in CA1. Consistent with this idea, CA1 is relatively119

biased toward integration and CA2/3/DG are relatively biased toward differentiation (Kim, Norman, & Turk-120

Browne, 2017; Dimsdale-Zucker et al., 2018; Molitor et al., 2020). Based on these findings, we expected that121

the U-shaped pattern would be more prominent in CA2/3 and DG, and perhaps strongest in DG, given that122

it has higher sparsity (Barnes et al., 1990) and greater pattern separation (Berron et al., 2016) than CA3. As123

discussed below, this prediction was borne out in the data: Using synthesized image pairs varying in similarity,124

we demonstrate the full U-shape (transitioning into and out of differentiation, as a function of similarity) in DG,125

thereby providing direct evidence that hippocampal plasticity is nonmonotonic.126

2 Results127

2.1 Stimulus synthesis128

2.1.1 Model validation129

Before looking at the effects of statistical learning on hippocampal representations, we wanted to verify that130

our model-based synthesis approach was effective in creating graded levels of feature similarity in the targeted131

layers of the network (corresponding to high-level visual cortex): Specifically, our goal was to synthesize132

images that varied parametrically in their similarity in higher layers while not differing systematically in lower133

and middle layers of the network. To assess whether we were successful in meeting this goal, we fed the final134

image pairs (Fig. 2B) back through the neural network that generated them (GoogLeNet/Inception; Szegedy135

et al., 2015), and computed the actual feature correlations at the targeted layers. We found that the intended136

and actual similarity levels of the images (in terms of model features) showed a close correspondence (Supple-137

mentary Fig. 2): In the highest four layers (4D-5B), the intended and actual feature correlations were strongly138

associated (r(62) = .970, .983, .977, .985, respectively). In the lower and middle layers, feature correlations did139

not vary across pairs, as intended.140
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2.1.2 Behavioral validation141

Because deep neural networks can be influenced by visual features to which humans are insensitive (Nguyen,142

Yosinski, & Clune, 2015), we also sought to validate that the differences in similarity levels across image pairs143

were perceptually meaningful to human observers. We employed a behavioral task in which participants (n144

= 30) arranged sets of images (via dragging and dropping in a 2-D workspace; Fig. 2D), with the instruc-145

tion to place images that are visually similar close together and images that are visually dissimilar far apart146

(Kriegeskorte & Mur, 2012). Participants completed at least 10 arrangement trials and the distances for each147

synthesized image pair were averaged across these trials. When further averaged across participants, percep-148

tual distance was strongly negatively associated with the intended model similarity (r(62) = -.813, p < .0001;149

Fig. 2E). In other words, image pairs at the highest similarity levels were placed closer to one another. In fact,150

every individual participant’s correlation was negative (mean r = -.552, 95% CI = [-0.593 -0.512]).151

2.1.3 Neural validation152

Because we were synthesizing image pairs based on features from the highest model layers, we hypothesized153

that model similarity would be associated with representational similarity in high-level visual cortical regions154

such as lateral occipital (LO) and inferior temporal (IT) cortices. We also explored ventral temporal regions155

parahippocampal cortex (PHC) and fusiform gyrus (FG), and early visual regions V1 and V2. Based on sep-156

arate viewing of the 16 synthesized images during the initial templating run (prior to statistical learning), we157

calculated an image-specific pattern of BOLD activity across voxels in each anatomical ROI. We then corre-158

lated these patterns across image pairs as a measure of neural similarity (Fig. 3A). Model similarity level was159

positively associated with neural similarity in LO (mean r = .163, 95% CI = [.056 .270], randomization p =160

.024) and PHC (mean r = .127, 95% CI = [.016 .239], p = .031). No other region showed a significant positive161

relationship to model similarity (V2: mean r = -.046, 95% CI = [-.163 .069], p = .720; IT: r = .090, 95% CI =162

[-.049 .226], p = .095; FG: r = .058, 95% CI = [-.059 .179], p = .195); V1 showed a negative relationship (mean163

r = -.141, 95% CI = [-.261 -.025], p = .020). The correspondence between the similarity of image pairs in the164

model and in LO and PHC is consistent with our use of the highest layers of a neural network model for visual165

object recognition in image synthesis. The fact that this correspondence was observed in LO and PHC but not166

in earlier visual areas further validates that similarity was based on high-level features.167
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Figure 3: Analysis of where in the brain representational similarity tracked model similarity, prior to statistical
learning. (A) Correlation of voxel activity patterns evoked by pairs of stimuli (before statistical learning) in different
brain regions of interest, as a function of model similarity level (i.e., how similar the internal representations of stimuli
were in the targeted layers of the model). Neural similarity was reliably positively associated with model similarity level
only in LO and PHC. Shaded areas depict bootstrap resampled 95% confidence intervals at each model similarity level.
(B) Searchlight analysis. Brain images depict coronal slices viewed from a posterior vantage point. Clusters in blue
survived correction for family-wise error (FWE) at p < .05 using the null distribution of maximum cluster mass. L = left
hemisphere, R = right hemisphere, A = anterior, P = posterior.

It is unlikely that any given model layer(s) will map perfectly and exclusively to a single anatomical168

region. Accordingly, although we targeted higher-order visual cortex (e.g., LO, IT), the layers we manipulated169

may have influenced representations in other regions, or alternatively, a subset of the voxels within a given170

anatomical ROI. To explore this possibility, we performed a searchlight analysis (Fig. 3B) testing where in171

the brain neural similarity was positively associated with model similarity. This revealed two large clusters of172

voxels (p < .05 corrected): left ventral and dorsal LO extending into posterior FG (3722 voxels; peak t-value173

= 5.60; MNI coordinates of peak = -37.5, -72.0, -10.5; coordinates of center = -26.7, -71.7, 17.4) and right174
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ventral and dorsal LO extending into occipital pole (3107 voxels; peak t-value = 4.82; coordinates of peak =175

33.0, -88.5, 10.5; coordinates of center = 30.9, -86.5, 10.6).176

2.2 Representational change177

2.2.1 Hippocampus178

We hypothesized that learning-related representational change in the hippocampus would follow a nonmono-179

tonic curve. That is, we predicted a cubic function wherein low levels of model similarity would yield no neural180

change, moderate levels of model similarity would dip toward neural differentiation, and high levels of model181

similarity would climb back toward neural integration (Fig. 1 inset). We predicted that this nonmonotonic pat-182

tern would be observed in the CA2/3 and DG subfields, given the predisposition of these subfields (especially183

DG) to sparse representations and pattern separation.184

To test this hypothesis, we extracted spatial patterns of voxel activity associated with each image from185

separate runs that occurred before and after statistical learning (pre- and post-learning templating runs, respec-186

tively). In the templating runs, images were presented individually in a completely random order to evaluate187

how their representations were changed by learning. The response to each image was estimated in every voxel188

using a GLM. The voxels from each individual’s hippocampal subfield ROIs were extracted to form a pattern189

of activity for each image and subfield. We then calculated the pattern similarity between images in a pair190

using Pearson correlation, both before and after learning, and subtracted before-learning pattern similarity191

from after-learning pattern similarity to index the direction and amount of representational change. A separate192

representational change score was computed for each of the eight model similarity levels.193

To test for the U-shaped curve predicted by the NMPH, we fit a theory-constrained cubic model to the194

series of representational change scores across model similarity levels (Fig. 4A). Specifically, the leading co-195

efficient was forced to be positive to ensure a dip, followed by a positive inflection — the characteristic shape196

of the NMPH (Fig. 1 inset). The predictions of this theory-constrained cubic model were reliably associated197

with representational change in DG (r = .134, 95% CI = [.007 .267], randomization p = .022). The fit was not198

reliable in CA2/3 (r = .082, 95% CI = [-.027 .191], p = .13), CA1 (r = .116, 95% CI = [-.001 .231], p = .10), or199

the hippocampus as a whole (r = .084, 95% CI = [-.018 .186], p = .15).200

We followed up on the observed effect in DG and determined that there was reliable differentiation at201

model similarity levels 5 (∆r = -.093, 95% CI = [-.177 -.007], p < .0001) and 6 (∆r = -.090, 95% CI = [-202

.179 -.004], p = .016). This trough in the center of the U-shaped curve was also reliably lower than the peaks203
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preceding it at level 4 (∆r = .129, 95% CI = [.019 .243], p = .015) and following it at level 8 (∆r = .150, 95%204

CI = [.025 .271], p = .005). The curve showed a trend toward positive representational change, suggestive of205

integration, for model similarity level 8 (∆r = .057, 95% CI = [-.034 .147], p = .078).206

R L

P

A

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0t =

p < .05, FWE-corrected for cluster mass

B

A

Figure 4: Analysis of representational change predicted by the nonmonotonic plasticity hypothesis. (A) Difference in
correlation of voxel activity patterns between paired images after minus before learning at each model similarity level, in
the whole hippocampus (HC) and in hippocampal subfields CA1, CA2/3 and DG. Inset image shows an individual subject
mask for the ROI in question, overlaid on their T2-weighted anatomical image. The nonmonotonic plasticity hypothesis
reliably predicted representational change in DG. Shaded area depicts bootstrap resampled 95% CIs. (B) Searchlight
analysis. Brain images depict coronal slices viewed from an anterior vantage point. Clusters in red survived correction for
family-wise error (FWE) at p < .05 using the null distribution of maximum cluster mass. L = left hemisphere, R = right
hemisphere, A = anterior, P = posterior.
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2.2.2 Whole-brain searchlight207

To determine whether nonmonotonic learning effects were specific to the hippocampus, we ran an exploratory208

searchlight analysis in which we repeated the above cubic model-fitting analysis over the whole brain (Fig. 4B).209

This analysis revealed two reliable clusters (p < .05 corrected): right hippocampus extending into PHC and FG210

(832 voxels; peak t-value = 4.97; MNI coordinates of peak = 37.5, -7.5, -15.0; coordinates of center = 32.8,211

-18.7, -17.1) and anterior cingulate, extending into medial prefrontal cortex (1604 voxels; peak t-value = 5.43;212

coordinates of peak = -7.5, 28.5, 21.0; coordinates of center = -5.0, 28.5, 10.2).213

3 Discussion214

We set out to determine how learning shapes representations in the hippocampus and found that the degree of215

overlap in visual features determined the nature of representational change in DG. The pattern of results was216

U-shaped: with low or high overlap, object representations did not reliably change with respect to one another,217

whereas with moderate overlap, they pushed apart from one another following learning. This is consistent with218

the predictions of the NMPH (Ritvo et al., 2019) and related theories (e.g. Bienenstock, Cooper, & Munro,219

1982). Although previous studies have reported evidence consistent with the NMPH (e.g., manipulations that220

boost coactivation of hippocampal representations lead to differentiation; Schlichting et al., 2015; Chanales et221

al., 2017; Favila et al., 2016; Kim et al., 2017), these studies generally compared only two or three conditions222

and their results can also be explained by competing hypotheses (e.g., a monotonic increase in differentiation223

with increasing shared activity). Crucially, the present study is the first to span coactivation continuously in224

order to reveal the full U-shape predicted by the NMPH, whereby differentiation emerges as coactivation grows225

from low to moderate and dissipates as coactivation continues from moderate to high.226

To measure the impact of the degree of coactivation across a broad range of possible values, we developed227

a novel method of synthesizing experimental image pairs using DNN models. The intent of this approach was to228

precisely control the overlap among visual features at one or more layers of the model. In this case, we targeted229

higher layers of the model to indirectly control representational similarity in higher-order visual regions that230

provide input to the hippocampus. We found that the imposed visual feature relationships between images231

influenced human similarity judgments and were associated with parametric changes in neural similarity in232

higher-order visual cortex (i.e., LO, PHC). This is the first demonstration of the efficacy of stimulus synthesis in233

manipulating high-level representational similarity in targeted brain regions in humans. These results resonate234

with recent advances in stimulus synthesis designed to target individual neurons in primates (Bashivan, Kar,235
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& DiCarlo, 2019; Ponce et al., 2019). Although fMRI does not allow for targeting of individual neurons, our236

findings show that it is feasible to use this method to target distribute representations in different visual cortical237

regions.238

Our approach of manipulating the overlap of visual inputs to the hippocampus, rather than manipulating239

hippocampal codes directly, was a practical one, based on the fact that we have much better computational240

models of visual coding than hippocampal coding. Numerous studies have shown that, while hippocampal neu-241

rons are indeed ‘downstream’ from visual cortex, they additionally encode complex information from multiple242

sensory modalities (Lavenex & Amaral, 2000), as well as information about reward (Wimmer & Shohamy,243

2012), social relevance (Olson, Plotzker, & Ezzyat, 2007), context (Turk-Browne, Simon, & Sederberg, 2012),244

and time (Hsieh, Gruber, Jenkins, & Ranganath, 2014; Schapiro et al., 2012), to name a few. So, although we245

controlled visual inputs to the hippocampus, there were many additional non-visual inputs that were free to vary246

and could play a role in determining the overall relational structure of the representational space. Our work here247

demonstrates that controlling the visual features alone was sufficient to elicit non-monotonic learning effects,248

raising the possibility that controlling additional dimensions might yield greater differentiation (or integration).249

Future work could explore combining models of vision with hippocampal models and attempt to directly target250

hippocampal representations with image synthesis.251

Importantly, our study allowed us to examine representational change in specific hippocampal subfields.252

We found that the differentiation ‘dip’ (creating the U shape) was most reliable in DG. This fits with prior253

studies that found differentiation in a combined CA2/3/DG ROI (Dimsdale-Zucker et al., 2018; Kim et al.,254

2017; Molitor et al., 2020), though note that the U-shaped pattern was trending but not significant in CA2/3 in255

our study. The clearer effects in DG may suggest that sparse coding (and the resulting low activation levels) is256

necessary to traverse the full spectrum of coactivation from low to moderate to high that can reveal nonmono-257

tonic changes in representational similarity; regions with less sparsity (and higher baseline activation levels)258

may restrict coactivation to the moderate to high range, resulting in a bias toward integration and monotonic259

increases in representational similarity. Indeed, we had expected that CA1 might show integration effects due to260

its higher overall levels of activity (Barnes et al., 1990), consistent with prior studies emphasizing a role for CA1261

in memory integration (Dimsdale-Zucker et al., 2018; Molitor et al., 2020; Schlichting, Zeithamova, & Preston,262

2014; Duncan & Schlichting, 2018; Brunec et al., 2020). One speculative possibility is that the hippocampus is263

affected by feature overlap in earlier stages of visual cortex in addition to later stages (e.g., Huffman & Stark,264

2017). Our paired stimuli were constructed to have high overlap at the top of the visual hierarchy but low265

overlap earlier on in the hierarchy; it is possible that allowing stimuli to have higher overlap throughout the266

visual hierarchy would lead to even greater coactivation in the hippocampus, resulting in integration.267
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Although our results are broadly consistent with prior findings that increasing the coactivation of memories268

can lead to differentiation (Schlichting et al., 2015; Chanales et al., 2017; Favila et al., 2016; Kim et al., 2017),269

they are notably inconsistent with results from Schapiro et al. (2012), who reported memory integration for270

arbitrarily paired images as a result of temporal co-occurrence; pairs in our study with comparable levels of271

visual similarity (roughly model similarity level 3) showed no evidence of integration. This difference between272

studies may relate to the fact that the visual sequences in Schapiro et al. (2012) contained a mix of strong and273

weak transition probabilities, whereas we used strong transition probabilities exclusively; moreover, our study274

had a higher baseline of visual feature overlap among pairs. Contextual and task-related factors (Brunec et al.,275

2020), as well as the history of recent activation (Bear, 2003), can bias the hippocampus toward integration or276

differentiation, similar to the remapping based on task context that occurs in rodent hippocampus (Anderson &277

Jeffery, 2003; Colgin, Moser, & Moser, 2008; McKenzie et al., 2014). Speculatively, the overall higher degree278

of competition in our task — from stronger transition probabilities and higher baseline similarity — may have279

biased the hippocampus toward differentiation (Ritvo et al., 2019).280

3.1 Conclusion281

Overall, these results highlight the complexity of learning rules in the hippocampus, showing that moderate282

levels of visual feature similarity lead to differentiation following a statistical learning paradigm, but higher283

and lower levels of visual similarity do not. From a theoretical perspective, these results provide the strongest284

evidence to date for the NMPH account of hippocampal plasticity. From a methodological perspective, our285

results provide a proof-of-concept demonstration of how image synthesis, applied to neural network models286

of specific brain regions, can be used to test how representations in these regions shape learning. As neural287

network models continue to improve, we expect that this kind of model-based image synthesis will become an288

increasingly useful tool for studying neuroplasticity.289

4 Methods290

4.1 Participants291

For the fMRI study, we recruited 42 healthy young adults participants (18-35 years old, 25 females) with292

self-reported normal (or corrected to normal) visual acuity and good color vision. All participants provided293

informed consent to a protocol approved by the Yale IRB and were compensated for their time ($20 per hour).294

Five participants did not complete the task because of technical errors and/or time constraints, though their data295
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could still be used for the visual templating analyses, as this only required the initial pre-learning templating296

run. One additional participant’s data quality precluded segmentation of hippocampal subfields. As such, our297

final sample for the learning task was 36 participants, with a total of 41 participants available for the visual298

templating analyses.299

For the behavioral validation study, we recruited 30 naive participants through Amazon Mechanical Turk300

(mTurk). All participants provided informed consent to a protocol approved by the Yale IRB, and were com-301

pensated for their time ($6 per hour).302

4.2 Stimulus synthesis303

Image pairs were generated via a gradient descent optimization using features extracted from GoogLeNet (a304

version of Inception; Szegedy et al., 2015), a deep neural network (DNN) architecture. This particular instanti-305

ation had been pretrained on ImageNet (Deng et al., 2009), which contains over one million images of common306

objects. Accordingly, the learned features reflect information about the real-world features of naturalistic ob-307

jects. Our approach drew heavily from Deepdream (Mordvintsev, Olah, & Tyka, 2015; DeepDreaming with308

TensorFlow, n.d.), an approach used to visualize the learned features of pretrained neural networks. Deep-309

dream’s optimization uses gradient ascent to iteratively update input pixels such that activity in a given unit,310

layer, or collection of layers is maximized. Different from Deepdream, the core of our approach was controlling311

the correlation between the features of two images at a given layer j, as a means of controlling visual overlap at312

a targeted level of complexity. We prioritized image optimization over features in a subset of network layers:313

the early convolutional layers and the output layers of later inception modules (i.e. 12 total layers).314

Because we were interested in targeting higher-order visual representations (e.g., in LO), our intention was315

to produce pairs of images whose higher-layer (top four layers) features were correlated with one another at a316

specified value, ranging from 0 (not at all similar), to 1 (almost exactly the same). As such, we produced pairs317

of images that fell along an axis between two ‘endpoints’, where the endpoints were pairs of images designed318

to have a correlation of 0. Each subsequent pair of increasing similarity can be thought of as sampling two new319

points by stepping inward along the axis from each side. Because it was our aim to have some specificity in320

the level of representation we were targeting, we sought to fix the feature correlations between all of the pairs321

in the lower and middle layers (i.e., the bottom 8 layers) at 0.25. Altogether, our stimulus synthesis procedure322

was composed of three phases, described below: (1) endpoint channel selection, (2) image initialization, and323

(3) correlation tuning (Supplementary Fig. 1).324
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The purpose of the endpoint channel selection phase was to select higher-layer feature channels that,325

when optimized, were maximally different from one another. To do this, we generated an optimized image326

(DeepDreaming with TensorFlow, n.d.) that maximally expressed each of the 128 feature channels in layer327

mixed 4E (yielding 128 optimized images). We fed these images back through the network, and extracted the328

pattern of activation in the top four selected layers for each image. We then computed Pearson correlations329

among the extracted features and selected the 16 optimized channel images whose activation patterns were330

least inter-correlated with one another. These 16 channels were formed into 8 pairs, which became the endpoint331

channels for a spectrum of image pairs (Supplementary Fig. 1A).332

During image initialization, the endpoint channels served as the starting point for generating sets of image333

pairs with linearly increasing visual similarity. For every pair of endpoint channels, eight image pairs were334

synthesized, varying in intended higher-layer feature correlation from 0 to 1. These are also referred to as335

model similarity levels 1 through 8. Every AB image pair began with two randomly generated visual noise336

arrays, and an ‘endpoint’ was assigned to each – for example, channel 17 to image A and channel 85 to image337

B. If optimizing image A, channel 17 was always maximally optimized, while the weighting for the optimization338

of channel 85 depended on the intended correlation. For example, if the intended correlation was 0.14, channel339

85 was weighted at 0.14. If optimizing image B for a correlation of 0.14, channel 85 was maximally optimized340

and channel 17’s optimization was weighted at 0.14. These two weighted channel optimizations were added341

together, and served as the cost function for gradient descent in this phase (Supplementary Fig. 1B). On each342

iteration, the gradient of the cost function was computed with respect to the input pixels. In this way, the pixels343

were updated at each iteration, working toward this weighted image initialization objective. Eight different AB344

image pairs were optimized for each of the eight pairs of endpoints, for a total of 64 image pairs (128 images345

in total). After 200 iterations, the resulting images were fed forward into the correlation tuning phase.346

The correlation tuning phase more directly and precisely targeted correlation values. On each iteration,347

the pattern of activations to image A and image B were extracted from every layer of interest, and a correlation348

was computed between image A’s pattern and image B’s pattern (Fig. 2A, Supplementary Fig. 1C). The cost349

function for this phase was the squared difference between the current iteration’s correlation, and the intended350

correlation. Our aim was to equate the image pairs in terms of their similarity at lower layers, so the intended351

correlation for the first eight layers was always 0.25. For the highest four layers, the intended correlation352

varied from 0 to 1. Similar to the endpoint initialization phase, the gradient of the new cost function was353

computed with respect to the input pixels, and so the images iteratively stepped toward exhibiting the exact354

feature correlation properties specified. After 200 iterations, we were left with eight pairs of images, whose355
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correlations (i.e. similarity in higher-order visual features) varied linearly from 0 to 1 (Fig. 2B, Supplementary356

Fig. 1C, right side).357

Feature channel optimization tends to favor the expression of high frequency edges. To circumvent this, as358

in Deepdream (Mordvintsev et al., 2015), we utilized Laplacian pyramid regularization to smooth the image and359

allow low-frequency features and richer color to be expressed. Also, we wanted to ensure that the final feature360

correlations were not driven by eccentric pixels in the image, and that the feature correlation was reasonably361

well represented in various parts of the images and at various scales. To accomplish this, we performed the362

entire 400 iteration optimization procedure three times, magnifying the image by 40% for each volley. We also363

computed the gradient over a subset of the input pixels, which were selected using a moving window slightly364

smaller than the image, in the center of the image. As a result of this procedure, pixels toward the outside of365

the image were not updated as often. We then cropped the images such that pixels that had been iterated over366

very few times were removed. Although this was intended to avoid feature correlations driven by the periphery,367

it had the added benefit of giving the images an irregular ragged edge, rather than a sharp square frame which368

can make the images appear more homogenous. However, this cropping procedure did remove some pixels that369

were contributing in part to the assigned correlation value. For this reason, the final inter-image correlations are370

closely related to but do not exactly match the assigned values.371

4.3 Model validation372

We produced a large set of image pairs using the stimulus synthesis approach detailed above. For each of the373

eight sets of image endpoints, we generated a pair of images at each of eight model similarity levels, yielding374

a total of 128 (8×8×2) images. Each image was then fed back through the network, resulting in a pattern of375

activity across units in relevant layers that was correlated with the pattern from its pairmate. We also fed these376

images through a second commonly used DNN, VGG19 (Simonyan & Zisserman, 2014), and applied the same377

procedure. This was done to verify that the feature overlaps we set out to establish were not specific to one378

model architecture. In the selected layers of both networks, we computed second-order correlations between379

the intended and actual image-pair correlations. In the network used to synthesize the image pairs, we averaged380

these second-order correlations in each of the top four target layers, to provide an estimate of the extent to381

which the synthesis procedure was effective. Despite varying in similarity in the target layers, the differences in382

similarity in the lower and middle layers (intended to be uniformly r = 0.25) should be minimal. To confirm this,383

we calculated differences between the actual correlations across image pairs, as well as the standard deviation384

of these differences (Supplementary Fig. 2). Second-order correlations and standard deviations were also385

computed for each layer in VGG19, the alternate architecture (Supplementary Fig. 2).386
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4.4 Behavioral validation387

Online participants consented to participate and then were provided with task instructions (see next section).388

The most critical instruction was as follows: "It will be your job to drag and drop those images into the arena,389

and arrange them so that the more visually similar items are placed closer together, and the more dissimilar390

items are placed farther apart." After confirming that they understood, participants proceeded to the task. At391

the start of each trial, they clicked a button labeled “Start trial”. They were then shown a black screen with392

a white outlined circle that defined the arena. The circle was surrounded by either 24 (20% of trials) or 26393

images (80%), pseudo-randomly selected from the broader set of 128 images (8 pairs from each of 8 sets of394

endpoints; 64 pairs). Sets were selected such that there were no duplicates, the two images from a given target395

pair were always presented together, and every image was presented at least twice. Trials were self-paced,396

but could not last more than 5 minutes each. Warnings were provided in orange text and then red text when397

there was 60 and 30 seconds remaining, respectively. There was no minimum time, except that a trial could398

not be completed unless every image had been placed. This timing structure ensured that we would get at least399

10 trials per subject in no longer than 50 minutes. On the right side of the arena, there was a button labeled400

“Click here when finished”. If this button was clicked prior to placing all of the images, a warning appeared,401

“You have not placed all of the images”. If all images had been placed, additional buttons appeared, giving402

the participant the option to confirm completion (“Are you sure? Click here to confirm.”) or return to sorting403

(“...or here to go back”). We used the coordinates of the final placement location of each image to compute404

pairwise Euclidean distances between images (Fig. 2D). We averaged across trials within participant to get one405

distance metric for each image pair for each participant. We then computed the Pearson correlation between the406

model similarity level (1 through 8) defined in the stimulus synthesis procedure and the distance between the407

images based on each participant’s placements. We also averaged Euclidian distances across participants for408

each of the 64 image pairs, and then computed a Pearson correlation between model similarity level and these409

group-averaged distances (Fig. 2E).410

4.5 Arrangement task instructions411

Instructions (1/5):412

Thank you for signing up!413

In this experiment, you will be using the mouse to click and drag images around the screen. At the414

beginning, you will click the ‘Start trial’ button in the top left corner of your browser window, and a set of415

images will appear, surrounding the border of a white circular arena. It will be your job to drag and drop those416
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images into the arena, and arrange them so that the more visually similar items are placed closer together, and417

the more dissimilar items are placed farther apart.418

Instructions (2/5):419

You can move each image as many times as you’d like to make sure that the arrangement corresponds to420

the visual similarity. The images you will be viewing will be abstract in nature, and will not be animals, but the421

following example should clarify the instructions:422

If you had moved images of a wolf, a coyote, and a husky into the arena, you might think that they look423

quite similar to one another, and therefore place them close together. However, if the next image you pulled in424

was a second image of a husky, you may need to adjust your previous placements so that the two huskies are425

closer together than a husky and a wolf.426

Instructions (3/5):427

You may find that some clusters of similar items immediately pop out to you. Once you have a set of several428

of these somewhat similar items grouped together, you might notice more fine-grained differences between429

them. Please make sure that you take the time to tinker and fine-tune in these situations. The differences within430

these clusters is just as important.431

If two images are exactly the same, they should be placed on top of one another, and if they are ALMOST432

exactly the same, feel free to overlap one image with the other. By that same logic, if images are totally433

dissimilar, place them quite far apart, as far as on opposite sides of the arena.434

Depending on your screen resolution and zoom settings, the entire circle may not initially be in your field435

of view. This is okay. Feel free to scroll around and navigate the entire space as you arrange the images.436

However, it is important that the individual images are large enough that you can make out their details.437

Instructions (4/5):438

There will be multiple trials to complete, each with its own set of images. You will have a maximum of439

5 minutes to complete each trial. When there is one minute remaining, an orange message will appear in the440

center of the circle to inform you of this. You will receive another message, this time in red, when there are 30441

seconds remaining. When time runs out, your arrangement will be saved, and the next trial will be prepared. If442

you are satisfied with your arrangement before 3 minutes has elapsed, you can submit it using the ‘Click here443

when finished’ button. This will bring up two buttons; one to confirm, and one to go back to sorting. You will444

not be able to submit your arrangement unless you have placed every image.445

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 14, 2021. ; https://doi.org/10.1101/2021.03.13.435275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.13.435275


When the trial ends, whether it was because you submitted your response, or because time ran out, the446

screen will be reset, revealing a new set of images and empty arena.447

The task will take just under an hour to complete, no matter how quickly or how slowly you complete each448

trial, so there is no benefit to rushing.449

Instructions (5/5):450

We would like to thank you for taking the time to participate in our research. The information that you451

provide during this task is very valuable to us, and will be extremely helpful in developing our research. With452

this in mind, we ask that you really pay attention to the details of the images, and complete each trial and453

arrangement carefully and conscientiously.454

[printed in red text] We would also like to remind you that because there is a set time limit, not a set455

number of trials, there is no benefit to rushing through the trials. In general, we have found that it tends to take456

3.5 minutes at minimum to complete each trial accurately.457

4.6 fMRI design458

Each functional task run lasted 304.5 seconds and consisted of viewing a series of synthesized abstract images,459

one at a time. Images were presented for 1 s each. The first image onset occurred after 6 s, and each subsequent460

onset was presented after an ISI of 1, 3, or 5s (40:40:20 ratio). There were eight pairs, meaning that there were461

16 unique images. The order of image presentations was pseudo-randomly assigned in one of two ways. In462

the first and last (pre- and post-learning) templating runs, the 16 images were presented in a random order for463

the first 16 trials. For the next 16 trials, the 16 images were presented in a different random order, with the464

constraint that the same image not be presented twice in a row. This same procedure was repeated until there465

were 80 total trials (five presentations of each of image). In the six intervening statistical learning runs, image466

pairs were always presented intact and in the same A to B order. In these runs, the eight pairs were presented in467

a random order for the first 16 trials. For the next 16 trials, the eight pairs were presented in a different order,468

with the constraint that the same pair could not be presented twice in a row, and so on. Critically, the images469

appeared continuously without segmentation cues between pairs, such that participants had to learn transition470

probabilities in the sequence (i.e., for pair AB, the higher probability of A transitioning to B than B transitioning471

to any number of other images). One out of every 10 trials was randomly assigned to have a small, partially472

transparent grey patch overlaid on the image. The participants performed a cover task of pressing a button on473

a handheld button box when they saw the grey square. This task was designed to encourage participants to474

maintain attention on the images, but was completely orthogonal to the pair structure.475
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4.7 Data acquisition476

Data were acquired using a 3T Siemens Prisma scanner with a 64-channel head coil at the Yale Magnetic477

Resonance Research Center. We collected eight functional runs with a with a multiband echo-planar imag-478

ing (EPI) sequence (TR=1500 ms; TE=32.6 ms; voxel size=1.5mm isotropic; FA=71°; multiband factor=6),479

yielding 90 axial slices. Each run contained 203 volumes. For field map correction, two spin-echo field map480

volumes (TR= 8000; TE=66) were acquired in opposite phase encoding directions. These otherwise matched481

the parameters of our functional acquisitions. We also collected a T1-weighted magnetization prepared rapid482

gradient echo (MPRAGE) image (TR=2300 ms; TE=2.27 ms; voxel size=1 mm isotropic; FA=8°; 192 sagit-483

tal slices; GRAPPA acceleration factor=3), and a T2-weighted turbo spin-echo (TSE) image (TR=11390 ms;484

TE=90 ms; voxel size=0.44×0.44×1.5 mm; FA=150°; 54 coronal slices; perpendicular to the long axis of the485

hippocampus; distance factor=20%).486

4.8 fMRI preprocessing487

For each functional run, preprocessing was performed using the FEAT tool in FSL (Woolrich, Ripley, Brady,488

& Smith, 2001). Data were brain-extracted, corrected for slice timing, high-pass filtered (100 s cutoff), aligned489

to the middle functional volume of the run using MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 2002), and490

spatially smoothed (3 mm). FSL’s topup tool (Smith et al., 2004), in conjunction with the two field maps, was491

used to estimate susceptibility-induced distortions. The output was converted to radians and used to perform492

fieldmap correction in FEAT. The functional runs were also aligned to both the participants’ T1-weighted493

anatomical image using boundary-based registration, and to MNI standard space with 12 degrees of freedom,494

using FLIRT (Jenkinson & Smith, 2001). Analyses within a single run were conducted in native space. For495

comparisons across participants, analyses were conducted in standard space.496

4.9 Defining regions of interest497

For each participant, their T1- and T2-weighted anatomical images were submitted to the automatic segmen-498

tation of hippocampal subfields (ASHS) software package (Yushkevich et al., 2015), to derive participant-499

specific medial temporal lobe regions of interest. We used an atlas containing 51 manual segmentations500

of hippocampal subfields (Aly & Turk-Browne, 2015, 2016). The resulting automated segmentations were501

used to create masks for the CA1, CA2/3, and dentate gyrus (DG) subfields. For visual ROIs, freesurfer502

(http://surfer.nmr.mgh.harvard.edu/) was used to create masks for V1, V2, lateral occipital (LO) cortex,503

fusiform gyrus (FG), parahippocampal cortex (PHC), and inferior temporal (IT) cortex, for each participant.504
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4.10 General linear model505

For the pre- and post-learning templating runs, a regressor was developed for each of the 16 unique synthesized506

images. This was done by placing a delta function at each image onset and convolving this time course with507

the double-gamma hemodynamic response function. We then used these 16 regressors to fit a GLM to the time508

course of BOLD activity using FSL’s FILM tool, correcting for local autocorrelation (Woolrich et al., 2001).509

This yielded parameter estimates for each of the 16 images, which were used for subsequent analyses.510

4.11 Stimulus synthesis validation analyses511

The pre-learning templating run was analyzed to derive an estimate of the baseline representational similarity512

among the eight target pairs before any learning had taken place. For ROI analyses, the 16 parameter estimates513

output by the GLM (one per stimulus) were extracted for each voxel in a given ROI and vectorized to obtain the514

multivoxel pattern of activity for each stimulus. We then computed the Pearson correlation between the two vec-515

tors corresponding to the pairmates in each of the eight target image pairs. This yielded eight representational516

similarity values, one for each image pair. As established through model-based synthesis, each of the eight517

image pairs also had a corresponding model similarity level. We computed and Fisher transformed the second-518

order correlation of neural and model similarity across levels. In other words, this analysis tested whether the519

pattern of similarity built in to the image pairs through the DNN model corresponded to the representational520

similarity in a given brain region. We constructed 95% confidence intervals (CIs) for estimates of model-brain521

correspondence for each ROI by bootstrap resampling of participants 50,000 times. As an additional control,522

we compared the true group average correlation value to a noise distribution, wherein A and B images were523

paired randomly 50,000 times, obliterating any systematic similarity relationships among them. We did not,524

however, constrain the random pairing to exclude the true image pairings. This means that the control is espe-525

cially conservative because some of the resulting shuffled pairs contained the true image pairings. This analysis526

was used to ensure that the true effect would not be likely to occur due to random noise. In addition to ROI527

analyses, we also conducted exploratory searchlight analyses over the whole brain. This involved repeating528

the same representational similarity analyses but over patterns defined from 125-voxel searchlights (radius =529

2) centered on every brain voxel. The resulting whole-brain statistical maps were then Fisher transformed,530

concatenated, and tested for reliability at the group level using FSL’s randomise (Winkler, Ridgway, Webster,531

Smith, & Nichols, 2014). We used a cluster-forming threshold of t = 2.33 (p < .01, one-tailed) in cluster mass,532

and corrected for multiple comparisons using the null distribution of maximum cluster mass. Clusters that533

survived at (p < .05) were retained.534
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4.12 Representational change analyses535

To test the NMPH, we measured whether learning-related changes in pairmate representational similarity (i.e.,536

changes from pre- to post-statistical-learning) followed a U-shaped, cubic function of model similarity. This537

involved measuring the degree to which the image pairs at each level of similarity showed integration (i.e.,538

increased representational similarity) or differentiation (i.e., decreased representational similarity). For ROI539

analyses, the 16 parameter estimates output by the GLM were extracted for each voxel in a given ROI and vec-540

torized. This procedure was performed for both pre- and post-learning templating runs. In each run, Pearson541

correlations were computed between the vectors for each of the target image pairs, yielding eight representa-542

tional similarity values. To measure learning-related changes in representational similarity, pre-learning values543

were subtracted from post-learning values. A positive value on this metric signifies integration, whereas a544

negative value signifies differentiation. Our predictions were not about any one model similarity level, but545

rather about a specific nonmonotonic relationship between model similarity and representational change. This546

hypothesis can be quantified using a cubic model, with the leading coefficient constrained to be positive. To547

test the efficacy of this model in each MTL ROI, we computed a cross-validated estimate of how well this548

model predicted the true data. Specifically, we fit the constrained cubic model to the data from all but one549

held-out participant. We then used the model to predict the held-out participant’s data, and computed a cor-550

relation between the predicted and actual data. This procedure was repeated such that every participant was551

held out once, and the resulting correlations were averaged into an estimate of the fit for that ROI. We then552

constructed 95% confidence intervals (CIs) for estimates of the model fit for each ROI by bootstrap resampling553

participants 50,000 times. To produce a noise distribution, we randomly re-paired A and B images 50,000 times554

and repeated the above analysis with our entire sample for each repairing. We compared the true group average555

model fit statistic to this noise distribution for each ROI. Lastly, we conducted an exploratory searchlight anal-556

ysis, repeating the analysis above in 125-voxel searchlights (radius = 2) centered on every brain voxel. As in557

the model similarity searchlight, all subjects’ outputs were then Fisher transformed, concatenated, submitted to558

randomise, thresholded, and corrected for maximum cluster mass.559

4.13 Quantification and statistical analysis560

No statistical methods were used to predetermine sample size, but we aimed to collect at least 36 participants561

for the primary learning analysis. For all analyses, we used bootstrap resampling methods to analyze our562

results non-parametrically. Details of these analyses, as well as exact results of statistical tests, 95% confidence563
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intervals, and p values with respect to noise distributions, are reported alongside each analysis in our Results.564

Statistical significance was set at p < 0.05 unless otherwise specified.565

5 Resource Availability566

Further information and requests for resources or code should be directed to and will be fulfilled by the Lead567

Contact, Jeffrey Wammes (jeffrey.wammes@queensu.ca). Synthesize image stimuli, fMRI data and analysis568

code will be released upon publication.569

6 Supplemental Information570

Supplementary information can be found here.571
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Figure S1: Schematic of synthesis algorithm, related to Figure 1A. (A) In the endpoint selection phase, images were
generated that maximally express each of the feature channels in a later layer of a deep neural network. These feature
activations were then correlated across images and pairs of endpoint channels with the lowest possible correlation were
selected. Gray circles represent feature channels and closer proximity denotes higher correlations. Colored circles high-
light examples of distant, low-correlation channel pairs. (B) In the image initialization phase, paired channels served as
endpoints for a weighted optimization procedure. For each endpoint pair, eight new pairs of images were created with the
intention that the correlation among pairmates would span a correlation of 0 (top) to 1 (bottom) across the eight pairs. The
image pairs began as simple visual noise arrays. Each image pairmate had its own endpoint, which was always maximally
optimized. The other image pairmate’s endpoint was weighted according to the intended correlation. The pixels in the
visual noise arrays were iteratively updated to meet this weighted goal, creating intermediate images which proceeded
to the next phase. (C) In the correlation tuning phase, the feature activations for the two intermediate images of a pair
were extracted from the 12 layers of interest. The correlation between these activations was computed at each iteration.
The absolute difference between the intended correlation and the current iteration’s correlation was used to iteratively
update the images to minimize this difference. For a single set of endpoints, image pairs were made at various intended
correlations (eight shown here).
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Figure S2: Model validation, related to Figure 1A, B. To ensure that our model-based synthesis approach was effective in
constraining the shared features among image pairs, we fed the final image pairs (Fig. 1B) back through the neural network
that generated them (GoogleNet/Inception; Szegedy et al., 2015; middle), as well as through an additional architecture
(VGG19; Simonyan & Zisserman, 2014; right) to ensure that the similarity space produced was not dependent on the
characteristics of one specific model. We extracted features from these networks for each of the generated images, and
computed representational similarity matrices (RSMs) at the targeted layers to ensure that they reflected the intended
similarity space. (A) Intended (left) and actual (center) correlations (r) of features across paired images as a function of
similarity level and layer of the Inception model. We aimed for and achieved uniform correlations across pairs in lower
and middle layers (2D0-4C), and linearly increasing correlations across pairs in higher layers (4D-5B, see panel B). Also
shown are the actual feature correlations across layers of the alternate VGG19 model (right). In this alternate architecture
(VGG19), the three highest model layers (B5P-FC2) mirrored the intended similarity for the highest model layers in the
generating network (r(62) = .861, .849, .856 for the three highest model layers). The four low/middle layers (B1P-B4P)
did as well (r(62) = .592, .542, .396, .455 for the four low/middle layers), but to a lesser extent (Steiger test ps < .001),
and with lower variability across pairs (SD = .050, .017, .025, .052 for the four low/middle layers; for comparison, for
the three highest layers: .116, .164, .169). (B) Comparison of feature correlations in each of the targeted higher layers of
Inception (4D-5B). In the four highest layers (4D-5B), across all eight pairs of each of the eight endpoint axes (64 pairs
total), the intended and actual feature correlations were strongly associated (r(62) = .970, .983, .977, .985, respectively,
for the four highest layers). Considering each endpoint axis separately, the minimum feature correlations across the eight
pairs of that axis remained high (r(6) = .945, .965, .966, .967, respectively, for the four highest layers). In the lower and
middle layers (2D0-4C), feature correlations did not vary across pairs. This cannot be quantified by relating intended and
actual feature correlations, given the lack of variance in intended feature correlations across pairs. Instead, the average
differences between any two pairs in these eight lower/middle layers were small (M = .012, .011, .012, .041, .025, .045,
.043, .053 for the eight lower/middle layers; for comparison, for the four highest layers M = 0.14, 0.19, 0.22, 0.23). The
standard deviations of the feature correlations across pairs in these layers were also low (SD = .010, .010, .011, .035, .022,
.039, .039, .048 for the eight lower/middle layers; for comparison, for the highest four layers SD = .199, .244, .259, .243).
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