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Abstract: The neurophysiology of cells and tissues are monitored electrophysiologically 

and optically in diverse experiments and species, ranging from flies to humans. 

Understanding the brain requires integration of data across this diversity, and thus these 

data must be findable, accessible, interoperable, and reusable (FAIR). This requires a 

standard language for data and metadata that can coevolve with neuroscience. We 

describe design and implementation principles for a language for neurophysiology data. 

Our software (Neurodata Without Borders, NWB) defines and modularizes the 

interdependent, yet separable, components of a data language. We demonstrate NWB’s 

impact through unified description of neurophysiology data across diverse modalities and 

species. NWB exists in an ecosystem which includes data management, analysis, 

visualization, and archive tools. Thus, the NWB data language enables reproduction, 

interchange, and reuse of diverse neurophysiology data. More broadly, the design 

principles of NWB are generally applicable to enhance discovery across biology through 

data FAIRness.  
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Introduction 
The immense diversity of life on Earth1 has always provided both inspiration and insight 

for biologists. For example, in neuroscience, the functioning of the brain is studied in 

species ranging from flies, to mice, to humans (Fig. 1a)2. Because brains evolved to 

produce a plethora of behaviors that advance organismal survival, neuroscientists 

monitor brain activity while subjects are engaged in diverse tasks (Fig. 1a). On one hand, 

creating a coherent model of how the brain works will require synthesizing data generated 

by these heterogeneous experiments. On the other hand, the extreme heterogeneity of 

neurophysiological experiments impedes the integration, reproduction, interchange, and 

reuse of diverse neurophysiology data. A standardized language for neurophysiology 

data and metadata (i.e., a data language) is required to enable neuroscientists to 

effectively describe and communicate about their experiments, and thus share the data. 

The extreme heterogeneity of neurophysiology experiments is exemplified in 

Figure 1. Diverse experiments allow neuroscientists to study how brain activity supports 

sensation, perception, cognition, and action. Tasks range from running on balls or 

treadmills (e.g., pictures, Fig. 1i)3, memory-guided navigation of mazes (Fig. 1ii)4, 

production of speech (Fig. 1iii)5, and memory formation (Fig. 1iv). The use of different 

species in neuroscience is driven, in part, by the applicability of specific 

neurophysiological recording techniques (Fig. 1b). For example, the availability of 

genetically modified mice makes this species ideal to monitor the activity of genetically 

defined neurons using protein calcium sensors (e.g., with GCaMP;optophysiology, ‘o-

phys’) (Fig. 1bi,ci). Concomitantly, electrophysiology probes (‘e-phys’) with large 

numbers of electrodes enable monitoring the activity of multiple single neurons at 

millisecond resolution from different brain regions (e.g., medial prefrontal cortex, ‘mPFC’; 

ventral striatum, ‘v. Striatum’; orbital frontal cortex, ‘OFC’) in freely behaving rats (Fig. 
1bii,cii)4. Additionally, in human epilepsy patients, arrays of electrodes on the cortical 

surface (i.e., electrocorticography, ECoG) allows direct electrical recording of mesoscale 

neural activity at high-temporal resolution from entire brain regions and multiple brain 

areas (e.g., speech sensorimotor cortex ‘SMC’; Fig. 1biii, ciii)5. To characterize the 

functioning of single neurons, scientists measure membrane potentials (ic-ephys), e.g, 

via patch clamp recordings. As a final example, to study the detailed workings of complete 
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neural circuits, supercomputers are used for biophysically detailed simulation of the 

intracellular membrane potentials of a large variety of neurons organized in complex 

networks6,7 (Fig. 1biv,civ). See also Supplementary Material 1 for description of 

intracellular electrophysiology data. Although this heterogeneity is most evident across 

labs, it is present in a reduced form within single labs; lab members can use different 

techniques in custom experiments to address specific hypotheses. As such, even within 

the same laboratory, it is not uncommon for data and metadata to be described in an 

idiosyncratic way by the individual who collected the data, making the data nearly useless 

when that individual leaves the lab.  
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Figure 1: NWB addresses the massive diversity of neurophysiology data and 
metadata 

a. Diversity of experimental systems: species and tasks. (i). mice performing a visual 
discrimination task; (ii) rats performing a memory-guided navigation task; (iii) humans 
speaking consonant-vowel syllables; (iv) biophysically detailed simulations of mouse 
hippocampus during memory formation. The corresponding acquisition modalities and 
signals are shown in the corresponding columns in figure b and c.  

b. Diversity of data modalities and acquisition devices: (i) optophysiological Ca2+ imaging with 
2-photon microscope; (ii) intra-cortical extracellular electrophysiological recordings with 
polytrodes in multiple brain areas (indicated by color, see cii); (iii) cortical surface 
electrophysiology recordings with electrocorticography grids; (iv) high-performance 
computing systems for large-scale, biophysically detailed simulations of large neural 
networks. 

c. Diversity of signals and areas: (i) Ca2+ signals as a function of time from visually identified 
individual neurons in primary visual cortex (V1)(Mallory et al., 2021); (ii) spike-raster (each 
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tick demarcates the time of an action potential) from simultaneously recorded putative 
single-units after spike-sorting of extracellular signals from medial prefrontal cortex (mPFC; 
blue), ventral striatum (v. Striatum, red), and orbital frontal cortex (OFC, green)(color 
corresponds to b.ii)(Kastner et al., 2020); (iii) high-gamma band activity from electrodes 
over the speech sensorimotor cortex (SMC), with dorsal-ventral distance from Sylvian 
fissure color coded red-to-black (color corresponds to b.iii) (Bouchard et al., 2013); (iv) 
simulated intra-cellular membrane potentials from different cell-types from large-scale 
biophysical simulation of the hippocampus (BC, Basket Cell; HC, Hilar Interneuron (with 
axon associated with the) Perforant Path; HCC, Hilar Interneuron (with axon associated 
with the) Commissural/Associational Path; IS, Interneuron-Specific Interneuron;  MCPP, 
medial Perforant Path; NGFC, neurogliaform cell; MC, mossy cell; GC, granule cell](Raikov 
and Soltesz, unpublished data).  

d. Neurodata Without Borders (NWB) provides a robust, extensible, and maintainable 
software ecosystem for standardized description, storage, and sharing of the diversity of 
experimental subjects, behaviors, experimental designs, data acquisition systems, and 
measures of neural activity exemplified in a - c. In addition to the examples in i-iv, another 
important application area for NWB is intracellular electrophysiology data (see Supplement 
Material 1).  

 

Scientific data must be thought of in the context of the entire data life-cycle, which spans 

planning, acquisition, processing, and analysis to publication and reuse8. Across species 

and tasks, different acquisition technologies measure different neurophysiological 

quantities from multiple spatial locations over time. Thus, the numerical data itself can 

commonly be described in the form of space-by-time matrices, the storage of which has 

been optimized (for space and rapid access) by computer scientists for decades. It is the 

immense diversity of metadata required to turn those numbers into knowledge that 

presents the outstanding challenge.  

As other fields of science, such as climate science9, astrophysics10, and high-

energy physics11 have demonstrated, community-generated standards for data and 

metadata are a critical step in creating robust data and analysis ecosystems, as well as 

enabling collaboration and reuse of data across laboratories. This issue is particularly 

relevant in the current age of massive neuroscientific data sets generated by emerging 

technologies from the US BRAIN Initiative, Human Brain Project, and other brain research 

initiatives worldwide. Advanced data processing, machine learning, and artificial 

intelligence algorithms are required to make discoveries based on such massive volumes 

of data12,13,14. There have been previous efforts to standardize neurophysiology data, such 

as NWB(v1.0) and NIX15,16. However, these previous efforts have not gained wide-spread 

adoption by the diverse neurophysiology community.  
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Why have these previous efforts not been successful? We argue that there are 

several challenges that have not yet been successfully addressed. Conceptually, the 

complexity of the problem necessitates an interdisciplinary approach of neuroscientists, 

data and computer scientists, and scientific software engineers to identify and disentangle 

the components of the solution. Technologically, the software infrastructure instantiating 

the standard must integrate the separable components of user-facing interfaces (i.e., 

Application Programming Interfaces, APIs), data modeling, standard specification, data 

translation, and storage format. This must be done while maintaining sustainability, 

reliability, stability, and ease of use for the neurophysiologist. Furthermore, because all 

science is advanced by both development of new acquisition techniques and creation of 

ingenious experimental designs, mechanisms for extending the standard to unforeseen 

data and metadata are essential. Sociologically, the neuroscientific community must 

accept and adopt the standard, requiring coordinated community engagement, software 

development, and governance. Together, these challenges and requirements necessitate 

a conceptual departure from the traditional notion of a static, monolithic data standard. 

That is, we need a “language” to enable precise communication about data that can co-

evolve with the needs of the community. 

We created the Neurodata Without Borders (NWB) data language (i.e., a 

standardized language for describing data) for neurophysiology to address the challenges 

described above. NWB(v2) accommodates the massive heterogeneity and evolution of 

neurophysiology data and metadata in a unified framework through the development of a 

novel data language that can co-evolve with neurophysiology experiments. Through 

extensive and coordinated efforts in community engagement, software development, and 

interdisciplinary governance, NWB is now being utilized by more than 36 labs and 

research organizations. Across these groups, NWB is used for all neurophysiology data 

modalities collected from species ranging from flies to humans during diverse tasks. This 

generality was enabled by the development of a robust, extensible, and sustainable 

software architecture based on our Hierarchical Data Modeling Framework (HDMF)17. 

NWB is integrated with state-of-the-art analysis tools to provide a unified storage platform 

throughout the data life-cycle, as we demonstrate through the analysis, visualization, and 

re-storage of diverse neurophysiological data and processing results. To facilitate new 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.13.435173doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.13.435173


 

7 

experimental paradigms, we developed methods for the creation and sharing of NWB 

Extensions that permits the NWB data language to co-evolve with the needs of the 

community. Finally, NWB is foundational for the Distributed Archives for Neurophysiology 

Data Integration (DANDI) data repository to enable collaborative data sharing and 

analysis. Together, the capabilities of NWB provide the basis for a community-based 

neurophysiology data ecosystem. The processes and principles we utilized to create 

NWB provide an exemplar for biological data ecosystems more broadly. 
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Results 

 
Figure 2. Coordinated Community Engagement, Governance, and Development of 
NWB 

a. NWB is open source with all software and documents available online via GitHub and the nwb.org 
website. NWB provides a broad range of online community resources, e.g., Slack, GitHub, mailing 
list, Twitter, to facilitate interaction with the community and a broad set of online documentation 
and tutorials. NWB uses an open governance model that is transparent to the community. Broad 
engagements with industry partners (e.g., Vathes, Kitware, MathWorks, Vidrio, CatalystNeuro, 
etc.) and targeted science engagements with both neuroscience labs and tool developers, help 
sustain and grow the NWB ecosystem. Broad user training and engagement activities, e.g., via 
hackathons, virtual training, tutorials at conferences, or online training resources, aim at facilitating 
adoption and growing the NWB community knowledge base. 

b. Organizational structure of NWB showing the main bodies of the NWB team (blue boxes) and the 
community (gray boxes), their roles (light blue/gray boxes), and typical interactions (arrows). 

c. The timeline of the NWB project to date can be roughly divided into three main phases. The initial 
NWB pilot project (2014-2015) resulted in the creation of the first NWB 1.0 prototype data 
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standard. The NWB 2.0 effort then focused on facilitating use and long-term sustainability by 
redesigning and productizing the data standard and developing a sustainable software strategy 
and governance structure for NWB (2017-2019). The release of NWB 2.0 in Jan. 2019 marked 
the beginning of the third main phase of the project, focused on adoption and integration of NWB 
with neuroscience tools and labs, maintenance, and continued evolution and refinement of the 
data standard. 

d. Overview of the growth of core NWB 2.x software in lines of code over time.  
e. Number of participants at NWB outreach and training events over time. In the count we considered 

only the NWB hackathons and User Days (see c.), the 2019 and 2020 NWB tutorial at Cosyne, 
and 2019 training at the OpenSourceBrain workshop (i.e., not including attendees at presentations 
at conferences, e.g., SfN). 

 

Coordinated Community Engagement, Governance, and Development of NWB  
There is great diversity of neurophysiology data and heterogeneity of application uses of 

data standards, ranging from data acquisition, processing and analysis, data 

management and integration, to data sharing, archiving and publication. This leads to a 

large diversity of stakeholders with vested interests and diverse use cases. Broad 

engagement and outreach with the community are central to achieve acceptance and 

adoption of NWB and to ensure that NWB meets user needs. Thus, development of 

scientific data languages is as much a sociological challenge as it is a technological 

challenge. To address this challenge, NWB has adopted a modern open source software 

strategy (Fig. 2a) with community resources and governance, and diverse engagement 

activities.  

Execution of this strategy requires coordinating efforts across stakeholders, use 

cases, and standard technologies, prioritization of software developments, and resolution 

of potential conflicts. Such coordination necessitates a governance structure reflecting 

the values of the project (Fig. 2b). The NWB executive board consists of leading 

experimental and computational neuroscientists from the community, and serves as the 

steering committee for developing the long-term vision and strategy, and assess 

development plans and progress. The NWB Executive Board was established in 2007 as 

an independent body from the technical team and PIs of NWB grants. The NWB Core 

Technology Team leads and coordinates the development of the NWB data language 

and software infrastructure to ensure timely response to user issues and ensure quality, 

stability, and consistency of NWB technologies. The technology team reports regularly to 

and coordinates with the Executive Board. Targeted Neuroscience Application Teams 

consisting of expert users and core developers lead engagement with the diverse 
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neuroscience data areas in electrophysiology, optical physiology, and emerging 

applications. These application teams are responsible for developing extensions to the 

data standard, new features, and technology integration together with Community 

Working Groups. The working groups allow for an agile, community-driven development 

and evaluation of standard extensions and technologies, and allow users to directly 

engage with the evolution of NWB. The broader neuroscience community further 

contributes to NWB via issue tickets, contributions to NWB software and documentation, 

and by creating and publishing data in NWB. This governance structure emphasizes and 

seeks to balance stability of NWB technologies to ensure reliable production use, direct 

engagement with the community to ensure that NWB meets stakeholder needs, and agile 

response to issues and emerging technologies.  

These values are also reflected in the overall timeline of the NWB project (Fig. 2c). 

The NWB 1.0 prototype focused on evaluation of existing technologies and community 

needs and development of a draft data standard. NWB 2.0 built upon version 1.0, 

enhancing adoption and software maintainability and extensibility by adding a clear 

governance structure, a complete redesign of the software, and integrating with 

neurophysiology tools. The NWB 2.0 project focused on the redesign and productization 

of NWB, emphasizing the creation of a sustainable software architecture, reliable data 

standard, and software ready for use. By analogy to microscopes, NWB 1.0 is like the 

first candle powered light microscope, while NWB 2.0 is a modern 2-photon microscope. 

Indeed, NWB has been recognized for its technological significance by the R&D 100 

awards and NWB is the only neurophysiology data standard endorsed by both the 

International Neuroinformatics Coordinating Facility (INCF) and the US BRAIN Initiative. 

Following the first full release of NWB 2.0 in January 2019, the emphasis then moved to 

adoption and integration to grow a vibrant community and software ecosystem as well as 

maintenance and continued refinement of the data standard to ensure reliability and 

address community needs.  

Together, these technical and community engagement efforts have resulted in a 

vibrant and growing ecosystem of public NWB data (Tab. 1) and tools utilizing NWB. The 

core NWB software stack has grown substantially since the inception of NWB 2.0 and 

has continued to grow steadily since the release of NWB 2.0 in January 2019, illustrating 
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the need for continued development and maintenance of NWB (Fig. 2d). In 2020 more 

than 600 scientists participated in NWB developer and user workshops and we have seen 

steady growth in attendance at NWB events over time (Fig. 2e). NWB also provides 

extensive online training resources, including video and code tutorials, API and schema 

documentation, as well as guidelines and best practices (see Supplement Material 2,3 

and Methods). Community liaisons provide expert consultation for labs adopting NWB, 

CatalystNeuro can provide customized data conversion software for individual labs. As 

Table 1 shows, despite its young age relative to the neurophysiology community, NWB 

2.0 is being adopted by a growing number of diverse neuroscience laboratories and 

projects, creating a vibrant community where users can exchange and reuse data, with 

NWB as a common data standard18.  
 

Name, Affiliation Species Modality DANDI datasets 

Allen Institute mouse, human ecephys, icephys, ophys 

12, 20, 21, 22, 23, 24, 30, 36, 37, 

39, 42, 43, 48, 49, 50 

R. Axel, Columbia fly ophys  

Blue Brain Project mouse icephys 25 

J. Berke, UCSF rat ecephys  

K. Bouchard, LBNL/UC Berkeley rat, simulation ecephys, uECoG  

B. Brunton, U Washington human ECoG 55 

E. Buffalo, U Washington monkey ecephys  

T. Buschman, Princeton monkey ecephys  

G. Buzsaki, NYU rat, mouse ecephys 3, 41, 44, 56, 59 

M. Capogna, Aarhus mouse ecephys  

M. Carandini, UCL mouse ecephys 17 

E. Chang, UCSF human ECoG 19 

A. Churchland, CSHL mouse ecephys, ophys 16 

D. Feldman, UC Berkeley mouse ecephys  

L. Frank, UCSF mouse ecephys  

L. Giocomo, Stanford mouse ecephys, ophys 53, 54 

A. Groh, Heidelberg mouse ecephys, ophys  

K. Harris, UCL mouse ecephys 17 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.13.435173doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.13.435173


 

12 

M. Hennig, Edinburgh mouse ecephys 28, 34 

International Brain Lab mouse ecephys 45 

D. Jaeger, Emory mouse ophys, ecephys, icephys  

S. Kastner, Princeton monkey ecephys  

N. Li, Baylor mouse ecephys 7 

A. Losonczy, Columbia mouse ophys  

J. Martinez, Western mouse, monkey, human icephys  

D. O'Connor, Johns Hopkins mouse ecephys, ophys  

J. Parvizi, Stanford human ECoG  

U. Rutishauser, Cedars-Sinai human ecephys 4 

B. Sabatini, Harvard mouse icephys  

S. Schultz, Imperial mouse ecephys, ophys  

I. Soltesz, Stanford mouse, simulation ophys, icephys  

N. Steinmetz, U Washington mouse ecephys 17 

K. Svoboda, Janelia mouse ecephys, ophys 5, 6, 9, 10, 11, 13, 15 

N. Tandon, UT Houston human ECoG  

D. Tank, Princeton mouse ecephys  

A. Tolias, Baylor mouse icephys 8, 35 

S. Tripathy, UofToronto/CAMH human, mouse icephys  

T. Valiante, Toronto human icephys  

Table 1. Diverse Community of Data Producers Adopting NWB.  
ecephys: extracellular electrophysiology; icephys: intracellular electrophysiology; ophys: optical physiology. All DANDI 

datasets can be found at https://dandiarchive.org/dandiset/{id} 
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Figure 3: The NWB software architecture modularizes and integrates all 
components of a data language. 

a. Software stack for defining and extending the NWB data standard and creating and using NWB 
data files. The software stack covers all aspects of data standardization: i) data specification, ii) 
data modeling, iii) data storage, iv) data APIs, v) data translation, and vi) tools. Depending on their 
role, different stakeholders typically interact with different subsets of the software ecosystem. End 
users typically interact with the data APIs (green) and higher level tools (red, gray) while tool 
developers typically interact with the data APIs and data modeling layers (green, blue). Working 
groups and developers of extensions then typically interact with the data modeling and data 
standard specification components. Finally, core NWB developers typically interact with the entire 
developer stack, from foundational documents (lilac) to data APIs (green). 

b. Software architecture of the PyNWB Python API.  PyNWB provides interfaces for interacting with 
the specification language and schema, data builders, storage backends, and data interfaces. 
Additional software components (arrows) insulate and formalize the transitions between the various 
components. The object mapping describes: 1) the integration of data interfaces (which describe 
the data) with the specification (which describes the data model) to generate data builders (which 
describe the data for storage) and 2) vice versa, the integration of data builders with the 
specification to create data interfaces. The object mapping insulates the end-users from specifics 
of the standard specification, builders, and storage, hence, providing stable, easy-to-use interfaces 
for data use that are agnostic of the data storage and schema. The I/O interface then provides an 
abstract interface for translating data builders to storage which specific I/O backends must 
implement. Finally, the specification I/O then describes the translation of schema files to/from 
storage, insulating the specification interfaces from schema storage details.  

c. Software architecture of the MatNWB Matlab API. MatNWB generates front-end data interfaces for 
all NWB types directly from the NWB format schema. This allows MatNWB to easily support 
updates and extensions to the schema while enabling development of higher-level convenience 
functions.  

 
The NWB software architecture modularizes and integrates all components of a 
data language  
The diversity of neurophysiology experiments presents an outstanding challenge to 

developing a language to communicate the experimental metadata. Furthermore, such a 

language must be instantiated by software that is usable, sustainable, and extensible. To 

achieve these software requirements, NWB defines and modularizes the interdependent, 
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yet separable, components of a data language. Defining and modularizing separable 

components is critical from a technological perspective to provide the flexibility required 

to address varying components independently. Additionally, the modularization 

addresses sociological challenges by allowing working groups, developer teams, and 

stakeholders to focus discussions and avoid conflicts due to overlap of component 

functionality.   

The NWB data language is composed of five main components (Fig. 3a). First, 

data modeling seeks to describe scientific data standards and includes the NWB 

specification language for formal description of hierarchical data standards. NWB uses 

the Hierarchical Data Modeling Framework (HDMF)17 for creating hierarchical data 

standards and Application Programming Interfaces (APIs), and the Neurodata Extension 

Catalog and associated tools for managing extensions to the NWB data standard. Next, 

a data specification describes the organization of complex scientific data and includes the 

NWB standard schema, governing documents, and extensions. To organize complex 

neurophysiology data, the NWB schema builds on common data structures defined by 

the HDMF common schema. Next, the data storage component deals with translating 

NWB data models to/from storage on disk. Data storage is governed by formal 

specifications describing the translation of NWB data primitives to primitives of the 

particular storage backend format (e.g., HDF5) and is implemented as part of the NWB 

user APIs. The data use component concerns methods and interfaces to enable effective 

interactions with NWB data (e.g., for read, write, query, and validation) and are 

instantiated by the PyNWB and MatNWB reference APIs. Finally, data translation is 

provided by the NWB API’s (Fig. 3b,c) and include methods that insulate and integrate 

the various components by providing structured interfaces for translating between user 

data interfaces, storage, and specifications.  

The PyNWB and MatNWB APIs provide interfaces to NWB for the user 

implemented in the two most common data science programming languages in 

neuroscience (Python and Matlab respectively). These APIs (Fig. 3b,c) are governed by 

the NWB schema and use an object-oriented design in which neurodata types (e.g., 

ElectricalSeries, OpticalSeries) are represented by a dedicated interface class. Both APIs 

are interoperable (i.e., files generated by PyNWB can be read via MatNWB and vice 
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versa) and support advanced data Input/Output (I/O) features, such as lazy data read, 

compression, and iterative data write for data streaming. A key difference in the design 

of PyNWB and MatNWB is the implementation of the data translation process. PyNWB 

builds on HDMF17, which implements a dynamic data translation process based on data 

builders (Fig. 3b). The data builders define abstract descriptions of basic primitives of the 

NWB specification language (e.g., Groups, Datasets, Attributes, Links, etc.,). The object 

mapping then uses the format schema to translate user data defined in the data interfaces 

to data builders for storage and conversely to instantiate data interfaces based on data 

read from storage. PyNWB provides custom interfaces for all NWB neurodata types, and 

in cases where no custom data interface classes are available (e.g., in the case a user 

uses an extension), the API supports automatic, dynamic generation of interfaces classes 

at runtime. This dynamic data translation approach further insulates the data storage, 

data specification, and data interface components. This approach facilitates the 

integration of new technologies (e.g., alternate data storage backends based on Zarr or 

databases) with NWB. In contrast, MatNWB implements a static translation process that 

uses API generators to automatically generate Matlab classes (Fig. 3c). This approach 

simplifies updating of the API to support new versions of the NWB schema and 

extensions, and helps minimize cost for development. The difference in the data 

translation process between the APIs (i.e., static vs. dynamic) is a reflection of the 

different target uses (Fig. 3b,c). While MatNWB primarily targets data conversion and 

analysis, PyNWB also targets integration with data archives and web technologies and is 

used heavily for development of extensions and exploration of new technologies, such as 

alternate storage mechanisms and parallel computing libraries.  

Building on the core NWB software, a growing set of high-level tools are available 

as part of the extended NWB core, dedicated to providing additional functionality and to 

simplify interaction with NWB (Fig. 3a). The extended core includes NWB-specific tools, 

e.g., NWB Widgets for visualization and exploration of NWB files or the NWB DocUtils for 

documenting extensions. All NWB software is managed and versioned using Git and 

released using a permissive BSD license via GitHub. NWB uses automated continuous 

integration for testing on all major architectures (MacOS, Windows, and Linux) and all 

core software can be installed via common package managers (e.g., pip and conda). The 
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suite of NWB core software tools enable users to easily read and write NWB files, extend 

NWB to integrate new data types, and build the foundation for integration of NWB with 

community software. NWB data can also be easily accessed in other programming 

languages (e.g., IGOR or R) using the HDF5 APIs available across modern scientific 

programming languages.  

With its flexible design and open model, the NWB software stack instantiates the 

NWB data language and makes NWB accessible to users and developers. The NWB 

software model both illustrates the complexity of creating a data language and provides 

reusable components, e.g., HDMF, that can be applied more broadly to facilitate 

development of data languages for other biological fields in the future.  
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Figure 4. NWB enables unified description and storage of multimodal raw and processed 
data 

a. Example pipelines for extracellular electrophysiology and optical physiology demonstrate how 
NWB facilitates data processing. For extracellular electrophysiology (top), raw acquired data is 
written to the NWB file. The NWB ecosystem provides interfaces to a variety of spike sorters that 
extract unit spike times from the raw electrophysiology data. The spike sorting results are then 
stored into the same NWB file (bottom). Separate experimental data acquired from an optical 
technique is converted and written to the NWB file. Several modern software tools can then be 
used to process and segment this data, identifying regions that correspond to individual neurons, 
and outputting the fluorescence trace of each putative neuron. The fluorescence traces are written 
to the same NWB file. NWB handles the time alignment of multiple modalities, and can store 
multiple modalities simultaneously, as shown here. The NWB file also contains essential metadata 
about the experimental preparation. 

b. NWBWidgets provides visualizations for the data within NWB files with interactive views of the data 
across temporally aligned data types. Here, we show an example dashboard for simultaneously 
recorded electrophysiology and imaging data. This interactive dashboard shows on the left the 
acquired image and the outline of a segmented neuron (red) and on the right a juxtaposition of 
extracellular electrophysiology, extracted spike times, and simultaneous fluorescence for the 
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segmented region. The orange line on the ephys and dF/F plots indicate the frame that is shown 
to the left. The controls shown at the bottom allow a user to change the window of view and the 
frame of reference within that window. 

 

NWB enables unified description and storage of multimodal data and derived 
products.  
Neurophysiology experiments often contain multiple simultaneous streams of data. For 

instance, a single experiment might contain simultaneous neural recordings, sensory 

stimuli, behavioral tracking, and direct neural activation or inhibition. Furthermore, 

scientists are increasingly leveraging multiple neurophysiology recording modalities 

simultaneously (e.g., ephys and ophys), which offer complementary information not 

achievable in a single modality. Each of these distinct data input types require custom 

processing at multiple stages, further expanding the multiplicity of diverse data types that 

need to be represented. Current formats in neuroscience focus on a single modality, 

leaving it to the scientist to harmonize diverse data streams, which is laborious and error-

prone. 

A key capability of NWB is to describe and store many data sources in a unified 

format that is ready to analyze with all time bases aligned to a common clock. These data 

sources include neurophysiological recordings, behavior, and stimulation information. For 

each of these modalities, raw acquired signals and/or preprocessed data can be stored 

in the same file. Figure 4a illustrates a dataset where electrophysiology and optical 

physiology were recorded simultaneously, and stored in NWB19,20. The raw voltage traces 

(Fig. 4a, top) from the electrophysiology recordings and image sequences from the 

optical recordings (Fig. 4a, bottom) can both be stored in the same NWB file, or separate 

NWB files synchronized to each other. Electrophysiology data generally goes through a 

spike sorting process which processes the voltage traces into individual units and action 

potential times for those units (Fig. 4a, top). These unit spike times can then also be 

written to the NWB file. Similarly, optical physiology generally is processed using image 

segmentation to identify regions of the image that correspond to units and extract 

fluorescence traces for each unit (Fig. 4a, bottom). These fluorescence traces can also 

be stored in the NWB file, resulting in raw and processed data for multiple input streams. 

As illustrated in Figure 1d, NWB can also store raw and processed behavioral data as 

well as stimuli, such as animal location and amplitude/frequency of sounds. The multi-
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modal capability of NWB is critical for capturing the diverse types of data simultaneously 

acquired in standard neurophysiology experiments, particularly if those experiments 

involve multiple simultaneous neural recording modalities.  

Pre-synchronized streams enable faster and less error-prone development of 

visualizations, such as simultaneous views across multiple streams. Figure 4b shows an 

interactive dashboard for exploring a separate dataset of simultaneous recorded optical 

physiology and electrophysiology data published by the Allen Institute19. This dashboard 

illustrates the simultaneous exploration of five data elements all stored in a single NWB 

file. The microscopic image panel (Fig. 4b, far left) shows a frame of the video recorded 

by the microscope. The red outline overlaid on that image shows the region-of-interest 

where a cell has been identified by the experimenter. The fluorescence trace (dF/F) 

shows the activation of the region-of-interest over time. This activity is displayed in line 

with electrophysiology recordings of the same cell (ephys), and extracted spikes (below 

ephys). Interactive controls (Fig. 4b, bottom) allow a user to explore the complex and 

important relationship between these data sources. 
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Figure 5: NWB is integrated with state-of-the-art analysis tools throughout the data 
life-cycle NWB technologies are at the heart of the neurodata lifecycle and applications. Data standards 
are a critical conduit that facilitate the flow of data throughout the data lifecycle and integration of data and 
software across all phases (a. to g.) of the data lifecycle.  

a. NWB supports experimental planning through integration with data management, best practices, 
and by allowing users to clearly define what metadata to collect. 

b. c. NWB supports storage of unprocessed acquired electrical and optical physiology signals, 
facilitating integration already during data acquisition. NWB is already supported by several 
acquisition systems (a) as well as a growing set of tools for conversion (d) of existing data to NWB. 

d. Despite its young age, NWB is already supported by a large set of neurophysiology processing 
software and tools. Being able to access and evaluate multiple processing methods, e.g, different 
spike sorting algorithms and ROI segmentation methods, is important to enable high-quality data 
analysis. Through integration with multiple different tools, NWB provides access to broad range of 
spike sorters, including, MountainSort, KiloSort, WaveClust, and others, and ophys segmentation 
methods, e.g, CELLMax, CNMF, CNMF-E, and EXTRACT.  

e. For scientific analysis, numerous general tools for exploration and visualization of NWB files (e.g,. 
NWBWidgets and NWBExplorer) as well as application-specific tools for advanced analytics (e.g., 
Brainstorm) are accessible to the NWB community.  

f. g.      NWB is supported by a growing set of data archives for publication and preservation of research 
data. Data archives in conjunction with NWB APIs, validation tools, and the NDX Catalog also play 
a central role in facilitating data reuse and discovery. 

NWB integrates with (not competes with) existing and emerging technologies across the data lifecycle, 
creating a flourishing NWB software ecosystem that enables users to access state-of-the-art analysis tools, 
share and reuse data, improve efficiency and reduce cost, and accelerate and enable the scientific 
discovery process. 
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NWB is integrated with state-of-the-art analysis tools throughout the data life-cycle  
Scientific data should not be considered in isolation, but must be thought of in the context 

of the entire data life-cycle. The data life-cycle spans planning, acquisition, processing, 

and analysis to publication and reuse (Fig. 5). Through its rigorous schema, best software 

engineering practices and implementation, and user training, NWB provides a common 

language for neurophysiology data collected using existing and emerging 

neurophysiology technologies integrated into a vibrant neurophysiology data ecosystem. 

This is critical to truly make neurophysiology data Findable, Accessible, Interoperable, 

and Reusable (i.e., FAIR)21. 

NWB supports experimental planning by helping users to clearly define what 

metadata to collect and how the data will be formatted and managed (Fig. 5a). To support 

data acquisition, NWB allows for the storage of unprocessed acquired electrical and 

optical physiology signals. Storage of these signals requires either streaming the data 

directly to the NWB file from the acquisition system or converting data from other formats 

after acquisition (Fig. 5b,c). Some acquisition systems, such as the MIES22 intracellular 

electrophysiology acquisition platform, already support direct recording to NWB and the 

community is actively working to expand support for direct recording to NWB, e.g., via 

ScanImage23 and OpenEphys24. To support integration of legacy data and other 

acquisition systems, a variety of tools exist for converting neurophysiology data to NWB. 

For extracellular electrophysiology, the SpikeInterface package25 provides a uniform API 

for conversion and processing data that supports conversion for 19+ different proprietary 

acquisition formats to NWB. For intracellular electrophysiology, the Intrinsic Physiology 

Feature Extractor (IPFX) package26 supports conversion of data acquired with 

Patchmaster. Direct conversion of raw data to NWB at the beginning of the data lifecycle 

facilitates data re-processing and re-analysis with up-to-date methods and data re-use 

more broadly. 

The NWB community has been able to grow a flourishing ecosystem of software 

tools that offer convenient methods for processing data from NWB files (and other 

formats) and writing the results into an NWB file (Fig. 5d). NWB allows these tools to be 

easily accessed and compared, and used interoperably. Furthermore, storage of 

processed data in NWB files allows direct re-analysis of activation traces or spike times 
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via novel analysis methods without having to reproduce time-intensive pre-processing 

steps. For example, the SpikeInterface API supports export of spike sorting results to 

NWB across nine different spike sorters and customizable data curation functions for 

integration of results from multiple spike sorters with common metrics. For optical 

physiology, several popular state-of-the-art software packages, such as CaImAn27, 

suite2p28, and ciapkg29, help users build processing pipelines that segment optical images 

into regions of interest corresponding to putative neurons, and write these results to NWB. 

We also see a range of general and application-specific tools emerging for analysis 

of neurophysiology data in NWB (Fig. 5e). The NWBWidgets30 library enables interactive 

exploration of NWB files via interactive views of the NWB file hierarchy and dynamic plots 

of neural data, e.g., visualizations of spike trains and optical responses. NWB Explorer31 
developed by MetaCell in collaboration with OpenSourceBrain is a web app that allows a 

user to explore any publicly hosted NWB file and supports custom visualizations, analysis 

via Jupyter notebooks, as well as use of the NWBWidgets. These tools allow scientists to 

inspect their own data for quality control, and allow data reusers to quickly understand 

the contents of a published NWB file. In addition to these general-purpose tools, many 

application-specific tools, e.g., RAVE32, ecogVIS33, Brainstorm34, Neo35 and others are 

already supporting or are in the process of developing support for analysis of NWB files.  

Many journals and funding agencies are beginning to require that data be made 

FAIR. For publication and preservation (Fig. 5f) archives are an essential component of 

the NWB ecosystem, allowing data producers to document data associated with 

publications and share that data with others. NWB files can be stored in many popular 

archives, such as FigShare and Collaborative Research in Computational Neuroscience 

(CRCNS.org). In the context of the NIH BRAIN Initiative, the DANDI archive has been 

specifically designed to publish and validate NWB files and leverage their structure for 

searching across datasets. In addition, several other archives, e.g. DABI36 and 

OpenSourceBrain37, are also supporting publication of NWB data.  

Data archives also play a crucial role in discovery and reuse of data (Fig. 5g). In 

addition to providing core functionality for data storage and search, archives increasingly 

also provide compute capacity for reanalysis. For example, with DANDI Hub, the DANDI 

archive provides users a familiar Jupyter Hub interface that supports interactive 
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exploration and processing of NWB files stored in the archive. The NWB data APIs, 

validation, and inspection tools also play a critical role in data reuse to enable access and 

assure data validity. Finally, the Neurodata Extension Catalog described below facilitates 

accessibility and reuse of data files that use NWB extensions.   

Thus, NWB provides a common language to describe neurophysiology 

experiments, data, and derived data products (e.g., outputs of spike-sorting) that enables 

users to maintain and exchange data throughout the data lifecycle and access state-of-

the-art software tools. Together the tools in the NWB ecosystem make neurophysiology 

data much more FAIR. 

 

 
Figure 6: NWB enables creation and sharing of extensions to incorporate new use 
cases 

a. Schematic of the process of creating a new neurodata extension (NDX), sharing it, and integrating 
it with the core NWB data standard. Users first identify the need for a new data type, such as 
additional subject metadata or data from a new data modality. Users can then use the NDX 
Template, NWB Specification API, PyNWB/MatNWB data APIs, and NWB DocUtils tools to set up 
a new NDX, define the extension schema, define and test custom API classes for interacting with 
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extension data, and generate Sphinx-based documentation in common formats, e.g., HTML, PDF. 
After the NDX is completed, users can publish the NDX on PyPI and conda-forge for distribution 
via the pip and conda tools, and share extensions via the NDX Catalog, a central, searchable 
catalog. Users can easily read/write extension data using PyNWB/MatNWB and publish extension 
data in DANDI and other archives. Finally, extensions are used to facilitate enhancement, 
maintenance, and governance of the NWB data standard. Users may propose the integration of an 
extension published in the NDX Catalog with the core standard. The proposal undergoes three 
phases of review: an initial review by the NWB technology team, an evaluation by a dedicated 
working group, and an open, public review by the broader community. Once approved, the proposal 
is integrated with NWB and included in an upcoming version release.  

b. Sampling of extensions currently registered in the NDX catalog. Users can search extensions 
based on keywords and textual descriptions of extensions. The catalog manages basic metadata 
about extensions, enabling users to discover and access extensions, comment and make 
suggestions, contribute to the source code, and collaborate on a proposal for integration into the 
core standard. While some extensions have broad applicability, others represent data and 
metadata for a specific lab or experiment. 

c. Example extension for storing simulation output data using the SONATA framework. The new 
Compartments type extends the base DynamicTable type and contains metadata about each cell 
and compartment within each cell, such as position and label. The CompartmentSeries type 
extends the base TimeSeries type and contains a link to the Compartments type to associate each 
row of its data array with a compartment from the Compartments table. 

 

NWB enables creation and sharing of extensions to incorporate new use cases  
As with all of biology, neurophysiological discovery is driven in large part by individual 

scientists conducting novel experiments with new tools to answer previously 

unconsidered questions. Furthermore, neurophysiology experiments are already highly 

diverse (e.g., Fig. 1a-b) and can require the storage of new data types and additional 

metadata. For example, an individual lab may need to store metadata about the subject’s 

environment or training history, data from lab-specific calibration tests, or metadata 

specific to particular devices. Thus, a language for neurophysiology data must be able to 

co-evolve with the experiments being performed and provide customization options to the 

degree possible.  

NWB enables the creation and sharing of user-defined extensions to the standard 

that support new and specialized data types (Fig. 6a1). Neurodata extensions (NDX) are 

defined using the same formal specification language used by the core NWB schema. 

Importantly, extensions can build off of data types defined in the core schema or other 

extensions through inheritance and composition. This enables the reuse of definitions 

and associated code, facilitates the integration with existing tools, and makes it easier to 

contextualize new data types.  

NWB provides a comprehensive set of tools and services for developing and using 

neurodata extensions. NWB tools, such as the NWB Specification API, NWB DocUtils, 
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and the PyNWB and MatNWB user APIs work with extensions with little adjustment (Fig. 
6a2). In addition, the NDX Template makes it easy for users to develop new extensions, 

and the Neurodata Extensions Catalog (Fig. 6a3) provides a centralized listing of 

extensions for users to publish, share, find, and discuss extensions across the 

community. Several extensions have been registered in the Neurodata Extensions 

Catalog (Fig. 6b), including extensions to support the storage of the cortical surface mesh 

of an electrocorticography experiment subject, storage of fluorescence resonance energy 

transfer (FRET) microscopy data, and metadata from an intracellular electrophysiology 

data acquisition system. The catalog also includes the ndx-simulation-output extension 

for the storage of the outputs of large-scale simulations. Large-scale network models that 

are described using the new SONATA format38 can be converted to NWB using this 

extension.  

As particular extensions gain traction within the community, they may be integrated 

into the core NWB format for broader use and standardization (Fig. 6a4). NWB has a 

formal, community-driven review process for refining the core format so that NWB can 

adapt to evolving data needs in neuroscience. The owners of the extension can submit a 

community proposal for the extension to the NWB Technical Advisory Board, which then 

evaluates the extension against a set of metrics and best practices published on the 

catalog website. The extension is then tested and reviewed by both a dedicated working 

group of potential stakeholders and the general public before it is approved and integrated 

into the core NWB format. Key advantages of the extension approach are that it allows 

iterative development of extensions and complete implementation and vetting of new data 

types under several use cases before they become part of the core NWB format. The 

NWB extension mechanism thus enables NWB to provide a unified data language for all 

data related to an experiment, allows sharing of data from novel experiments, and 

supports the process of evolving the core NWB standard to fit the needs of the 

neuroscientific community.  
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Figure 7. NWB is foundational for the DANDI data repository to enable collaborative 
data sharing.  
The DANDI project makes data and software for cellular neurophysiology FAIR. DANDI stores electrical 
and optical cellular neurophysiology recordings and associated MRI and/or optical imaging data. NWB is 
foundational for the DANDI data repository to enable collaborative data sharing.  

a. DANDI provides a Web application allowing scientists to share, collaborate, and process data from 
cellular neurophysiology experiments. The dashboard provides a summary of Dandisets, and 
allows users to view details of each dataset. 

b. DANDI works with US BRAIN Initiative awardees and the neurophysiology community to curate 
data using community data standards such as NWB, BIDS, and NIDM. DANDI is supported by the 
US BRAIN Initiative and the Amazon Web Services (AWS) Public Dataset Program. 

c. DANDI provides a Jupyterhub interface to visualize the data and interact with the archive directly 
through a browser, without the need to download any data locally.  

d. Using Python clients and/or a Web browser researcher can submit and retrieve standardized data 
and metadata from the archive. The data and metadata use standard formats such as JSON, 
JSON-LD, NWB, NIfTI, and TIFF.  

 

 

NWB is foundational for the DANDI data repository to enable collaborative data 
sharing 
With the expansion of neurophysiology hardware, extended recording options, and 

increasing complexity of experiments, neuroscientists are generating data at 

unprecedented scale. Making such data accessible supports published findings and 

allows secondary reuse. To date, many neurophysiology datasets have been deposited 

into a diverse set of repositories (e.g., CRCNS, Figshare, Open Science Framework, Gin). 
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However, no single data archive provides to the neuroscientific community the capacity 

and the domain specificity to store and access large neurophysiology datasets. Most 

current repositories have specific limits on data sizes, are often generic, and therefore 

lack the ability to search using domain specific metadata.  Further, for most 

neuroscientists, these archives often serve as endpoints associated with publishing, while 

research is typically an ongoing and collaborative process. Few data archives today 

support a collaborative research model that allows data submission prospectively, and 

opening the conversation to a broader community. For the US BRAIN Initiative, this is 

also a mandate. Together, these issues impede access and reuse of data, ultimately 

decreasing the return on investment into data collection by both the experimentalist and 

the funding agencies. 

To address these and other challenges associated with neurophysiology data 

storage and access, we developed DANDI, a Web-based data archive that also serves 

as a collaboration space for neurophysiology projects (Fig. 7). The DANDI data archive 

(https://dandiarchive.org) is a cloud-based repository for cellular neurophysiology data 

and uses NWB as its core data language (Fig. 7b). Users can organize collections of 

NWB files (e.g., recorded from multiple sessions) into DANDI datasets (so called 

Dandisets). Users can view the public Dandisets using a Web browser (Fig. 7a) and 

search for data from different projects, people, species and modalities. They can interact 

with the data in the archive using a Jupyterhub Web interface (Fig. 7c). Using the DANDI 

Python client, users can organize data locally into the structure required by DANDI as 

well as download data from and upload data to the archive (Fig. 7d). Software developers 

can access information about Dandisets and all the files it contains using the DANDI 

Representational State Transfer (REST) API (https://api.dandiarchive.org/). The REST 

API also allows developers to create software tools and database systems that interact 

with the archive. Each Dandiset is structured by grouping files belonging to different 

biosamples, with some relevant metadata stored in the name of each file, and thus 

aligning itself with the BIDS standard39. Metadata in DANDI is stored using the JSON-LD 

format, thus allowing graph-based queries and exposing DANDI to Google Dataset 

Search. Dandiset creators can use DANDI as a living repository and continue to add data 

and analyses to an existing Dandiset. Released versions of Dandisets are immutable and 
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receive a digital object identifier (DOI). The data are presently stored on an Amazon Web 

Services Public dataset program bucket, enabling open access to the data over the Web, 

and backed up on institutional repositories. DANDI is working with hardware platforms 

(e.g., OpenEphys), database software (e.g., DataJoint) and various data producers to 

generate and distribute NWB datasets to the scientific community. The current data 

statistics can be found at https://dandiarchive.org. 

DANDI provides neuroscientists and software developers with a Platform as a 

Service (PAAS) infrastructure based on the NWB data language and supports interaction 

via the web browser or through programmatic clients, software, and other services. In 

addition to serving as a data archive and providing persistence to data, it supports 

continued evolution of Dandisets. This allows scientists to use the archive to collect data 

towards common projects across sites, and engage collaborators actively, directly at the 

onset of data collection rather than at the end. DANDI also provides a computational 

interface to the archive to accelerate analytics on data, and links these Dandisets to 

eventual publications when generated. The code repositories for the entire infrastructure 

are available on Github40 under an Apache 2.0 license. 

 

Discussion 

To investigate the myriad functions of the brain across species necessitates a massive 

diversity and complexity of neurophysiology experiments. This diversity presents an 

outstanding barrier in meaningful sharing and collaborative analysis of the collected data, 

and ultimately prevents the data from being FAIR. To overcome this barrier, we developed 

a data ecosystem based on the Neurodata Without Borders (NWB) data language and 

software. NWB is being utilized by more than 35 labs to enable unified storage and 

description of intracellular, extracellular, LFP, ECoG, and Ca2+ data in fly, mice, rats, 

monkeys, humans, and simulations. To support the entire data lifecycle, NWB natively 

operates with processing, analysis, visualization, and data management tools, as 

exemplified by the ability to store both raw and pre-processed simultaneous 

electrophysiology and optophysiology data. Formal extension mechanisms enable NWB 

to co-evolve with the needs of the community. Finally, NWB enables DANDI to provide a 

data archive that also serves as a collaboration space for neurophysiology projects. 
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NWB as the lingua franca of neurophysiology data 
The diversity of experiments, data types, and the rate of methodological innovation are 

key impediments to adoption of data standards in scientific research practice. Addressing 

this challenge requires a paradigm shift in how we conceptualize the solution. Scientists 

need more than a rigid data format, but instead require a flexible data language. Such a 

language should enable scientists to communicate via data. Natural languages evolve 

with the concepts of the societies that use them, while still providing a basis that enables 

communication of common concepts. Similarly, a scientific data language should evolve 

with the scientific research community, and at the same time provide a standardized core 

that expresses common and established methods and data types. NWB is such a data 

language for neurophysiology experiments.  

The NWB specification language provides, much like an alphabet and core 

grammatical rules in natural language, the basic tools and rules that allow us to create 

words and phrases. The format schema, much like a dictionary and grammatical rules for 

sentence and document structure, provides us with the words and phrases 

(neurodata_types) of our data language and rules for how to compose them to form data 

documents (NWB files). And much like we store natural language in many different 

mediums (e.g., via printed books, electronic records, or handwritten notes), flexible data 

storage methods allow us to manage and share data in different forms depending on the 

application. User APIs (here HDMF, PyNWB, and MatNWB) provide us, much like text 

editors for natural language, with tools to create, read, and modify data documents and 

interact with core aspects of the language. NWB Extensions provide a mechanism to 

create, publish, and eventually integrate new modules into NWB to ensure it co-evolves 

with the tools and needs of the neurophysiology community. Finally, much like a 

bookstore or wikipedia, DANDI provides a cloud-based platform for archiving, sharing, 

and collaborative analysis of NWB data. Together, these interacting components provide 

a comprehensive data ecosystem for the neuroscience community that enables 

reproduction, interchange, and reuse of diverse neurophysiology data.  

 

NWB is community driven, professionally developed, and democratizes 
neurophysiology 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.13.435173doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.13.435173


 

30 

Today, there is an enormous diversity in data formats and non-interoperable tools used 

by the neuroscience community. Often, these formats and tools are specific to the lab 

and even the researcher. This level of specificity is a major impediment to sharing data 

and reproducing results, even within the same lab. More broadly, this fragmentation of 

the data space reinforces siloed research, and makes it difficult for datasets or software 

to be impactful on a community level. Our goal is for the NWB data language to be 

foundational in deepening collaborations between the community of neuroscientists. The 

current NWB software is the result of an intense, community lead, years-long 

collaboration between experimental and computational neuroscientists with data 

scientists and computer scientists.  NWB is governed by a similarly diverse group to 

ensure both the integrity of the software and that NWB continues to meet the needs of 

the neuroscience community. 

As with all sophisticated scientific instruments, there is some training required to 

get a lab's data into NWB. Several training and outreach activities provide diverse 

opportunities for the neuroscience community to utilize NWB. Tutorials, hackathons and 

user training events allow us to bring together neuroscientists who are passionate about 

open data and data management. These users bring their own data to convert or their 

own tools to integrate, which in turn makes the NWB community more diverse and 

representative of the overall neuroscience community. Our digital presence has allowed 

us to grow our community internationally and at an exponential rate. Updates on Twitter 

and our website (www.nwb.org), tutorials on Youtube, and free virtual hackathons, all are 

universally accessible and have helped us achieve a global reach, interacting with 

scientists from countries that are too often left out. Together, these outreach activities 

combined with NWB and DANDI democratizes both neurophysiology data and analysis 

tools, as well as the extracted insights. 

 

The Future of NWB 
To address the next frontier in grand challenges associated with understanding the brain, 

the neuroscience community must integrate information from diverse experiments 

spanning several orders of magnitude in spatial and temporal scales13,14,41.  Currently, 

different domains of neuroscience (e.g., genomic/transcriptomic, anatomy, 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.13.435173doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.13.435173


 

31 

neurophysiology, etc.,) are supported by standards that are not coordinated. Building 

bridges across neuroscience domains will necessitate interaction between the standards, 

and will require substantial future efforts. This will bring these communities, and the tools 

they develop, closer together. There are nascent activities for compatibility between NWB 

and the Brain Imaging Data Structure (BIDS), e.g., as part of the BIDS human intracranial 

neurophysiology ECoG/iEEG extension42, but further efforts in this area are needed.  

As adoption of NWB continues to grow, new needs and opportunities for further 

harmonization of metadata arise. For example, the NWB working group on ICEphys 

seeks to expand NWBs existing data structures to enable the description of the 

hierarchical organization of ICEphys experiments and associated metadata43. A key 

ongoing focus area is on development and integration of ontologies with NWB to enhance 

specificity, accuracy, and interpretability of data fields, e.g., the NWB working groups on 

genotype and spatial coordinate representation or the INCF Electrophysiology 

Stimulation Ontology working group44. Another key area is on extending NWB to new 

areas, such as, the ongoing working groups on integration of behavioral task descriptions 

with NWB (e.g., based on BEADL45) and enhanced integration of simulations with NWB.  

Because of the diversity of neurophysiology experiments, it is notoriously 

challenging to make the resulting data FAIR. Together, the NWB data language and the 

NWB-based DANDI data archive, create a data science ecosystem for neurophysiology. 

This is a fantastic start to enhance the FAIRness of neurophysiology data. Underlying the 

cohesion of this ecosystem is a common language for the description of data and 

experiments: NWB. However, like all languages, NWB must continue to adapt to 

accommodate advances in neuroscience technologies and the evolving community using 

that language. We strongly advocate for funding support of all aspects of the data-

software life-cycle (development, maintenance, integration, and distribution) to ensure the 

neuroscience community fully reaps the benefits of investment into neurophysiology tools 

and data acquisition.  

 

Core design principles and technologies for biological data languages 
The problems addressed by NWB technologies are not unique to neurophysiology data. 

Indeed, as was recently discussed in46, lack of standards in genomics data is threatening 
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the promise of that data. Many of the tools and concepts of the NWB data language can 

be applied to enhance standardization and exchange of data in biology more broadly. For 

example, the specification language, HDMF, the concept of extensions and the extension 

catalog are general, broadly applicable technologies. The impact of the methods and 

concepts we have described here, hence, has the potential to extend well beyond the 

boundaries of neurophysiology. Indeed, funded projects are underway using HDMF to 

create a data standard for machine learning training results, HDMF-ML. 

We developed design and implementation principles to create a robust, extensible, 

maintainable, and usable data ecosystem that embraces and enables the diversity of 

neurophysiology data. Across biology, experimental diversity and data heterogeneity are 

the rule, not the exception2. Indeed, as biology faces the daunting frontier of 

understanding life from atoms to organisms, the complexity of experiments and 

multimodality of data will only increase. Therefore, the principles developed and deployed 

by NWB may provide a blueprint for creating data ecosystems across other fields of 

biology. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.13.435173doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.13.435173


 

33 

Methods 
NWB GitHub Organizations 
 All NWB software is available open source via the following three GitHub organizations. 

The Neurodata Without Borders47 GitHub organization is used to manage all software resources 

related to core NWB software developed by the NWB developer community, e.g., the PyNWB 

and MatNWB reference APIs. The HDMF development48 Github organization is used to publish 

all software related to the Hierarchical Data Modeling Framework (HDMF), including, HDMF, 

HDMF DocUtils, HDMF Common Schema and others. Finally, the NWB Extensions49 GitHub 

organization is used to manage all software related to the NDX Catalog, including all extension 

registrations. Note, the catalog itself only stores metadata about NDXs, the source code of NDXs 

are often managed by the creators in dedicated repositories in their own organizations.  

 

HDMF Software 
HDMF software is available on GitHub using an open BSD licence model. 

Hierarchical Data Modeling Framework (HDMF) is a Python package for working with 

hierarchical data. It provides APIs for specifying data models, reading and writing data to different 

storage backends, and representing data with Python objects. HDMF builds the foundation for 

the implementation of PyNWB and specification language. [Source]50 [Documentation]51 

[Web]52 

HDMF Documentation Utilities (hdmf-docutils) are a collection of utility tools for 

creating documentation for data standard schema defined using HDMF. The utilities support 

generation of reStructuredText (RST) documents directly from standard schema which can be 

compiled to a large variety of common document formats (e.g., HTML, PDF, epub, man and 

others) using Sphinx. [Source]53 

HDMF Common Schema defines a collection of common reusable data structures that 

build the foundation for modeling of advanced data formats, e.g., NWB. APIs for the HDMF 

common data types are implemented as part of the hdmf.common module in the HDMF library. 

[Source]54 [Documentation]55 
HDMF Schema Language provides an easy-to-use language for defining hierarchical 

data standards. APIs for creating and interacting with HDMF schema are implemented in HDMF. 

[Documentation]56 
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NWB Software 
NWB software is available on GitHub using an open BSD licence model. 
 PyNWB is the Python reference API for NWB and provides a high-level interface for 

efficiently working with Neurodata stored in the NWB format. PyNWB is used by users to create 

and interact with NWB and neuroscience tools to integrate with NWB. [Source]57 

[Documentation]58 
MatNWB is the MATLAB ® reference API for NWB and provides an interface for efficiently 

working with Neurodata stored in the NWB format. MatNWB is used by both users and developers 

to create and interact with NWB and neuroscience tools to integrate with NWB. [Source]59 

[Documentation]60 
NWBWidgets is an extensible library of widgets for visualizing NWB data in a Jupyter 

notebook (or lab). The widgets support navigation of the NWB file hierarchy and visualization of 

specific NWB data elements.  [Source]61 
NWB Schema defines the complete NWB data standard specification. The schema is a 

collection of YAML files in the NWB specification language describing all neurodata_types 

supported by NWB and their organization in an NWB file. [Source]62 [Documentation]63 
NWB Schema Language is a specialized variant of the HDMF schema language. The 

language includes minor modifications (e.g., use of the term neurodata_type instead of 

data_type) to make the language more intuitive for neuroscience users, but is otherwise 

identical to the HDMF schema language. Dedicated interfaces for creating and interacting with 

NWB schema are available in PyNWB. [Documentation]64 
NWB Storage defines the mapping of NWB specification language primitives to HDF5 for 

storage of NWB files. [Documentation]65 

Neurodata Extensions Catalog (NDX Catalog) is a community-led catalog of Neurodata 

Extensions (NDX) to the NWB data standard. All extensions mentioned in the text can be 

accessed directly via the catalog. [Source]49 [Online]66 

NWB Extensions Template (ndx-template) provides an easy-to-use template based on 

the Cookiecutter library for creating Neurodate Extensions (NDX) for the NWB data standard. 

[Source]67 

NWB Staged Extensions is a repository for submitting new extensions to the NDX 

catalog [Source]68 
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DANDI 
The DANDI archive was created by developing and integrating several opensource projects and 

BRAIN Initiative data standards (NWB, BIDS, NIDM). The Web browser application is built using 

the VueJS framework and the DANDI command line interface is built using Python and PyNWB. 

The initial backend of the archive was built on top of the Girder data management system, and is 

transitioning to a Django-based framework. The DANDI analysis hub is built using Jupyterhub 

deployed over a Kubernetes cluster. The different components of the archive are hosted on 

Amazon Web Services and the Heroku platform. The code repositories for the entire infrastructure 

are available on Github40 under an Apache 2.0 license. 
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Supplemental Material 1. Intracellular Electrophysiology Example using 
NWB and DANDI 

The following shows a simple example, demonstrating the use of NWB for storage of 
intracellular electrophysiology data. The file used in this example is from DANDISET 20 (available 
at https://dandiarchive.org/dandiset/000020) from the Allen Institute for Brain Science as part of 
the multimodal characterization of cell types in the mouse visual cortex (see https://portal.brain-
map.org/explore/classes/multimodal-characterization/multimodal-characterization-mouse-visual-
cortex).  

The following simple code example illustrates: 1) downloading of the file from DANDI, 2) 
reading the file with PyNWB, 3) visualization of the stimulus and response recording for a single 
sweep, and 4) visualization of the NWB file in NWB Widgets. 

 
# import required libraries 
import urllib 
import os 
import numpy as np 
from matplotlib import pyplot as plt 
import pynwb 
from nwbwidgets import nwb2widget 
from nwbwidgets.timeseries import show_indexed_timeseries_mpl 
 
# Download the file from DANDI 
url = 'https://girder.dandiarchive.org/api/v1/item/5f00fd6ba78c4b52bbb38e81/download' 
filename = 'sub-1001658946_ses-1003020741_icephys.nwb' 
res = urllib.request.urlretrieve(url, filename) 
 
# Read the file with PyNWB 
reader = pynwb.NWBHDF5IO(filename, mode='r', load_namespaces=True) 
nwbfile = reader.read() 
 
# Create a simple example visualization of the response and stimulus timeseries for a single sweep 
# get the timeseries associated with a particular sweep number 
sweep_number = 3 
series = nwbfile.sweep_table.get_series(sweep_number) 
# create a matplotlib figure for plotting 
plt.rcParams['font.size'] = '16' 
fig, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(12,8)) 
# plot the response and stimulus timeseries for the given sweep 
show_indexed_timeseries_mpl(series[0], title=series[0].neurodata_type + " : " + series[0].name,  
                                                  xlabel=None, ax=ax1) 
show_indexed_timeseries_mpl(series[1], title=series[1].neurodata_type + " : " + series[1].name,  ax=ax2) 
plt.show() 
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# Display the file with NWBWidgets 
nwb2widget(nwbfile) 
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Supplementary Material 2. NWB Online and Social Media Resources 
NWB online and social media resources provide additional resources for users and the 

broader community to engage with and learn about NWB. The nwb.org website69 serves as the 
central entry-point for users to NWB and provides high-level information about NWB and links to 
all relevant online resources and tools discussed in the Methods. Additional online resources 
include [Slack]70, [Twitter]71, [YouTube]72, and the [NWB Mailing List]73. 

 
 
 
 
 
Supplementary Material 3. NWB Training Resources 

NWB provides a broad range of training resources for users and developers. Users who 
want to learn more about how to use NWB can view the NWB online video training course as part 
of the [INCF Training Space]74. Detailed code tutorials are further available as part of the 
[PyNWB Documentation]58 and [MatNWB Documentation]60. 

For Neurodata Extensions (NDX), detailed documentation of versioning guidelines, 
sharing guidelines and strategies, and the proposal review process are available online as part of 
the NDX Catalog66. Step-by-step instructions for creating new NDX are provided as part of the 
[NWB Extensions Template]67.  

Additional resources for developers and data managers include the API documentation 
for [HDMF]51, [PyNWB]58, and [MatNWB]60 and documentation of the format schema as part of 
the [NWB Schema]63, [HDMF Common Schema]55, [NWB Storage]65, and [Specification 
Language]64. 
 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2021. ; https://doi.org/10.1101/2021.03.13.435173doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.13.435173

