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Abstract

Functional MRI (fMRI) data acquired using echo-planar imaging (EPI) is highly distorted
by magnetic field inhomogeneity. Distortion combined with underlying differences in im-
age contrast between EPI and T1-weighted and T2-weighted (T1w/T2w) structural images
makes the alignment of functional and anatomical images a challenge. Typically, separately
acquired field map data are used to correct fMRI distortions and a flexible cost function
insensitive to cross-modal differences in image contrast and intensity is used for aligning
fMRI and anatomical images. The quality of alignment achieved with this approach can
vary greatly and depends on the availability and quality of field map data. To address
this issue, we developed Synth, a software package for distortion correction and cross-modal
image registration that does not require separately acquired field map data. Synth com-
bines information from T1w/T2w anatomical images to construct an idealized undistorted
synthetic image that has similar contrast and intensity properties to fMRI data. The undis-
torted synthetic image then serves as an effective reference for individual-specific nonlinear
unwarping to correct fMRI distortions. We demonstrate that Synth reliably outperforms
other standard registration and distortion correction approaches that utilize field maps in
both pediatric (ABCD: Adolescent Brain Cognitive Development) and adult (MSC: Mid-
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night Scan Club) data. Field map-less distortion correction with Synth allows accurate and
precise registration of fMRI data with missing or corrupted field map information.

1. Introduction

BOLD-weighted (blood-oxygenation level dependent) functional MRI (fMRI) data con-
sisting of echo planar imaging (EPI) images are severely distorted by inhomogeneities af-
fecting the primary magnetic field [1–4]. EPI distortion, which consists of localized spatial
deformation and loss of BOLD signal intensity, prominently affects areas of an EPI image
containing large local differences in magnetic susceptibility. Due to the apposition of dia-
magnetic tissue and paramagnetic air in the sinuses and ear canals, areas of an EPI image
that contain orbitofrontal cortex or the inferior temporal lobes often suffer from the most se-
vere distortion. The susceptibility-induced artifacts are spatially non-uniform and therefore
interfere with the performance of registration algorithms used during fMRI preprocessing
to bring BOLD-weighted EPI images (predominantly T2*-weighted images where TE is
approximately equal to gray matter T2*) into alignment with their associated anatomical
images (T1w/T2w).

Understanding the relationship between brain anatomy and function is a key goal of sys-
tems neuroscience. Regardless of study design or choice of analysis space, registration and
removal of EPI distortion to improve the correspondence between BOLD-weighted functional
images and T1w/T2w anatomical images is a crucial step in the analysis of fMRI data. For
example, poor alignment counteracts the benefits of analyses performed on subject-specific
regions of interest, defined with reference to a subject’s anatomical images. Improper align-
ment of BOLD-weighted and anatomical images also degrades the performance of procedures
that project volumetric fMRI data onto mesh surfaces derived from tissue segmentation [5].
The effects of poor registration and distortion correction also carry forward into group anal-
yses. In group studies, anatomical images from many subjects are separately aligned to a
reference atlas. Individual BOLD-weighted-to-anatomical transforms in combination with
a subject’s anatomical-to-atlas transform, bring all data into registration with a common
atlas. However, suboptimal alignment between a subject’s BOLD-weighted and anatomical
images will propagate as nuisance variability that negatively affects group-level statistics for
both task and resting state analyses [6, 7].

Significant effort has been devoted to developing methods for correcting the distortions
that affect fMRI data. Currently there are two primary methods in wide use, both of which
involve acquiring field map data at scan time. The first method involves acquiring a pair of
EPI images with opposing phase encoding directions. Because EPI distortions mainly occur
in the phase encoding direction, reversing the phase encoding direction of the acquisition also
reverses the direction of the EPI distortions. By combining information from both directions,
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a displacement field that corrects for the underlying EPI distortion can be constructed [1].
The second field map method relies on the fact that the phase of spin-echo and gradient
echo data depends on the local magnetic field and its inhomogeneities as well as the imaging
echo time. By recording MR data with two different echo times and comparing the phases
of the images after applying a phase unwrapping algorithm, a displacement field can be
constructed that corrects for distortion caused by inhomogeneity [4]. The end product of
each of these approaches is a nonlinear warp that indicates how each voxel must be displaced
in order to correct for the image distortion. Without additional mitigation, the validity and
quality of corrections produced by either method hinges both on the degree to which the
subject moves during the acquisition of the field map data or during the time between the
acquisition of the field map data and the corresponding fMRI data [8].

The need to acquire field maps introduces an additional potential failure point during
data acquisition. Failure to acquire valid field map data can disqualify an entire data set
from inclusion in an analysis. For instance, within the ABCD Annual Release 2.0 data set
(DOI 10.15154/1503209) 341 subjects were missing valid field map data. Of the top five most
downloaded fMRI data sets available on OpenNeuro.org, only one includes field map data.
An effective implementation of a field map-less approach is highly desirable because it would
allow correction of images for which field map information was either missing, corrupted or
never collected.

Motivated by the complications of field map acquisition and the potential to reinvestigate
data sets missing field maps, fMRI researchers have explored direct mapping approaches
(e.g., fieldmap-less SyN-Susceptibility Distortion Correction (SDC)) in which EPI distortion
is corrected by non-linearly registering a subject’s distorted BOLD-weighted images to their
undistorted anatomical image. Early implementations of direct mapping demonstrated that
the approach could reduce distortion and improve global measures of image similarity (e.g.,
mutual information or squared-error) between BOLD-weighted and anatomical images [9,
10] [11, 12]. However, further research revealed that global measures of image similarity can
be an unreliable indicator of nonrigid image alignment quality [13], and that image alignment
quality produced by direct mapping could be unreliable and tended to perform more poorly
than high quality field map corrections [14–17]. One likely cause for the unreliability of
this approach is the fact that T1w, T2w, and BOLD-weighted images look quite different
from one another. Because the average signal intensities associated with tissues and fluids
comprising the brain vary greatly across acquisition parameters, it is difficult to construct
registration cost functions that can accurately reflect the true error introduced by EPI
distortion [18].

We tested whether the reliability of direct mapping approaches can be improved if the
undistorted anatomical images used for nonlinear warping targets were modified to increase
their resemblance to the BOLD-weighted images they are meant to register. To accomplish
this, we developed a modeling framework that allows us to combine information from a
subject’s T1w, T2w, and BOLD-weighted images in order to construct a synthetic image that
has the contrast properties of a BOLD-weighted image and the undistorted geometry and
high resolution (~1 mm3) of typical T1w/T2w images. We hypothesized that these synthetic
BOLD-weighted images would serve as ideal targets for estimating field map corrections with
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currently available nonlinear warping software.
Here we outline a specific implementation of this general strategy for correcting EPI

image distortion using synthetic images. We compare this approach to distortion correction
against those produced by other commonly used MRI nonlinear registration procedures.
These comparisons are performed in a subset of the Adolescent Brain Cognitive Development
(ABCD) study data set [19] in order to assess performance across a variety of scanners,
sites and brain geometries [20]. Additionally, we compare the performance of these different
approaches in the Midnight Scan Club (MSC) data set, which consists of ten highly sampled
individuals [21]. The repeated sampling of MSC subjects allowed us to assess the session-to-
session variability of fMRI data corrected by Synth against other methods of EPI distortion
correction. In order to facilitate the use and development of this approach by others, we
provide a software package called Synth that can be used to generate synthetic images and
correct fMRI distortion using the synthetic image as an alignment target. The Synth software
may be used to augment existing fMRI preprocessing pipelines, or explored by researchers
interested in incorporating variations on these themes into their MRI registration procedures.

2. Methods

2.1. Creating an undistorted synthetic BOLD-weighted image using Synth
Our approach to correcting EPI image distortion is first to create a synthetic BOLD-

weighted image based on a subject’s undistorted T1w and T2w images, and then use this
synthetic image as a reference for nonlinearly aligning a subjects’ real BOLD-weighted im-
age. The ideal synthetic BOLD-weighted image will have three properties: 1) it will match
true BOLD-weighted data in terms of overall signal intensity, with contrast between fluids
and tissue types that closely correspond to what is observed in real BOLD-weighted data;
2) It will account for the difference in spatial resolution between typically high-resolution
anatomical images and typically low-resolution BOLD-weighted images and; 3) The result-
ing synthetic image will be affine aligned to the real image to reduce the degree to which
nonlinear registration is needed to correct image discrepancies. These three demands can
be expressed as the following mathematical model:

y = MγBFθ + ε (1)

Where the left hand side of the Equation (1), y, represents a real BOLD-weighted image,
and the entirety of the right hand side of Equation (1), MγBFθ, represents an affine aligned
synthetic image. Termwise, Mγ corresponds to an interpolation operator representing a 12-
parameter affine transformation, γ; B is a blurring operator modeling the lower effective
spatial resolution that persists when a low resolution BOLD-weighted image is upsampled
to the higher resolution of its corresponding anatomical images; the matrix F decomposes
pre-aligned T1w and T2w anatomical images into a set of basis vectors (e.g., radial basis
functions — as in Figure 1a, or b-splines, etc.) in order to simplify the estimation of
the continuous relationship between the voxel intensities of the anatomical and BOLD-
weighted images; θ comprises the weights for each column of F; and ε is additive Gaussian
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noise. SynthTarget, the component of the Synth software package that we provide to solve
Equation (1), does so by implementing a radial basis function (RBF) decomposition of
the source T1w/T2w images as F and then jointly optimizing the weight parameters, θ
(Figure 1b) and affine parameters, γ (Figure 1c). The blurring operator, B, is effected
with an Epanachnikov smoothing kernel. Joint optimization to minimize mean squared
error between target image and synthetic image is achieved by the method of alternating
descent as illustrated in Figure 2a (See Supplemental methods for a formal account of the
algorithm). When the target image, y, is a BOLD-weighted image, and source images consist
of pre-aligned T1w/T2w images, SynthTarget produces a synthetic image, BFθ, based on
the geometry and high resolution of the undistorted source images that retains the contrast
properties of the BOLD-weighted image.

In general, the minimum number of parameters, p, estimated by SynthTarget is p ≥
1 + 12 + m, corresponding to a single constant column of F that models baseline target
image intensity; 12-parameter affine transformation, γ; and the number of source images, m.
This would correspond to a simple linear model with no interaction effects mapping a linear
combination of source images to a target. In actual use, the total number of parameters
estimated when constructing the synthetic target image, y will vary with the number of
RBFs (intensity bins) chosen and whether the pairwise interaction effects between columns
of F are modeled. For a hypothetical case in which the user selects as input a T1w image
with 10 component RBF decomposition along with a T2w image with a 5 component RBF
decomposition, the number of estimated parameters will be p = 1 + 12 + 10 + 5 = 28. The
choice of RBF model, F, is dictated by a tradeoff between computational complexity and
the accuracy of the synthetic image. As the number of RBF components in F increases, so
too do the memory requirements. For the synthetic images in the presented results, a 24
component RBF decomposition estimated at a 1mm isotropic resolution consumed ~20 GB
of RAM.

In regions of the brain with significant distortion and signal dropout affecting the EPI
image, there exists no valid mapping between a subject’s anatomical and BOLD-weighted
images. Therefore SynthTarget also allows for the inclusion of a weight volume to reduce the
contributions of these areas when estimating the parameters, θ. For the presented results,
we downweighted the contributions of voxels in high-distortion areas (see Supplemental
methods; Supplemental Figure 9).

2.2. Estimating the distortion-correcting warp with Synth
Once γ and θ are estimated and the parameters are used to generate a synthetic BOLD-

weighted image, the next issue is correcting the EPI distortion. This can be accomplished by
estimating the non-linear warp, f , that deforms the undistorted synthetic image to match
the real BOLD-weighted image. This process is represented by Equation (2):

y = f(MγBFθ;φ) + ε (2)

Here, y represents the target image (e.g., a BOLD-weighed image) and MγBFθ represents
the corresponding undistorted and affine aligned synthetic image of y. The variable φ
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Figure 1: SynthTarget parameters (a) Illustrative radial basis function (RBF) decomposition of T1w
and T2w source images that comprise the columns of F (Equation (1)). RBF decomposition divides source
images into smooth ‘bins’ of signal intensity so that the mapping between source and target image intensities
can be estimated. Voxel intensities of a target image, e.g., a BOLD-weighted image can be modeled as
linear combinations of T1w and T2w RBF images. For visualization purposes, we depict a six component
decomposition of the images; SynthTarget allows for an arbitrary degree of image decomposition to maximize
flexibility in modeling target images with different contrast properties. (b) A portion of a hypothetical
nonlinear relationship between voxel intensity values observed between source image RBF components (e.g.,
T2w; x-axis) and voxel intensity values observed in a target image (e.g., BOLD-weighted). This image
depicts the Fθ portion of Equation (1). (c) The parameter set γ corresponds to the standard twelve affine
parameters, scale; shear; rotation; and translation that affect the physical alignment between target and
source images. SynthTarget jointly optimizes θ and γ.
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represents the underlying parameterization of the nonlinear transformation, f . The inverse of
the estimated nonlinear warp, f−1, may then be computed. f−1 is analogous to a traditional
field map correction and maps voxels in a distorted image back to their correct locations.

In principle, many of the pre-existing nonlinear registration utilities are suitable for esti-
mating f and f−1, owing either to their methods of diffeomorphic warp construction which
guarantee the existence of an invertible warp —as is the case with AFNI’s 3dQwarp [22] and
ANTs SyN [23]— or their ability to project a potentially non-invertible warp onto a “nearest
invertible” space— as is the case with FSL’s FNIRT [24] . For the results presented here and
in the reference preprocessing scripts associated with this manuscript, we used the ANTs
SyN algorithm with a local cross correlation metric for estimating all non-linear warps (see
Supplemental methods for details). ANTs SyN was chosen for its reliable high performance
in non-linear warp estimation [17, 25, 26].

After correcting the EPI image distortion by applying f−1 to the real BOLD-weighted
data, there is improved geometric correspondence between anatomical images and functional
images. Because the quality and accuracy of a synthetic BOLD-weighted image depends on
how closely registered the anatomical and true BOLD-weighted images are, modest improve-
ments to the synthetic image can be achieved by re-running SynthTarget using the newly
corrected BOLD-weighted image as a target. Therefore, in our reference processing scripts
and for the results presented here, we refined the distortion-correcting warp over three it-
erations by re-estimating an improved synthetic image based on the warp produced during
the prior iteration, then updating subsequent warp estimates using the improved synthetic
image (see Supplemental methods for formal algorithmic details). The complete procedure
is implemented by the component of the Synth software package called SynthUnwarp.

3. Description of data sets and processing

We assessed the quality of distortion corrections produced by direct mapping to Synth-
generated synthetic images in two different contexts representing important use cases for
fMRI data. First, we examined a subset of 100 subjects selected randomly from the Ado-
lescent Brain Cognitive Development (ABCD) study data set (median age: 9.85 years; min:
9 years; max: 11 years). Our random sample included data acquired using GE, Philips and
Siemens scanners (see Supplemental Table 1). Second, we evaluated Synth’s performance on
the Midnight Scan Club (MSC) data set, which consists of resting state fMRI scans acquired
from 10 subjects on 10 separate occasions (300 minutes of resting state fMRI data/subject).
The MSC precision functional mapping (PFM) [27–32, 32–34] data set allowed us to assess
session-to-session reliability of EPI distortion correction schemes across multiple sessions for
the same subject. Importantly, image acquisition parameters for ABCD and MSC data sets
differ significantly allowing us to assess the performance of Synth distortion correction on
images with a range of image contrast and levels of detail. Image acquisition parameters
have been reported in detail elsewhere [21, 35].

We compared the effectiveness of this approach against four widely used distortion cor-
rection algorithms. Three of these approaches rely on separately acquired field map data
(FSL fugue; FSL topup; and AFNI’s 3dQwarp) while the third approach implements an
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Figure 2: Flow chart descriptions of synthetic image creation and EPI distortion correction
using Synth . (a) Process for estimating a synthetic image using SynthTarget. Source images (in this
case T1w/T2w images) are decomposed into radial basis function (RBF) components, F, and blurred with
a blurring operator, B. The affine operator, Mγ , and RBF weights, θ are iteratively optimized in an
alternating minimization scheme (gray process box) to find the minimum mean squared error between the
model (Equation (1)) and the target image. In alternating minimization, parameters are updated repeatedly
in an alternating sequence in which one parameter is held fixed and the other is optimized. The optimal
parameters correspond to the synthetic image, BFθ, aligned to the target image, y, using the optimal affine
operator, Mγ . (b) Process for distortion correction using SynthUnwarp. The displacement field, f , that
aligns the initial synthetic image to the target image is estimated using the SyN algorithm. The resulting
displacement field, f , is inverted to produce the distortion correcting warp, f−1, which reduces the target
image distortion. This improves the correspondence between the target and synthetic images, and by proxy,
the source images, allowing for improved estimates of a new synthetic image. The distortion correcting
warp, f−1, is updated in an alternating minimization scheme, during which the synthetic image is refined
after each improved estimate of f−1. March 13, 2021
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alternative field map-less distortion correction method (ANTs SyN-SDC ). FSL field map
corrections were constructed using either fugue (used for double echo field maps acquired
in the MSC data set) or topup (used for opposite direction phase encoded field maps in
the ABCD data set). The resulting field map corrections were passed into epi_reg [36], a
standard pipeline that implements a boundary based registration method, used to simulta-
neously unwarp the functional image and align the functional to the anatomical image [37].
In AFNI, the distortion correction is estimated from opposite direction phase encoded field
maps using a “meet in the middle” nonlinear warp estimation implemented in 3dQwarp [22].
This estimated warp is used to correct the image and combined with a separately estimated
rigid body transform to align the functional to the anatomical image. Finally, we assessed
the SyN-SDC field map-less method that corrects distortion by non-linearly aligning the
subject’s EPI and anatomical images while constraining allowable warps to regions known
to be strongly affected by distortion [16, 17, 38].

Performance of the different distortion correction approaches was assessed in matched
data sets, thus all statistical comparisons were performed within a multi-level modeling
framework (fitlme, MATLAB). For these analyses, the metrics produced by the Synth-based
registration pipeline were modeled as the baseline and differences in performance metrics
associated with other approaches were modeled with main effect factors. To account for
subject-specific variability, independent of registration approach, subject identity was mod-
eled as a random effect. The focus of this manuscript is assessing the quality of Synth-based
registration in relation to other current approaches, not an exhaustive cross-comparison of
all approaches, and we report only the related statistical contrasts here.

4. Results

4.1. Synthetic images are more similar to BOLD-weighted images than both T1w and T2w
images

Motivated by the idea that undistorted synthetic BOLD-weighted images may be a more
suitable reference for correcting distorted fMRI data than T1w/T2w images, we set out to
determine whether Synth could produce synthetic images with contrast properties that were
quantifiably more similar to real BOLD-weighted images than the subjects’ T1w or T2w
images despite having identical underlying geometry. Balancing computational costs and
synthetic image accuracy, we found that a model that included a 12-component radial basis
function (RBF) decomposition of the T1w/T2w source images was sufficient to model an
effective synthetic BOLD-weighted image for the MSC data set. For the ABCD data set,
a more complex 12-component RBF model with pair-wise T1w/T2w interaction terms was
required to create synthetic images with a similar level of BOLD-weighted contrast similarity
(Figure 3). To quantify image similarity, we registered pre-aligned T1w/T2w images as well
as their associated synthetic images to their corresponding real BOLD-weighted images using
identical affine transformations (Mγ). Reasoning that contrast properties are reflected in
the spatial frequency content of an image, and that the power spectra of an image is largely
invariant to translational differences (a property of the Fourier transform), we converted the
identically aligned T1w, T2w, synthetic, and BOLD-weighted images (Figure 3a) into their
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respective power spectra representations and then normalized them to unit magnitude to
allow for comparison across image types. For each session of data, we quantified contrast
similarity between the subject’s BOLD-weighted image and each of their T1w, T2w and
synthetic images by computing the dot product of their normalized power spectra vectors.
For this contrast similarity metric, values range between 0 and 1, where a value of 1 indicates
identical images, potentially differing by a small translation.

Regardless of imaging modality, the overall spatial structure observed in brain images is
similar. It was therefore unsurprising to observe high contrast similarity values between the
BOLD-weighted images and their associated T1w/T2w and Synth images in general. Across
both data sets, however, contrast similarity was highest between the BOLD-weighted and
Synth images (Figure 3b,c). In the ABCD data set, for instance, we observed that con-
trast similarity was lowest between the BOLD-weighted and T1w images (µ=0.85 σ=0.034),
while contrast similarity was somewhat higher between BOLD-weighted and T2w images
(µ=0.92, σ=0.015). Contrast similarity between the BOLD-weighted and Synth images
was observed to be both higher and less variable (µ=0.96, σ=0.007). Mixed-effects model
comparisons revealed that the differences between Synth contrast similarity and T1w/T2w
contrast similarity were both significant: (T1w-Synth=-0.11; p=3.24e-111; t=-36.3; df=297)
and (T2w-Synth=-0.03; p=3.6e-23; t=-10.8; df=297). In the MSC data set, we observed
that neither T1w (µ=0.85, σ0.027) nor T2w (µ=0.86, σ=0.018) images exhibited consis-
tently greater contrast similarity to BOLD-weighted images across subjects. This ambiguity
may be a consequence of the lower native resolution of the MSC BOLD-weighted images
compared to the ABCD BOLD-weighted images (4mm3 vs 2.4mm3). Uniformly, though,
Synth images exhibited the greatest contrast similarity (µ=0.96, σ=0.005). Mixed-effects
model comparison verified what was plainly visible upon inspection of the images (Figure 3a-
c): (T1w-Synth=-0.10; p=3.3e-186; t=-69.8; df=297) and (T2w-Synth=-0.96; p=2.8e-177;
t=-64.8; df=297).

4.2. Nonlinear registration to synthetic images improves correspondence to anatomical im-
ages

Previous field map-less approaches for correcting distortion by directly mapping EPI
images to their associated anatomical images have been unreliable [14–16]. This unreliability
takes the form of anomalous blurring and distortion in the corrected EPI image, despite the
large number of degrees of freedom the nonlinear warp provides for reducing the magnitude
of the error term between two images (e.g., see Fig. 1 in [15]) Therefore, having determined
that Synth reliably produces undistorted images with BOLD-weighted contrast, we set about
assessing whether fMRI data corrected by direct mapping to synthetic images exhibit residual
distortion affecting the brain.

First, we generated a distortion correcting warp by inverting the transformation, f (Equa-
tion (2)), that maps the undistorted synthetic image onto the true BOLD-weighted image.
We then applied this inverted transformation to the true BOLD-weighted data and exam-
ined the quality of the registration between the resulting corrected BOLD-weighted images
and the corresponding subject’s anatomical image. We observed that this procedure visibly
improved upon affine-only registration between the BOLD-weighted and anatomical images

March 13, 2021

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.13.435270doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.13.435270


Figure 3: Image contrast similarity between T1w, T2w, Synth and BOLD-weighted images.
(a) A visual comparison of contrast similarity between a representative subject’s T1w, T2w, synthetic, and
corresponding affine aligned BOLD-weighted images (from left to right). Top row depicts an arbitrarily
selected ABCD subject, the bottom row an arbitrarily selected MSC subject. The greatest visual similarity
is between the synthetic image and the true BOLD-weighted image. (b) Enlarged view of an axial slice of the
MSC subject’s synthetic (left) and real BOLD-weighted (right) images. (c) Violin plots depicting average
contrast similarity between BOLD-weighted images and associated anatomical and synthetic images across
100 subjects from the ABCD data set (top). Overall contrast similarity between a true BOLD-weighted
image and associated anatomical and synthetic functional images for each subject in the MSC data set
(bottom). Each subject contributed 10 sessions of data.
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with little anomalous distortion visibly affecting the brain (Figure 4). Improved registration
was apparent at both large and small spatial scales. Large regions of misregistration, cor-
responding to relatively low spatial frequency distortions, clearly visible in the affine-only
aligned images, were largely corrected (Figure 4a-c). Finer details captured by higher spatial
frequency components of the warp, such as the registration of individual sulcal folds, were
also visibly improved (Figure 4d-f).

Figure 4: Influence of using synthetic images on cortical alignment using affine and non-linear
registration. Matched sagittal (top row) and coronal (bottom row) slices depicting T2w and BOLD-
weighted images acquired from a representative subject drawn from the MSC data set (MSC01). (a)
Reference T2w image overlaid with FreeSurfer derived white matter (blue) and pial (yellow) boundaries.
(b) 12 DOF affine registration to the T2w image (2nd column) results in poor alignment of the anterior half
of the brain (red arrows) (c) 12 DOF alignment to synthetic target visual improves overall correspondence to
T2w image, however local misalignment of sulci and gyri remain (red arrows) (d) Field map-less nonlinear
alignment with ANTs SyN-SDC procedure improves alignment of sulci and gyri at the cost of an anomalous
warp placing the subarachnoid cerebrospinal fluid into the gray matter regions between white matter and
pial boundaries (e) Nonlinear alignment to a synthetic image resulting in high quality global and local
alignment.

4.3. Nonlinear registration to synthetic images improves global measures of anatomical and
functional image alignment

To characterize the performance of Synth relative to other common distortion correction
methods (AFNI, FSL, ANTS), we created matched ABCD and MSC data sets identically
processed with the exception of the approach used for fMRI distortion correction (see Sup-
plemental Methods) and computed a series of global and local alignment quality metrics.
We compared the synthetic image alignment performance against widely used utilities from
AFNI (3dAllineate + 3dQwarp), FSL (topup/fugue + epi_reg) and ANTs (fieldmap-less
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SyN -Susceptibility Distortion Correction (SDC )) software packages [1, 16, 17, 37–39]. Field
maps in the MSC data set were acquired using the phase difference of differing echo times
approach. Owing to the incompatibility of the underlying data and the field map estimation
approach implemented by the software, we could not assess 3dQwarp performance on the
MSC data set and therefore only compared Synth’s performance to FSL’s epi_reg and ANTs
SyN SDC. In order to ensure that apparent differences in performance were not the result
of differences in underlying interpolation algorithms, all transformations were converted to
AFNI compatible formats, composed and applied using the 3dNwarpApply utility.

There is currently no consensus on what single global metric best quantifies alignment
quality. Many metrics used to measure alignment quality tend to bear some relation to the
cost functions that are used during registration and therefore directly introduce a risk of
confounding circularity. Thus, we computed several kinds of metrics comparing the similarity
of different features of the field map corrected BOLD-weighted images to their associated
anatomical images. This included:

1. Normalized mutual information (NMI) shared between the time-averaged BOLD-
weighted image from each session and its associated T1w/T2w anatomical images
(e.g., T1w-BOLD NMI, T2w-BOLD NMI), which assesses global image similarity (Fig-
ure 5a).

2. The correlation coefficient between the gradient magnitude images of the time-averaged
BOLD-weighted image and T1w/T2w images, which quantifies the degree of alignment
between high-contrast edges found in two images (Figure 5b).

3. Three segmentation metrics designed to assess the degree to which distinct areas of the
anatomical images correspond to distinct ranges of voxel intensity values within the
aligned BOLD-weighted images. For instance, in most BOLD-weighted images, gray
matter voxels tend to have higher signal intensity than white matter voxels. Proper
registration to an anatomical image should make the distributions of BOLD-weighted
voxel intensities associated with white (WM) and gray matter (GM) (as determined
by segmentation of the anatomical images) more separable. Therefore, the first of
the segmentation metrics, AUCgw is defined as the area under the receiver operating
characteristic (ROC) curve of the distributions of directly adjacent gray and white
matter signal intensities — where ‘adjacent’ refers to the set of all gray matter voxels
that share a face with a white matter voxel and vice versa. In a similar vein, AUCvw

assesses the difference between the typically high intensity voxels representing the
ventricles and low intensity voxels representing adjacent white matter. Lastly, because
brain matter BOLD-weighted voxels tend to have higher signal intensity than voxels
representing the areas immediately exterior to the brain volume, we computed AUCie,
to quantify the overall registration of brain and brain-exterior boundaries (Figure 5c).

In both ABCD and MSC data sets, Synth registration tended to produce the BOLD-
weighted images with the highest registration quality metrics (Figure 5). Here, we outline
Synth registration performance for each metric described above as compared to the highest
performing competitor. Full statistical tables comparing all methods are included in Sup-
plemental materials. In the ABCD data set, Synth aligned BOLD-weighted images shared
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Figure 5: Comparison of alignment metrics across registration pipelines for ABCD and MSC
data sets. Violin plots depicting (a) Normalized mutual information (NMI) shared between the registered
BOLD-weighted images and their associated T1w/T2w anatomical images to assess global similarity. (b)
Correlation coefficient between the gradient magnitude images for BOLD-weighted and T1w/T2w images for
a metric of edge alignment. (c) Segmentation alignment metrics that quantify the separability of anatomical
features in BOLD-weighted data based on the FreeSurfer segmentation of their anatomical T1w images.
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greater normalized mutual information (NMI) with both T1w (FSL-Synth=-4e-3; p=5.78e-
32; t=-12.88; df=396) and T2w (FSL-Synth=-1.3e-2; p=8.85e-93; t=-27.23; df=396) images
than the next highest registration procedure (FSL topup). Synth alignment produced BOLD-
weighted images with the highest NMI shared between T1w/T2w images in the MSC data
set as well (FSL-Synth=-4e-3; p=5.78e-32; t=-12.88; df=396).

We obtained a similar pattern of results when comparing the registration of BOLD-
weighted and anatomical image edges by correlating their gradient norm magnitude images.
In the ABCD data set, Synth registration produced images with significantly greater align-
ment metrics than all other methods. T1w: (FSL-Synth=-1e-2; p=0.003; t=-3.1; df=396);
T2w: (FSL-Synth=-0.1; p=2.28e-75; t=-23.1; df=396). Although Synth registration also
produced the greatest edge alignment metrics in the MSC data set, its closest competitor
varied by modality. For BOLD-T1w edge registration, ANTS produced the best of the
non-Synth metrics, however it was still significantly lower than Synth registration (ANTs-
Synth=-0.1; p=3.85e-154; t=-53.32; df=297). For T2w images in the MSC data set, FSL
was once again the closest competitor, (FSL-Synth=-0.12; p=1.15-156; t=-54.9; df=297).

On image segmentation alignment metrics, Synth performed similarly well: AUCgw was
found to be greater for Synth-aligned images in both ABCD (FSL-Synth=-0.03; p=1.16e-
33; t=-13.31; df=396) and MSC (FSL-Synth=-0.08; p=3.19e-144; t=-49; df=297) data sets.
This result indicates improved gray matter to gray matter correspondence between EPI and
anatomical images and a reduction in partial voluming effects due to misregistration. Synth-
aligned images also exhibited greater AUCbe in both ABCD (AFNI-Synth=-0.01; p=1.2e-5;
t=-4.43; df=396) and MSC (ANTs-Synth=-0.021; p=2.32e-49; t=-18; df=297) data sets
than the nearest competitor pipeline, AFNI and ANTs respectively.

One exception to the overall trend of improved segmentation alignment metrics pro-
duced by Synth registration was observed in the ABCD data set. Here, we found that the
FSL pipeline produced greater AUCvw values (FSL-Synth=0.023; p=5.7e-5; t=4.1; df=396).
However, the ventricle alignment metrics of Synth aligned images did not differ significantly
compared to images produced by either ANTs (p=0.1) or AFNI (p=0.15) pipelines. In con-
trast, Synth registration produced EPI images with the AUCvw values that were significantly
higher than the nearest competitor, FSL (FSL-Synth=-0.05; p=1.1e-42; t=-16.2; df=297)
in the MSC data set.

4.4. Nonlinear registration with Synth improves local measures of anatomical and functional
image alignment

Often, approaches to image registration rely on minimizing or maximizing a global dis-
tance or similarity metric (e.g., least-squares or mutual information) computed across an
entire image volume. These metrics can be strongly influenced by the presence of intensity
bias fields, which are low spatial frequency modulations of image intensity often caused by
suboptimal subject placement or poor shimming. Additionally, some experimental evidence
has suggested that inaccurate registration can still produce high values for many global
measures of image alignment [13]. We therefore sought to compare the performance of each
approach to EPI distortion correction with respect to a measure of local image similarity
that would be less sensitive to these effects.
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To do this, we implemented a ‘spotlight’ analysis examining 7x7x7 voxel regions (3mm
isotropic voxels) of the BOLD-weighted images produced by each method and quantifying
its similarity to the corresponding region of the subject’s T1w and T2w images with an R2

metric. Image registration quality near gray matter is typically of greatest interest, hence
we summarized local T1w-BOLD and T2w-BOLD similarity by computing the average spot-
light R2 across all gray matter voxels, as labeled by the subject’s FreeSurfer segmentation
(Figure 6a). In the ABCD data set, we observed that Synth and FSL registration pipelines
produced similar quality of local registration to the subjects’ T1w image, with both leading
AFNI and ANTs pipelines (FSL-Synth=-0.002; p=0.15; t=-1.44; df=396). Average local
similarity between BOLD-weighted and T2w images was greatest for Synth registered im-
ages with FSL producing the second highest metrics (FSL-Synth=-0.11; p=2.3e-75; t=-23.1;
df=396). We observed a more uniform result in the MSC data set: Here, Synth registration
produced BOLD-weighted images with the greatest average local similarity for both the as-
sociated T1w (FSL-Synth=-0.06; p=4.9e-174; t=-63; df=297) and T2w (FSL-Synth=-0.12;
p=1.13e-170; t=-61; df=297) images.

We constructed ‘winner-take-all’ maps that depict, for each voxel, which registration
method produced the greatest average local similarity (7x7x7 voxel spotlight R2) between
T1w and T2w anatomical images (Figure 6b). We observed that the distortion correction
approach that produced the greatest local BOLD-T1w similarity depended on the data set
and the specific regions of the brain under consideration. In both the ABCD and MSC data
sets, registering to Synth’s synthetic image produced the highest local BOLD-T1w similarity
across the greatest percentage of voxels.

4.5. Nonlinear registration with Synth improves intrasubject consistency across sessions
We used the MSC data set to investigate how different distortion correction procedures

affect the inter-session stability of measures of fMRI data quality. Here, we hypothesized that
improved anatomical-to-functional registration would result in greater consistency (equiv-
alently, less variability) between the resulting mean functional volumes from each session
for a given individual. To quantify registration related variability, we extracted the region
of the aligned mean BOLD volumes containing just brain matter (as classified by the sub-
ject’s FreeSurfer segmentation) from each session. Then, for each subject, we computed the
average linear correlation coefficient across all pairs of sessions (Figure 7a).

Owing to the general stability of a given subject’s brain geometry on the time scales over
which the MSC data set was collected, inter-session linear correlation coefficients between
scan sessions tended to be quite high across all methods (0.94 - 0.99). For each subject,
inter-session similarity was on average greater for subjects whose BOLD-weighted images
were corrected by Synth than when their BOLD-weighted images were corrected using either
FSL (FSL-Synth=4e-3; p=0.008; t=-2.84; df=27), or ANTs (ANTs-Synth=-0.015; p=1e-11;
t=-11.25; df=27).

We reasoned that improving EPI image consistency would also reduce the variability
of the intensities of individual voxels across sessions. To test this, we constructed time-
average BOLD-weighted images for each session contributed by a subject. We temporally
concatenated each of these images, forming a pseudo-time series reflecting session-to-session
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Figure 6: Regional variation in registration performance. Summary of local similarity between the
BOLD-weighted images produced by each registration pipeline and their associated T1w/T2w anatomical
images. (a) Violin plots depicting the distributions of average spotlight R2 value between each subject’s
BOLD-weighted image and T1w (top row) and T2w (bottom row) computed across all gray matter voxels
for ABCD (left column) and MSC (right column) data sets. (b) Winner-take-all maps depicting for each
brain voxel which pipeline produced the greatest average local correlation between BOLD-weighted image
and T1w/T2w images. The color of each voxel depicts which registration pipeline produced, on average,
the greatest spatial R2 values computed over a centered 7x7x7 cube. Bars to the left of each set of images
depict the percentage of voxels “won” by each registration pipeline.

changes in the BOLD-weighted images. Then, we computed a metric, session-signal-to-
noise (s-SNR, analogous to traditional t-SNR), for each voxel defined as the mean intensity
of a voxel, µ, divided by the standard deviation of its intensity across sessions, σ. Lastly,
we summarized alignment stability for each subject by averaging s-SNR across all voxels
residing within a whole brain mask defined by their subject-specific FreeSurfer parcellation
(Figure 7b). Again, we observed that Synth-aligned images exhibited greater session-to-
session stability than BOLD-weighted images aligned with FSL (FSL-Synth=-2.58; p=3.9e-
07; t=-6.65; df=27) and ANTs (ANTs-Synth=-3.5; p=1.25e-9; t=-9.0; df=27).

Next, we explored the possibility that improving the consistency of EPI registration
across sessions would also reduce the variability of resting state correlation matrices. To
test this, we identically preprocessed (see Supplemental methods) the MSC data sets pro-
duced by each registration pipeline and computed the correlation matrices for all gray matter
voxels. For each session, we extracted the upper triangle of the associated correlation matrix.
Finally, we quantified resting state correlation matrix stability by computing the average
pairwise correlation between the upper triangles of each subject’s resting state matrices. At
the subject level, comparing only the average pairwise correlation matrix similarity (one
value per subject and pipeline), we found that correlation matrices from Synth-aligned data
sets were significantly less variable than those produced by ANTs (ANTs-Synth=-0.015;
p=3.16e-7; t=-6.7,df=27), but not FSL (FSL-Synth=2.0e-3; p=0.39;t=-0.89; df=27). An
additional mixed effects analysis of similarity between unique session pairs (that is, not ag-
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gregated into a single subject-level value) revealed BOLD-signal correlation matrices from
Synth aligned data sets to be significantly less variable across sessions than those produced by
either FSL (FSL-Synth=-2.0e-3; p=0.006; t=-2.76; df=1347) or ANTs (ANTs-Synth=0.014;
p=3.05e-81; t=-20.46; df=1347) (Figure 7c). We observed a nearly identical pattern of signif-
icant results when global signal regression was omitted from the resting state preprocessing
(see Supplemental methods).

Figure 7: Cross-session reliability metrics. Repeated measurements of the same 10 individuals in the
MSC data set allows us to assess the reliability of different approaches to EPI distortion correction. (a)
Distributions of the mean pairwise correlation between time-averaged resting state BOLD-weighted volumes.
(b) Average voxelwise session-SNR (s-SNR) computed within a whole brain mask. (c) Similarity between
the BOLD signal correlation matrices from each unique pair of sessions. Each of the 10 subjects contributed
10 resting state data sets, corresponding to 45 unique session pairs per subject. Similarity is quantified
as the correlation between the vectorized upper triangles of the pairs of BOLD signal correlation matrices.
Note that these similarity values are smaller than have been reported elsewhere for this same data set as
a consequence of the minimal spatial smoothing and the analyses being applied at the voxel as opposed to
parcel level.

4.6. Correction of EPI distortion involves shifting voxels along phase encoding and non-
phase-encoding directions.

Geometric distortion affecting BOLD-weighted images is dominated by voxel shifts in
the phase encoding direction, and often only these distortions are corrected. However, other
effects produce distortions that are not constrained to the phase encoding direction. These
include eddy current distortion; warping due to gradient non-linearities; imperfect slice
profiles associated with time-limited RF pulses; chemical shift if fat is not suppressed; the
much smaller distortion in the readout direction; and inconsistent phase encode direction due
to head pose changes. Errors in affine alignment due to distortion arising from any of these
sources are also expected to contribute (see Supplemental Figure 10). Therefore, although we
expect distortions in the phase encoding direction to predominate, Synth is not constrained
to correct only in the phase encoding direction. Accordingly, we sought to understand the
spatial structure of the corrections produced by Synth. We anticipated that the largest
component of the distortion-correcting warps would correspond to focal refinements along
the phase encoding direction of areas typically associated with susceptibility artifacts (near
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orbitofrontal cortex, ear canals and sinuses), while relatively smaller correction components
associated with other sources of distortion would manifest as well.

We created group average EPI correction maps by aligning the nonlinear warps from each
subject to the group atlas. Separately for ABCD and MSC data, we computed the mean
across subjects for the x-, y-, and z- components of the non-linear warps. This allowed us
to visualize the distortion corrections that were applied on average to subjects in each data
set. While we anticipated that the majority of the EPI distortion-correcting warps would
reflect voxels shifting along the phase encoding direction (y-direction; ABCD=posterior-
anterior; MSC=anterior-posterior), in both data sets, we observed that warps exhibited
complex spatial structure for x-, y-, and z- directions, with features closely corresponding
to the underlying geometry of the brain and skull (Figure 8). Strong bilateral symmetry
was observed in ABCD and MSC warps (Figure 8a, x-displacement), indicating that after
affine alignment, the BOLD-weighted images required additional local refinements that in-
volve lateral expansion and contraction that are most prominent along the perimeter of the
brain and skull. Affine aligned BOLD-weighted images from both data sets also required
local refinements in the phase encoding direction (Figure 8a, y-displacement) that differen-
tially affected orbito-frontal cortex; posterior (occipital and superior parietal) brain/skull
boundaries; and the perimeter of the cerebellum. In both data sets, consistent local refine-
ments affecting the superior-inferior placement of the voxels was also required (Figure 8a,
z-displacement).

To quantify the degree of post-affine local refinement applied to brain voxels by the
distortion-correcting warps, we extracted x-, y-, and z-displacement values from each com-
ponent of the group average warps along with the vector norm. In the ABCD data set, the
average brain voxel displacement was approximately 1.8 mm (σ=0.8) while displacements
in the MSC data set, acquired on an older scanner model (3T Trio), were somewhat larger
at 2.65 mm (σ=1.19 mm). Although we expected the largest component of voxel displace-
ment to lie along the phase encoding direction (y-displacement), sizable displacements were
observed in all three directions (Figure 8b,d).

The consistent spatial structure of the warps produced by Synth suggest that sources
other than phase encoding distortion contribute significantly to distorting BOLD-weighted
images. The presence of non-phase encoding distortion highlights the importance of allowing
corrective image deformations to occur in non-phase encoding direction in order to achieve
high quality alignment between BOLD-weighted and anatomical images.

5. Discussion

Distorted fMRI images are an inevitable consequence of the trade-offs made to achieve
a sampling rate sufficient to measure neurally meaningful fMRI signal variability. Com-
plications in registering distorted functional BOLD-weighted images to their undistorted
anatomical image counterparts are a perennial challenge faced by neuroimaging researchers.
Performed well, proper image registration reduces variability in measurements, improves
the statistical power of analyses and produces significant improvements in localization of re-
sponses to experimental manipulations [7, 40, 41, 41]. For these reasons, the quality of EPI

March 13, 2021

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.13.435270doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.13.435270


Figure 8: Group average distortion-correcting warps. (a) Maps of average x-, y-, and z- displacement
for voxels in the ABCD data set. (b) Distributions of direction-specific (x-,y-, and z-displacement) and
displacement magnitude (vector norm) voxel displacement for voxels within a whole brain mask defined
by the group atlas. (c) Average displacement maps for the MSC data set. (d) Direction-specific and
displacement magnitude distributions for brain voxels in the MSC data set.

distortion correction and anatomical registration is of great concern in every branch of neu-
roimaging and the primary motivation for developing methods to improve fMRI registration
performance.

The most commonly used solution to the EPI distortion problem relies on acquir-
ing additional information about magnetic field inhomogeneity using a separate field map
scan [1, 3, 4, 8]. Given the expense of acquiring field map data and the complexity of applying
it to MRI data, EPI distortion correction methods that do not require additional scan time
are desirable. Additionally, older data sets acquired prior to the widespread adoption of field
map methods contain uncorrected distortions which make the data unsuitable for modern
MRI analysis procedures requiring a high degree of correspondence between functional and
anatomical images (e.g., when projecting volumetric data to anatomically derived cortical
mesh surfaces). However, correction methods based on directly mapping to undistorted high
resolution anatomical images have proven less reliable than methods that explicitly measure
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and correct the EPI distortion [16, 17, 38].
Here, we hypothesized that the reliability of field map-less approaches could be improved

if the underlying contrast properties of the BOLD-weighted and anatomical images match
more closely. The distortion correction approach that Synth employs is to generate a high
resolution synthetic functional image that has nearly the same tissue contrast properties as
a BOLD image (95% similarity) but is based on information from the undistorted geometry
of a subjects’ T1w and T2w anatomical images. The approach implemented in Synth for
constructing a synthetic BOLD-weighted image target can be considered an example of
a class of registration procedures termed “mono-modal reduction” [42]. After generating
a synthetic target image, a distortion-correcting warp is constructed in the same way as
other direct mapping approaches: by directly mapping to an undistorted target image.
Here, we have demonstrated that when a synthetic image is used as a target, the resulting
fMRI alignment quality rivals and frequently exceeds those produced by standard field map
methods.

In typical field map correction procedures, estimates of local distortion are constrained to
the phase encoding direction. However, there are many reasons why allowing corrections to
occur in non-phase encoding directions may become necessary to achieve correct alignment.
For example, due to subject motion occurring between the acquisition of the field map
data and the BOLD-weighted data, the phase encoding direction may change from the
perspective of a brain-based reference frame, rendering the field map correction suboptimal.
Eddy current effects and gradient nonlinearities can also produce image distortion in non-
phase encoding directions [43]. Additionally, our analyses have shown that when distortion
is present, affine alignment estimates are error-prone. Distortion-induced affine error leaves
residual misalignment whose mitigation requires that the correcting warp be free to operate
in non-phase encoding directions (see Supplemental Figure 10). A key practical benefit of
directly mapping the distorted BOLD-weighted image to an undistorted synthetic image is
that these errors can be corrected without explicitly modeling them.

An intriguing potential use case for Synth is to use its warp estimation capabilities to
empirically measure these other unspecified components of EPI image distortion. In this
regard, we provide a note of caution. While the warps produced by Synth to correct EPI
distortions do reflect those areas of the image affected by field inhomogeneities and other
true sources of image distortion, they do not reflect these sources solely. Rather, the warps
represent a combination of EPI image distortion and errors in the initial affine parameters
used to align the BOLD-weighted image to their anatomical counterparts. This occurs
because it is difficult, if not impossible, to exactly determine the correct affine parameters
that correctly align two images when one of them is distorted. Furthermore, when distortion
is present, affine alignment parameters cannot be meaningfully interpreted in anything other
than purely operational terms, i.e., the parameters that maximize some image similarity
metric. The need to allow for local refinements resulting from incorrect affine registration is
the one of the primary motivations for allowing corrections in non-phase encoding directions
when aligning to Synth images.

Although the corrections produced by Synth are high quality, several open questions
remain relating to how this general approach can be implemented most effectively. Chief
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among these is whether Synth’s performance can be augmented further by including existing
field map information derived using traditional approaches. The focus of the present report
is assessing the quality of the field map corrections produced by Synth in a situation in which
there is no initial estimate of the EPI image distortion provided to the underlying nonlinear
warping software. Including an existing field map as an initial estimate may increase Synth’s
performance further. Future iterations of Synth will include this ability which may produce
even greater fidelity between functional and anatomical images than what was achieved for
the results presented here.

Synth models the difference in effective spatial resolution between T1w/T2w and BOLD-
weighted images by blurring the radial basis function (RBF) components of the anatomical
images with an Epanachnikov smoothing kernel prior to fitting the model to the target
BOLD-weighted image. In principle, the optical blurring should occur only after the field
map deformation is applied, rather than prior to it. However implementing the model in this
way would require repeatedly blurring the high spatial resolution radial basis components
of the T1w/T2w source images after every iterative update of the estimated field map
parameters. A naive implementation of this approach would be computationally prohibitive.
Prior research has shown that in practice the sort of approximation implemented in Synth in
many cases does not introduce a significant amount of error [44]. However, while the quality
of the field map corrections produced by Synth appears to be quite high, some improvement
may yet be gleaned by using the “correct model”, assuming the technical challenges to its
implementation can be surmounted.

That different SynthTarget model specifications were required to achieve similar contrast
similarity metrics in the ABCD and MSC data sets suggests that what constitutes a sufficient
RBF model for producing high-quality synthetic images is likely to vary from data set to data
set. To address this, Synth provides a high degree of flexibility, allowing the user to specify
a custom linear model consisting of both main-effect terms and interaction terms between
a user-specified number of source images, each decomposable into an user-specified number
of RBF components. In general, more complex models will allow Synth to capture more
complicated relationships between the voxel intensities of the T1w/T2w images and BOLD-
weighted images. This flexibility comes at the cost of increased memory requirements and
computational time, but can produce more accurate synthetic images that may ultimately
improve registration quality. In our results, the RBF model parameters were chosen to
produce a synthetic image of qualitatively sufficient visual similarity to their associated
BOLD-weighted images. By default, Synth uses the RBF model parameters optimized for
the ABCD data set (i.e. a 12 component decomposition on the subjects’ T1w/T2w images,
along with pairwise interaction terms). For users looking for guidance on selecting model
specifications, our results indicated synthetic images with 95% Fourier contrast similarity
to the target BOLD-weighted image is sufficient for producing high quality corrections.
Additional exploration will be required to determine the optimal balance of time and quality.

Even though Synth’s underlying RBF model provides a great degree of flexibility in fitting
the functions that map T1w/T2w voxel intensities to BOLD-weighted image voxel intensi-
ties, other data collection parameters and preprocessing steps may improve the quality of
the synthetic images or reduce the needed complexity of the RBF model. For example, ad-
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justing echo times during data acquisition may produce images that can be more accurately
modeled with fewer RBF components while still retaining sufficient sensitivity to BOLD
contrast. Alternatively or in addition, performing contrast enhancing preprocessing of the
anatomical and BOLD-weighted images so that the resulting function relating their voxel
intensities can be modeled more easily by the chosen RBF model may allow for simpler RBF
models to perform equivalently. In our own preliminary tests and for the results reported
here, we observed that synthetic images were more accurate when a bias field was esti-
mated and removed from the anatomical images and image contrast was increased through
histogram normalization (see Supplemental methods).

A recent study has revealed that surprisingly large sample sizes —on the order of 2000 or
more subjects— are required in order to reliably measure relationships between a variety of
neuropsychiatric metrics and resting state BOLD signal correlations [45]. This observation
is significant because it suggests the presence of a sizable amount of subject-to-subject
variability that remains within fMRI resting state data, even when processed using up to
date techniques. It is significant, therefore, that we observed improvement in several metrics
quantifying session-to-session reliability. In particular, we observed reduced variability in the
structure of individuals’ BOLD-weighted images across sessions. Importantly, this reduction
in session-to-session structural variability was also reflected in the resulting resting state
data sets. We observed significant reduction in session-to-session measurements of BOLD
signal correlation structure for data sets corrected with Synth (Figure 7c). These results
suggest that high quality correction of image distortion may contribute to reducing overall
measurement variability in fMRI research.

The results reported here have demonstrated that it is possible to achieve high-quality
EPI distortion correction without field map data. We have shown that field map-less ap-
proaches, such as Synth, can perform comparably to existing gold-standard distortion cor-
rection approaches, and in fact, surpasses them on many measures of global and local image
alignment quality. Removing the reliance on field maps to correct EPI distortion will allow
researchers to recover samples with missing or corrupted field maps while maintaining high
quality alignment between their anatomical and BOLD-weighted images. Field map-less
distortion correction may prove to be a particular asset to researchers studying high motion
cohorts, such as pediatric or neuropsychiatric populations, where acquiring high quality field
map data is a significant challenge. Reliable field map-less distortion correction shows great
promise for negating the complications arising from the acquisition, processing and quality
checking of field map data and has the potential to greatly simplify data processing in the
neuroimaging field.

6. Code sharing

The Synth software package and other utilities and scripts used for this project can be
made available upon request and downloaded at https://gitlab.com/vanandrew/omni upon
publication.
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7. Data availability

The ABCD data repository grows and changes over time. The ABCD data used in this
report came from ABCD collection 3165 and the Annual Release 2.0, DOI 10.15154/1503209.

The MSC data set used in this report can downloaded from OpenNeuro.org, DOI
10.18112/openneuro.ds000224.v1.0.3
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11. Supplemental methods

11.1. Description of common pipeline
Distortion correction methods were compared using a common registration pipeline,

which differed only in the distortion correction method and functional-to-T1w alignment.
The registration pipeline includes alignment of anatomical images to a common anatomical
atlas, functional framewise alignment and resampling of the final aligned functional data to
3 mm. Details of each step are explained in the following sections.

11.2. Anatomical registration/segmentation
Anatomical alignment was accomplished with two methods for each data set. For the

ABCD data set, edge images were extracted from each subjects’ T1w and T2w images and
aligned with a rigid body transform using flirt with the correlation ratio cost function. For
the MSC data set, we aligned each subjects’ T1w and T2w images with a rigid body trans-
form using 3dAllineate with a mutual information cost function calculated over 100% of the
voxels. For both methods, the resulting transformation parameters were saved for later use.
Both the T1w and T2w images were bias field corrected using N4BiasFieldCorrection [46]
(spline distance = 100, initial mesh resolution = 1x1x1). On the ABCD data set, skull-
stripping was done on the T1w images with bet [47] (fractional intensity threshold = 0.1).
On the MSC data set mri_watershed was used to skullstrip the T1w images. For each
subject, we aligned their debiased, skullstripped T1w volume to a common template, the
TRIO_Y_NDC atlas, using a 9-parameter affine transformation estimated with 3dAllineate
and a mutual information cost function computed over 100% of voxels. We then combined
the resulting transformations to align both T1w and T2w volumes to the TRIO atlas using
windowed sinc-function interpolation. Anatomical segmentation was done using recon-all
from FreeSurfer 6.0 [48] with the -T2 flag enabled.

11.3. Alignment of EPI images
Framewise alignment of EPI images was accomplished using AFNI’s 3dAllineate. First,

a reference image was constructed by averaging 100 aligned frames from the resting state
times series taken from time intervals with the lowest DVARs values [49] [50]. To determine
these intervals, a DVARs time series was calculated by computing the temporal derivative
of each voxel’s time series and normalizing its standard deviation to be equal to 1. For
each frame, a DVARs value was calculated as the spatial mean of the absolute value of the
derivative time series. Because we were interested in extracting the frames to construct
the reference EPI image from prolonged intervals of relatively low DVARs values, we then
low-pass filtered the DVARs time series by bi-directionally filtering it with a 1st order digital
Butterworth filter with normalized cut-off frequency of 0.16. To create the reference image,
we selected 100 frames associated with the lowest smoothed DVARs values and aligned them
to the individual frame that had the lowest DVARs value in the session using rigid body
transformations. Alignment parameters were estimated with 3dAllineate and employed a
least-squares cost function along with the -autoweight option. Finally, we constructed a
reference image for the session by averaging the 100 aligned frames together.
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Lastly, framewise alignment parameters were estimated by registering each frame individ-
ually to the reference image. To reduce the influence of signal drift on framewise registration
and to increase the contribution of properly aligned edges to the cost function, we spatially
high-pass filtered the reference functional image and each functional frame independently
by smoothing them with large 12 mm FWHM Gaussian kernel and subtracting the result
from the original image. These high-pass filtered volumes were then rigid body aligned us-
ing 3dAllineate which optimized the least-squares cost function calculated over 75% of the
voxels.

11.4. Resting state denoising
Resting state data was denoised by regressing a series of nuisance covariance from each

voxel’s time series. The design matrix included a constant term; a linear trend component;
the first 8 low order Legendre polynomials –to remove low frequency fluctuations; time series
corresponding to the 6 framewise rigid-body alignment parameters; and the first derivative
of each of the alignment parameters along with two additional lagged copies. In addition, the
design matrix included nuisance white matter covariance as well as time series from nearby
voxels outside of the brain used to model global and regional nuisance variability [51–54].
The white matter regressors were constructed by extracting and normalizing time series from
all voxels labeled as white matter by the subject’s FreeSurfer parcellation. Singular value
decomposition was then applied to extract 12 time series accounting for the most white
matter variance. A similar procedure was used to construct the external signal nuisance
regressors. Here, time series from voxels residing within a 5 voxel shell surrounding the
brain were extracted. Again, the first 12 singular vectors were computed and included in
the denoising design matrix. The complete set of nuisance variables was then projected
from the voxel time series using linear regression. We performed this analysis twice, in one
instance including the global mean gray matter as an additional nuisance regressor and in
the other instance omitting it. Lastly, the regression model residuals were bandpass filtered
to retain only frequencies between 0.001 and 0.1 Hz. Frame censoring to remove high motion
frames was employed using a weighted correlation approach [50]. First, using the raw fMRI
data, we computed a DVARs time series across all brain matter. Frames in which DVARs
exceeded two standard deviations were flagged and given a zero weighting. To reduce the
influence of any contamination remaining in adjacent frames, the weighting of the three
frames preceding and following were also reduced in proportion to their absolute distance
from the censored frame. BOLD signal correlation matrices were calculated using these
computed weights.

12. Description of radial basis function model used to estimate the synthetic
EPI image

Synth allows the user to specify a regression model that maps source image intensities to
target image intensities. The radial basis components were constructed using the following
procedure: Let Ii refer to an individual source image, e.g., T1w or T2w; and {c1, c2, ...cn} ∈ C
refers to a set of n evenly spaced values that lie between the maximum and minimum values
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of Ii. Then each radial basis component, rj, of an image, Ii, is constructed according to the
following equation:

rj (Ii) = exp

(
4 ln (0.5)

(
Ii − cj
c1 − c0

)2
)

(3)

A visual representation of the images produced by applying Equation (3) to T1w/T2w
images is depicted in Figure 1a. The final design matrix fit by SynthTarget consists of each
radial basis component concatenated into a single matrix F, along with intercept terms, Ei,
for each source image, such that:

F =

 | | | | ... | ... |
E0 E1 r0(I0) r1(I0) ... r0(I1) ... rj(Ii)
| | | | ... | ... |

 (4)

For the ABCD data set, F was constructed from a 12 component decomposition on each
of the subjects’ T1w/T2w images, along with all T1w/T2w pairwise interaction terms. As
in traditional linear models, these interaction terms are simply the pairwise product of the
columns of F. For the MSC data set, a simpler model was sufficient; F consisted of only
a 12 component decomposition of the subjects’ T1w/T2w images to generate a suitable
synthetic BOLD-weighted image. In both ABCD and MSC data sets, F also included a
global intercept term.

12.1. The blur operator
While Synth estimates the field map corrections at the 1 mm isotropic voxel resolution

of the T1w/T2w, the true EPI images are acquired at much lower resolutions. In the case
of the MSC data set, this corresponds to a 4 mm native voxel resolution resampled to 3
mm isotropic resolution; and for the ABCD data set this corresponds to 2.6 mm native
resolution resampled to 3 mm. When lower resolution EPI images are upsampled to the
higher resolution grid, their lower resolution manifests as apparent blur. Synth models
this blur (B in Equation (1)) as the convolution of a source image with an Epanachnikov
kernel, whose bandwidth is a user specified parameter. This kernel is given by the following
expression:

B(x, h) = max(0, 1− 1

h
‖x‖22) (5)

where x ∈ R3 is a location on the kernel, and h is the bandwidth parameter. For the results
in this paper, the bandwidths of the Epanechnikov kernels were set to h = 4 and h = 8 for
the ABCD and MSC data set respectively.

12.2. Contrast correction for error induced image bias
When source and target images are acquired at substantially different spatial resolutions,

or in the early phases of alignment when source and target images are far out of register,
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the synthetic images produced by Synth exhibit significantly “flattened” contrast, even if
the rank order voxel intensities comprising the synthetic image largely correspond to those
observed in the target image. This is due to the fact that errors in registration or large
differences between source and target image resolution bias estimates of the radial basis
function parameters, θ, toward the target image mean. In an extreme, but illustrative,
case where image registration is so far off that there is no meaningful relationship between
corresponding source and target image voxels, the synthetic image will simply be a volume
in which all voxels have the same intensity as the target image mean. That is, it will have
perfectly ‘flat’ contrast. As registration improves some, the synthetic image will begin to
exhibit more accurately the contrast properties of the target image. In general, however, the
contrast of naively estimated synthetic images will tend to be somewhat flattened due to
error. To address this, Synth includes a tone curve adjustment option that increases contrast
of the final synthetic image. This is accomplished by passing the synthetic image voxel
intensities through a monotonic non-linear curve, a process similar to tone curve adjustment
in traditional image processing. The curve is constrained to reside within the set of beta
function cumulative distributions –distributions well suited for modeling tone curves that
tend to be sigmoidal– and the parameters are optimized by minimizing the negative linear
correlation coefficient between the target and synthetic images.

12.3. Estimating field maps with an undistorted synthetic BOLD-weighted image
The warp parameters that map the undistorted synthetic BOLD-weighted image to the

reference BOLD-weighted image were estimated using a three step iterative procedure. The
final iteration of this procedure produced the estimated field map corrections used for our
analyses. This procedure was conducted as follows:

1. Using SynthTarget, construct an initial synthetic BOLD-weighted image based on the
current best affine alignment between T1w, T2w and reference BOLD-weighted images
(see SynthTarget joint optimization). An EPI signal-to-noise mask was used to reduce
the contribution of low signal-to-noise areas when constructing the synthetic BOLD-
weighted image (see Creating the EPI signal-to-noise mask).

2. Estimate a warp that maps the current synthetic BOLD-weighted image to the ref-
erence BOLD-weighted image. With the exception of the first iteration, each warp
estimate is initialized from the warp estimate of the previous iteration.

3. Apply the inverse of this warp, which approximates a field map correction, to the
reference BOLD-weighted image.

4. Repeat steps 1-3, at each iteration, using SynthTarget to re-estimate the synthetic
BOLD-weighted image using the most recently corrected BOLD-weighted image (see
Equation 1).

For the results presented here, we estimated the field maps using the ANTs SyN algorithm.
SyN parameters were set to use a neighborhood cross-correlation cost function (radius = 2),
update and total field variance parameters of 0, winsorize limits of [0.005, 0.995], histogram
matching, BSpline interpolation of order 5, convergence parameters of 100x50x50, 1e-6 and
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15, smoothing parameters of 2x1x0, and shrink factor parameters 4x3x2. ANTs SyN was
run for 3 iterations and each subsequent iteration used a smaller gradient step size of 3, 1,
and 0.1 respectively. In order to leverage the detailed spatial information available in the
high resolution synthetic BOLD-weighted images when estimating the field map, the warps
at each iteration were constructed in the 1 mm x 1 mm x 1 mm native resolution of the
T1w/T2w source images. Because EPI distortion affects the accuracy of affine registration,
field map solutions were not constrained to the phase encoding direction only.

12.4. Creating the EPI signal-to-noise mask
To construct a binary mask that would serve to label EPI voxels suffering from a high

degree of noise or signal dropout we implemented a linear discriminant analysis procedure.
We began by using the brain mask of the T1w image and aligned it to the BOLD-weighted
data set using the affine transformation generated from SynthTarget. This mask served as
an initial guess, or prior estimate, for which voxels were likely to represent meaningful fMRI
signals in the resting state data set, and those which represent noise and areas of signal
dropout (Supplemental Figure 9). Using this initial labeling, we implemented a between-
class linear discriminant analysis (LDA) based, first, on the raw un-centered and un-scaled
voxel time series and then computed the projection of each voxel’s time series onto the
resulting principal discriminant vector. We repeated this LDA procedure on the centered
and normalized time series from each voxel, again projecting the times series back onto
the principal discriminant vector. Thus, each voxel was associated with two projection
values. We then created a third value associated with each voxel by computing the product
of the two principal discriminant vector projections. A second level of LDA was done on
these three values. Lastly, Otsu’s method [55] was used to label each voxel as ‘signal’
or ‘noise’, depending upon its projection onto this final 3-element principal discriminant
vector. We refined this labeling by repeating the entire LDA procedure over 20 iterations.
During each subsequent iteration the labels produced by the previous iteration were used
initialize the current LDA procedure. Sufficiently iterated, this approach converges to a
stable binary signal-or-noise label for each voxel. Lastly, to construct a mask containing
only within-brain noise voxels —voxels most likely to be affected by signal dropout— we
masked the final result of this iterative process to remove non-brain voxels (defined by the
skullstrip mask) and morphologically open and dilate the image by 1 voxel. A smoothed
version of this mask was used as a weighting volume to further refine the estimate of the
synthetic image by reducing the contributions of brain regions where no correspondence
could exist between BOLD-weighted images and T1w/T2w images due to signal drop out.
This procedure is implemented as a standalone function called synthnoisemask as part of
Synth software package.

12.5. SynthTarget joint optimization
Our goal is to find the optimal set of affine parameters, ?γ, and radial basis weights,?θ,

that best satisfies the model described by Equation (1). By applying a maximum likelihood
estimator, we obtain the following expression:

{?γ, ?θ} = argmin
γ,θ

‖y −MγBFθ‖22 (6)
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Figure 9: Representative signal-to-noise exclusion mask. (a) Example subject T2w images (underlay)
depicting slices that typically contain regions of significant signal loss in EPI scans. (b) The corresponding
closely aligned slices from the subject’s BOLD-weighted data. In both sets of images, the yellow overlay
depicts regions of extreme signal loss detected with the LDA procedure outlined above. In these regions
of extreme signal loss, no correspondence exists between a subjects’ anatomical and BOLD-weighted data.
Therefore, when constructing the synthetic image, the contributions of voxels in this region are downweighted
when running SynthTarget. Note qualitative similarity between the noise mask detected with this method
and group average map of fMRI signal loss reported in [56].

which is the least squares solution to Equation (1). In practice, Equation (6) is weighted by
the EPI signal-to-noise mask to downweight areas of signal dropout in the image.

To find both sets of optimal parameters, we employ an alternating minimization ap-
proach [57], which solves for both ?γ and ?θ by fixing one set of parameters to estimate
the other over a number of iterations, N . First, γ is initialized to some initial estimate, γ0.
In this approach, the alternating minimization algorithm is sensitive to the choice of γ0,
as convergence is only guaranteed when the support of the function satisfies the marginal
convexity properties described in Theorem 4.3 in [57]. We attempt to satisfy this constraint
by using the rigid body alignment solution from 3dAllineate as the initial estimate of γ0.
To find θn, we fix the value of γn at its current estimate and solve for θn using the following
expression:

θn = (FTBTBF)−1FTBTM−1
γ y (7)

which is the least squares solution to the system M−1
γ y = BFθ. Once θn has been found

using the current estimate of affine parameters, a new estimate, γn+1, is found by fixing θn
and generating a gradient descent step that solves Equation 6. A closed form solution to
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the gradient can be found by applying the chain rule [58]:

gn =

(
∂x

∂γ

)T(
∂MγFθ

∂x

)T (
∂J

∂MγFθ

)
= PTGT (MγBFθ − y) (8)

where, J is the functional expression defined in Equation (6), G is a matrix containing the
spatial gradient of the target image, and P is a padded matrix containing the position of
each voxel in the source image. Here, we use the terms “target” and “source” to refer to
the synthetic image obtained after applying an affine transformation (i.e., MγBFθ) and
the untransformed synthetic image (i.e., BFθ) respectively. A construction of the G and P
terms is described below:

G =
[
diag(Gx) diag(Gy) diag(Gz)

]
(9)

P =

x y z e
x y z e

x y z e

 (10)

where Gx, Gy, and Gz are each components of the target image gradient of x, y, and z,
which denote the physical location of each voxel (in scanner space) along each axis in the
source image, and e is defined to be a vector of all ones. To avoid optimizing to saddle points
over the non-convex objective function of Equation (6), we use a Nesterov Adam update for
each gradient descent iteration with parameter settings η = 10−3, ε = 10−8, β1 = 0.9, and
β2 = 0.999 [59]. Algorithm 1 describes the full joint optimization procedure:

During estimation of γ and θ, Algorithm 1 is used in a Gaussian resolution pyramid,
where estimated parameters are calculated first on downsampled versions of the input source
and target images and subsequently refined on a higher resolution set of images. This process
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increases the speed of the registration procedure by reducing the number of voxels that the
cost function is computed over, in addition to aiding in the avoidance of local minima that
correspond to locally optimal alignment solutions that are nevertheless wrong. For the
results presented here, the Synth joint optimization is repeated for image scales of 4 mm, 2
mm, and 1 mm. Initialization of the affine parameters, γ0 is estimated by using an external
program (i.e., AFNI 3dAllineate) to coregister the target EPI to the anatomical T2 with a
mutual information cost function.

12.6. Distortion correction using alternating descent optimization with SynthUnwarp
Once the affine parameters are found by SynthTarget, we run a second alternating min-

imization step that jointly solves for the radial basis function parameters, θ as well as the
non-linear deformation parameters, φ described in Equation (2), while keeping the affine
parameters fixed. An initial warp is estimated by non-linearly aligning the BOLD-weighted
image to the T2w image. This initial warp estimate, φ0, is used as a coarse estimate of
the EPI distortion, allowing for a more accurate estimate synthetic BOLD-weighted image.
Algorithm 2 summarizes the full distortion correction algorithm:

For the results presented here, ANTs SyN was used to find the deformation parameters.
Typically, field map correction procedures allow only for geometric deformations to occur in
the phase encoding direction. However, in a set of ancillary analyses we observed that the
presence of phase-encoding-direction-only geometric distortion introduces significant errors
in affine alignment parameters (Supplemental Figure 10). In order to correct the distortion
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induced affine alignment errors, we elected to allow SyN to estimate distortion corrections
that were not constrained to lie along the phase-encoding direction.
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13. Supplemental material

13.1. Table of scanner manufacturers and models comprising the ABCD data set

Table 1: Distribution of ABCD data sets acquired by specific scanner models

Manufacturer Model Count
GE MEDICAL SYSTEMS DISCOVERY MR750 18
GE MEDICAL SYSTEMS SIGNA Creator 1
Philips Medical Systems Achieva dStream 1
Philips Medical Systems Ingenia 6
SIEMENS Prisma 33
SIEMENS Prisma Fit 41
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13.2. Statistical tables for global similarity metrics (ABCD data set)
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13.3. Statistical tables for global similarity metrics (MSC data set)
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13.4. Distortion affecting only the phase encoding direction reduces affine alignment accuracy
In order to quantify the effect of EPI distortion on affine alignment performance, we

applied known rigid body transformations to synthetic BOLD-weighted images that were
either distorted or undistorted and then assessed the ability of an affine registration algo-
rithm (MATLAB, imregtform) to correctly realign them to the original undistorted image.
EPI distortions were generated by applying only the phase encoding direction component of
distortion correcting warps generated by SynthUnwarp. We applied this procedure to one
session of data from each of the ten MSC subjects. We separately applied transformations,
R, corresponding to pure translations (∓5 mm) and rotations (∓5 degrees) along or about
the three cardinal axes, to the distorted and undistorted synthetic BOLD-weighted images.
Next, we estimated R-1 for the distorted and undistorted images, by aligning them to the
original undistorted image as a target. If the alignment algorithm correctly estimates R−1,
then the product RR−1should be equal to the identity matrix, which has a 2-norm of 1.
Errors in affine alignment will result in deviations from identity in the RR-1 product. We
therefore quantified the alignment error as the 2-norm of RR −1.

We observed that when no phase encoding distortion was present, imregtform reliably
estimated the correct alignment parameters, resulting in RR −1 with a 2-norm that was
almost always equal to 1 (Figure 10 left). However, when distortion was present, alignment
parameters exhibited greater error (Figure 10 right).
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Figure 10: EPI distortion reduces image alignment accuracy. Distributions of RR−1 for 10 MSC
subjects. Left column depicts the distribution of affine alignment errors (2-norm of the RR −1 product)
when no distortion is present. The right column depicts affine alignment errors for the same images when
phase-encoding direction error is present. Below each column: example images depicting the distorted and
undistorted images used in this analysis. Notice that in this example the phase encoding distortions are
quite subtle yet still produce significant variability in affine alignment performance. March 13, 2021
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