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Resting-state functional connectivity is typically modeled as the correlation structure of whole-
brain regional activity. It is studied widely, both to gain insight into the brain’s intrinsic organization
but also to develop markers sensitive to changes in an individual’s cognitive, clinical, and develop-
mental state. Despite this, the origins and drivers of functional connectivity, especially at the level
of densely sampled individuals, remain elusive. Here, we leverage novel methodology to decompose
functional connectivity into its precise framewise contributions. Using two dense sampling datasets,
we investigate the origins of individualized functional connectivity, focusing specifically on the role
of brain network “events” – short-lived and peaked patterns of high-amplitude cofluctuations. Here,
we develop a statistical test to identify events in empirical recordings. We show that the patterns of
cofluctuation expressed during events are repeated across multiple scans of the same individual and
represent idiosyncratic variants of template patterns that are expressed at the group level. Lastly,
we propose a simple model of functional connectivity based on event cofluctuations, demonstrating
that group-averaged cofluctuations are suboptimal for explaining participant-specific connectivity.
Our work complements recent studies implicating brief instants of high-amplitude cofluctuations as
the primary drivers of static, whole-brain functional connectivity. Our work also extends those stud-
ies, demonstrating that cofluctuations during events are individualized, positing a dynamic basis for
functional connectivity.

INTRODUCTION

Functional connectivity (FC) measures the temporal
correlation of regional BOLD activity, often in the ab-
sence of explicit task instructions, i.e. in the “resting
state” [1, 2]. Although usually estimated over an ex-
tended period of time and using all available data, a
growing number of studies have shown that FC can be
well approximated using relatively few observations, sug-
gesting that FC may be driven by a temporally sparse
process [3–7].

In parallel, a growing body of work has demonstrated
that, like fingerprints, FC is unique to each individual
and expresses features that reliably distinguish one brain
from another [8–12]. These observations hold tremen-
dous translational promise, and open up the possibility
of designing personalized interventions [13] and develop-
ing increasingly potent connectivity-based biomarkers for
cognition, development, and disease [14–16].

However, there remains a key open question: how does
FC become individualized in the first place? One possi-
bility is that, like FC itself, personalized information is
encoded through time-varying connectivity patterns and
distributed dynamically and sparsely throughout a scan
session. Indeed, recent findings broadly support this hy-
pothesis [17, 18]. In [19], for instance, we demonstrated
that using a small subset of frames classified as “events”
– brief and infrequent periods of high-amplitude cofluc-
tuation – we could produce accurate reconstructions of
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FC while simultaneously rendering participants identifi-
able, amplifying their connectional fingerprints. In con-
trast, low-amplitude frames yielded poorer estimates of
FC and contained little personalized information.

Although these observations support the hypothesis
that personalized information is expressed selectively
during high-amplitude frames, they also raise additional
theoretical questions. For instance, do cofluctuation pat-
terns during events repeat from one scan to another? If
so, do they reflect a single repeating pattern or a reper-
toire of different patterns? Are these patterns shared
across individuals but expressed in different proportions,
thereby giving rise to individualized FC? Or does the
individualization of FC arise from equally idiosyncratic
patterns of high-amplitude cofluctuations? Addressing
these questions is critical for linking patterns of brain
connectivity with individual differences in behavior [20],
and would help clarify the role of brain dynamics in shap-
ing the individualization of FC [21], complementing other
approaches that have focused on the collective influence
of cortical expansion rates, post-natal experience, and
genetics [22].

Here, we address these questions directly. Our ap-
proach leverages a recently-proposed method for decom-
posing FC into its framewise contributions, detecting
events, and assessing the impact of events on time-
averaged FC [19, 23–26]. We apply this framework to
two independently acquired datasets: the Midnight Scan
Club [11, 12] and the MyConnectome project [10, 27]. In
agreement with our previous studies, we show that FC
is accurately reconstructed from event data alone. Next,
we focus on the properties of individual events, revealing
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that they repeat within and between scans of the same
individual. We also show that event cofluctuations can be
clustered across participants, revealing broad archetypes
that are subtly yet systematically modified at the level of
individuals. Finally, we construct a simple model of FC,
demonstrating that FC can be predicted with a high level
of accuracy using individualized event data, exclusively.

RESULTS

Edge time series as a mathematical precise link
between brain dynamics and FC

In this paper, we analyze data from eight participants
in the Midnight Scan Club, each scanned ten times (par-
ticipants MSC08 and MSC09 were dropped due to data
quality issues). We analyzed two versions of these data;
one in which participants’ brains were parcellated into
N = 333 group-level parcels [28] and another in which
parcels were defined on an individual basis, resulting in a
different set parcels for each participant (N = 612± 28)
[29]. The primary analyses were carried out using the
group-level parcels. We also analyzed data from the My-
Connectome project, a study in which a single individual
was scanned > 100 times [10, 27].

For each dataset, we transformed regional fMRI BOLD
time series into cofluctuation or edge time series (ETS).
Briefly, ETS are calculated as the element-wise prod-
uct between pairs of z-scored regional (nodal) time se-
ries (Fig. 1a; see Materials and Methods for details).
This operation results in a new time series – one for ev-
ery node pair (edge) – whose elements index the direction
and magnitude of instantaneous cofluctuations between
the corresponding pair of brain regions. For instance, if
the activity of region i and j deflect above (or below)
their time-averaged means at the same instant, the value
of the edge time series will be positive. On the other
hand, if they deflect in opposite directions, then the edge
time series returns a negative value. If one deflects and
the other does not, then the value will be close to zero.
The temporal mean of an edge time series is equal to
the Pearson sample correlation coefficient, and therefore
ETS is an exact decomposition of FC into its framewise
contributions.

If we calculate edge time series for all pairs of regions,
we obtain an edge×time matrix (Fig. 1b) whose temporal
average yields a vector (Fig. 1c) that, when reshaped into
the upper triangle elements of a node×node matrix, is
exactly the FC matrix (Fig. 1d). The edge×time matrix
can also be “sliced” temporally and the corresponding
vector once again reshaped into the upper triangle ele-
ments of a node×node matrix, yielding an instantaneous
estimate of whole-brain cofluctuations. These matrices
vary in terms of their mean cofluctuations, which we sum-
marize with a root sum of squares measure (Fig. 1e).

In our previous study, we showed that RSS values
followed a heavy-tailed distribution, such that a small

number of frames exhibited exceptionally high-amplitude
RSS [19]. We also demonstrated that FC reconstructed
using only these high-amplitude frames accurately reca-
pitulated time-averaged FC, suggesting that FC weights
are not driven equally by all frames, but by a select set of
frames. We also demonstrated that these high-amplitude
frames were underpinned by a principal mode of brain
activity, emphasizing oppositional activation of default
mode and control networks with sensorimotor and atten-
tional networks. In this paper, however, high-amplitude
frames were selected heuristically as the top P% by RSS
value and, beyond the first mode of activity, we did
not investigate other activity patterns that occur during
events.

A statistical test for high-amplitude cofluctuation
events

In previous work, we identified putative cofluctuation
events as the top P% frames in terms of root sum squared
(RSS) amplitude of cofluctuation weights. Although this
heuristic is pragmatic – it is easy to implement and in-
terpret – it has some unwanted characteristics. Notably,
the parameter P% lacks statistical justification and, due
to slow temporal fluctuations and serial correlations in
the fMRI BOLD signal, can result in event samples that
disproportionately represent only a small number of RSS
peaks. Here, we present a simple statistical test to iden-
tify events that addresses both of these issues.

In essence, we identify high-amplitude frames by com-
paring the RSS time series estimated using real data
with an ensemble of RSS time series generated under a
null model. Here, as a null model we apply the circular
shift operator independently, randomly, and bidirection-
ally to each region’s time series, which exactly preserves
its mean and variance (and its autocorrelation approxi-
mately). We then transform the shifted data into edge
time series and estimate their RSS. This step is repeated
100 times yielding 100 sets of surrogate RSS time series,
against which we compare the observed RSS data and
identify sequences of frames whose RSS exceeds the null
distribution (non-parametric permutation test at each
frame; accepted false discovery rate fixed at q = 0.05;
Figure. 2a). This entire procedure is repeated for every
participant and every scan.

This procedure allows us to segment the time series
into three categories: contiguous frames whose RSS is
greater than expected, less than expected, or consistent
with that of the null distribution. Rather than con-
sider all frames, we select representative frames from each
block for subsequent analysis. For segments whose RSS
is greater than that of the null distribution or not signif-
icant, we extract peak cofluctuation pattern correspond-
ing to the maximum RSS frame; for segments whose RSS
is less than that of the null, we extract the pattern cor-
responding to the minimum RSS frame (trough).

To demonstrate that these categories of frames cap-
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FIG. 1. Edge time series. (a) An edge time series is constructed for pairs of brain regions, i and j, by computing the
elementwise product of their z-scored activities, zi and zj , respectively. The result is a new time series, zij , which indexes the
framewise cofluctuations between i and j. (b) This procedure can be repeated for all pairs of regions, generating a matrix of
edge time series. At each instant in time, a “slice” through this matrix yields a region-by-region cofluctuation matrix that
can be modeled as a network. (c) At every moment in time we can calculate the root sum of squares (RSS) over all edge
time series. The RSS time series is bursty, such that it takes on low values most of the time, but is punctuated by short,
intermittent, high-amplitude bursts. (d) The temporal average over all edge time series yields a vector that corresponds to the
upper triangle elements of a correlation matrix, i.e. functional connectivity (e). In this way, edge time series offer a means
of tracking moment-to-moment fluctuations in network topology and links them to functional connectivity through an exact
decomposition. In f we show examples of cofluctuations during a trough and peak (when RSS is small versus large).

ture distinct features of cofluctuations, we compare
them along several different dimensions (ANOVA; for
all comparisons p < 10−15). First, we show that, as
expected, high-amplitude frames express greater RSS
values than low-amplitude and non-significant frames
(Fig. 2b). On the other hand, scans contain fewer high-
amplitude frames (Fig. 2c), form fewer contiguous seg-
ments (Fig. 2d), and exhibit shorter segment length
(Fig. 2e) than low-amplitude frames. Consistent with
our previous study, reconstructing FC using only high-
amplitude frames results in a pattern of FC strongly
correlated with the FC estimated using all frames, and
greater in magnitude than that of the non-significant and
low-amplitude frames (Fig. 2f). Lastly, we find that high-
amplitude frames are almost never among those censored
for excessive in-scanner motion (Fig. 2g); low-amplitude
frames, on the other hand, were more likely to be associ-
ated with censored frames. This observation is consistent
with our previous study, in which we reported a weak but
consistent negative correlation between RSS and frame-
wise displacement. These findings, in general, replicate
using individualized parcels for participants in the Mid-
night Scan Club (Fig. S1) and with MyConnectome data
(Fig. S2).

Taken together, these results suggest that the pro-
posed statistical test segments frames into classes with
distinct features. This test addresses two concerns asso-
ciated with previous estimates of high-amplitude “event”
frames. First, it defines high-amplitude frames according
to a statistical criterion, rather than heuristically. Sec-

ond, by extracting representative frames from each con-
tiguous segment, we obtain a more heterogeneous sam-
ple of high-amplitude frames and avoid selecting multiple
frames from around a single peak.

Peak cofluctuation patterns are repeated across scan
sessions – troughs are not

In the previous section we presented a simple
method for estimating statistically significant cofluctu-
ation events and demonstrated that the peak and trough
frames of these segments exhibit distinct spatiotemporal
properties. Here, we investigate representative cofluctu-
ation patterns extracted from blocks of high- and low-
amplitude frames. We first compare the similarity of
these cofluctuation patterns, first within-individuals and
later between. Then, we present evidence that cofluc-
tuation patterns expressed during the peaks of high-
amplitude events recur across scans of the same individ-
ual and that these patterns exhibit subject-specificity.

First, we applied the statistical test to MSC scans
(excluding MSC08 and MSC09 due to data quality is-
sues). We found that each scan included 65.9 ± 9.2 and
72.2 ± 17.1 high- and low-amplitude segments, respec-
tively (paired sample t-test; p = 0.0017; t(79) = 3.24).
After additional quality control in which we excluded
segments that included any motion-censored frames, the
number of segments whose RSS was significantly greater
than the null changed little (61.26± 14.7). However, the
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number of segments with lower-than-expected RSS was
reduced dramatically (52.5±23.9), reflecting the fact that
those frames often coincide with periods of excessive in-
scanner motion.

Next, we calculated the spatial similarity of motion-
free cofluctuation patterns extracted during RSS peaks
and troughs. We performed this analysis separately
for each subject, resulting in eight similarity (corre-
lation) matrices. We grouped these values based on
whether similarity was measured between two peaks, two
troughs, or a peak and trough co-fluctuation pattern.
We found peak-peak similarity was significantly greater
than trough-trough and peak-trough (t-test; p < 10−15)
(Fig. 3a,b). We see an identical effect in the MyCon-
nectome data (Fig. S3a-c) and when parcels are indi-
vidualized (Fig. S3d). These observations suggest that
high-amplitude events encode subject-specific patterns of
cofluctuations.

Based on these observations, along with the fact that
high-amplitude events are less likely to be impacted
by motion, we calculated the spatial similarity of peak
cofluctuation patterns for all pairs of detected events,
for all scans, and for all subjects (Fig. 3c). We then
compared these similarity values based on whether they
came from the same or different participants (Fig. 3d).
We found that within-individual similarity exceeded
between-individual similarity (non-parametric permuta-
tion test, p < 10−15; Fig. 3e,f).

Collectively, these results are in line with our previous
study and suggest that low-amplitude cofluctuations con-
tains little participant-specific information [19]. Rather,
our findings support the hypothesis that high-amplitude
cofluctuations contribute significantly more information
about an individual than low-amplitude cofluctuations.

High-amplitude events can be divided into distinct
communities based on their cofluctuation patterns

In the previous section we found that co-fluctuation
patterns expressed during peaks of high-amplitude event
segments are not related to motion and that they are
repeatable across scans. This is in contrast to co-
fluctuation patterns expressed during low-amplitude seg-
ments, which tend to coincide with excessive in-scanner
motion and are dissimilar across scans and individuals,
even within the same scan session. These observations
motivated us to focus on high-amplitude events in yet
greater detail. In this section, we test whether the cofluc-
tuation patterns expressed during high-amplitude events
are entirely subject-specific and not shared across indi-
viduals or whether they belong to a general archetype
that is fine-tuned to single participants.

To test whether this is the case, we aggregated across
participants all cofluctuation patterns that occurred dur-
ing event peaks, calculated the similarity matrix of those
patterns, and clustered this matrix using a variant of
multi-resolution consensus clustering (modularity maxi-

mization with a uniform null model [30, 31]; see Materi-
als and Methods for details). The results of this anal-
ysis yielded two large communities (clusters) along with
many very small communities. We found that every par-
ticipant was represented in the two large communities (la-
beled 1 and 2 in Fig. 4a) and that instances of those com-
munities appeared in every scan session, accounting for
54.1% and 19.0% of all event peaks, respectively. Every
participant was also represented in the two next-largest
communities, although they appeared infrequently across
scan sessions and collectively accounted for only 8.6% of
all event peaks. Accordingly, we aggregated the smaller
communities to form a third larger community (labeled
3 in Fig. 4a). Most subsequent analyses will focus on
communities 1 and 2 unless otherwise noted. For com-
pleteness, we analyze community 3 in greater detail in the
Supplementary Material (see Fig. S4 and Fig. S5).

To better understand why certain cofluctuation pat-
terns were grouped together, we examined group-
representative centroids for each community by calculat-
ing the mean cofluctuation pattern of all frames assigned
to that community (Fig. 4b,c). We found that commu-
nity 1 reflected a topology that expressed strong and
anticorrelated cofluctuations mostly between cingulo-
opercular and default mode networks (Fig. 4b). Com-
munity 2, on the other hand, expressed strong anticorre-
lations between the default mode with dorsal attention
and fronto-parietal networks (Fig. 4b). See Fig. S6 for
topographic depiction of systems on cortical surface.

To better understand how brain activity drives the
cofluctuation patterns described above, we extracted ac-
tivation profiles (regional BOLD activity, rather than
cofluctuations) during event peaks, grouped them by
community, and performed principal components anal-
ysis. The first principal component for each commu-
nity represents the mode of fMRI BOLD activity that
tended to occur during frames assigned to that commu-
nity. We found the first principal components of commu-
nities 1 and 2 (accounting for 24% and 26% of variance,
respectively) to be uncorrelated (r = −0.025; p = 0.65;
Fig. 4d). The first principal component for community
1 (Fig. 4e) exhibited significant activation of the default
mode and inactivation of cingulo-opercular, visual, and
somatomotor networks (spin test; false discovery rate
fixed at 5%; padj = 5.3× 10−4; Fig. 4f). The first princi-
pal component for community 2 (Fig. 4h) exhibited sig-
nificant activation of dorsal attention and fronto-parietal
networks and inactivation of default mode, ventral atten-
tion, and visual networks (spin test; false discovery rate
fixed at 5%; padj = 0.02; Fig. 4f). We show individual-
level principal components in the Supplementary Ma-
terial (Fig. S7) and derive similar modes of activity using
an alternative procedure (Fig. S8). Note that the PCA
analysis results in modes of activity; in all cases, the sign
of PCs can be flipped and result in the same pattern of
co-activity.

In the Supplementary Material we perform a simi-
lar analysis of Midnight Scan Club data parcels fit to each
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FIG. 2. A statistical test for network-wide events. (a) We generated edge time series and computed the RSS time series.
We compared this time series to a null RSS time series estimated from edge time series that had been generated after circularly
shifting the original fMRI BOLD time series. At each point in time, we calculated the probability that the observed RSS
value exceeded the null distribution, controlled for multiple comparisons, and identified sequences of frames that exceeded the
null distribution. This allowed us to categorize time points into three classes: those whose RSS was greater than null (GT),
those whose RSS was significantly less than the null (LT), and those that were in between (n.s.). For subsequent analysis, we
extracted a single representative cofluctuation pattern for every contiguous sequence of frames that was greater/less than the
null distribution. This pattern corresponded to the frame with the maximum/minimum RSS. In panels b-g, we separate the
frames of each scan into these three classes and compare their features to one another. Each point represents the mean value
over all frames assigned to a given class. The features that are compared are: b mean RSS, c, the number of frames assigned
to a given class, d the number of contiguous sequences of each class, e the mean duration of sequences (log10 transformed), f
the similarity of time-average FC with FC reconstructed using only frames assigned to each class, and g the fraction of frames
censored for high levels of in-scanner motion.

participant individually. We show that, when we examine
activity during RSS peaks defined from the group level
parcellations, the activation patterns using individual-
ized parcels closely match those reported here (Fig. S9).
Even when we perform event detection separately using
the individualized parcels, we find similar modes of ac-
tivity (mean similarity of r = 0.89; p < 10−11; Fig. S10).
Note that because the number of parcels differ across in-
dividuals, this comparison was carried out at a system
level.

Again, we use MyConnectome data as a replication
dataset, finding analogous communities (Fig. S11). We
also take advantage of the fact that MyConnectome data
includes many more samples from an individual than the
Midnight Scan Club (84 scans versus 10), to identify sev-
eral communities not evident in the group analysis of the
Might Scan Club data. We also find evidence of interdig-
itated communities with similar system-level profiles but
drawing on different regions from within those systems
(Fig. S12).

These observations build on our previous study, which
focused on a single pattern of cofluctuation during high-
amplitude frames. Here, we use data-driven methods to
show that high-amplitude cofluctuation is not monolithic
and can be divided into meaningful sub-patterns, each

driven by a distinct mode of brain activity.

Event communities are individualized

In the previous section, we showed that cofluctuation
patterns expressed at the peaks of high-amplitude events
could be grouped into meaningful communities. Within
each community, are these patterns individualized or are
they shared across participants? If they are individual-
ized, which node pairs contribute the most?

To address this question, we analyzed communities 1
and 2 separately and in greater detail. Although collec-
tively each community is cohesive (similarity is greater
among cofluctuation patterns assigned to the same com-
munity than to other communities; see Fig. S13), we
also found evidence that the similarity between cofluctu-
ation patterns are stronger still when they come from the
same participant (t-test comparing within- and between-
individual similarity; p < 10−15; Fig. 5a-d). Further,
we identified the pairs of brain regions whose cofluctua-
tions were most variable across individuals by computing
the standard deviation of edge weights across participant
centroids (Fig. 5e-f). For the cofluctuation pattern ex-
pressed by community 1, we found that the most variable
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FIG. 3. Intra-/Inter-individual similarity of cofluctuation patterns. (a) For each individual separately, we aggregated
all low-motion cofluctuation patterns during peaks and troughs. We then computed the similarity between cofluctuation
patterns (data from participant MSC06 is shown here as an example). (b) Boxplot showing similarity values broken down by
trough versus trough, peak versus trough, and peak versus peak. Because only cofluctuation at peaks exhibited similarity across
scans, we focused on these patterns only, discarding cofluctuation that occurs during troughs and focusing on comparisons of
participants to one another (c). We found that cofluctuation at peaks tended to be more similar within participants than
between. We show the raw similarity matrix in d and the averaged values in e. (f ) Boxplot of similarity values broken down
according to whether they fell within or between participants.

edges linked the cingulo-opercular network to the dorsal
attention, fronto-parietal, and ventral attention networks
(Fig. 5e). In the case of community 2, the most variable
edges were linked to default mode, dorsal attention, and
fronto-parietal.

These observations suggest that high-amplitude cofluc-
tuation patterns reflect a topology that is broadly shared
across individuals but is systematically and individually
altered.

Functional connectivity is modeled accurately only
when using individual-specific co-fluctuation

patterns

Here and in [19], we argued that network dynamics
are bursty such that short-lived, high-amplitude, cofluc-
tuation “events” contribute significantly to static, time-
averaged FC. Here, we test this hypothesis directly by
modeling participant- and scan-specific FC as a function
of the cofluctuation patterns generated in the previous
section.

Motivated by previous studies showing that FC is
driven by high-amplitude frames [3, 4, 6, 7, 19], our
model assumes that FC is driven exclusively by high-
amplitude events and that frames with low RSS make
no contribution (Fig. 6a). Our model generates predic-
tions of participant- and scan-specific FC. It works by
calculating, for that scan, the fraction of time points as-
signed to communities 1, 2, and 3, and uses those values
to weight the centroids of each community (Fig. 6b). In
also counts the fraction of time during the scan spent in
a low-amplitude frame, using that value to weight a ma-

trix of zeros (corresponding to the hypothesis that low-
amplitude frames make a negligible contribution).

Although the fraction of time spent in a given com-
munity is fixed, the centroids can be defined in several
different ways. To predict the FC of any given participant
and scan, we can estimate centroids: (a) using group all
available data from all participants and scans combined,
(b) using group data from all participants and scans ex-
cluding the scan we are trying to predict, (c) using all
available data from the participant whose FC we are try-
ing to predict, (d) using all available data from that par-
ticipant but excluding data from the scan we are trying
to predict, and (e) using data from a different partici-
pant. In all cases end, the model generates a [N × N ]
matrix of predicted connection weights.

In general, we found heterogeneity across models in
terms of their performance (ANOV A; p < 10−15;
Fig. 6c). The model in which FC is predicted using
data from different participants performed the worse (r =
0.52 ± 0.05), followed by the two models in which cen-
troids were estimated using group data (r = 0.69 ± 0.05
and r = 0.70 ± 0.05). However, the two participant-
specific models outperformed all others by a wide margin
(r = 0.86±0.05 and r = 0.83±0.06; paired sample t-test
of mean average performance on both participant-specific
models versus average performance on other three mod-
els; p < 10−15). In the Supplementary Material we
perform a sensitivity analysis to identify which of the
three communities drive these effects. For all models, we
find that model performance suffers the most by remov-
ing community 1, which alone accounts for 54.1% of all
events (Fig. S14).

These results suggest that the cofluctuation patterns
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FIG. 4. Clustering peak cofluctuation. (a) We clustered the cofluctuation similarity matrix using a multi-scale consensus
clustering algorithm, resulting in two large communities (1 and 2) and a third set of much smaller communities, grouped
together here to form community 3. Here, black lines divide communities from one another and, internally, participants from
one another. The mean cofluctuation pattern for communities 1 and 2 are shown in b and c. To understand activity that
underpins each community, we pooled together corresponding activity time series separately for communities 1 and 2 and
performed principal component analysis on each set, returning the primary mode of activity (PC1). (d) Scatterplot of PC1 for
community 1 and community 2. Colors denote brain systems. (e) Topographic depiction of PC1 for community 1. (f ) PC1
grouped according to brain system. Asterisks indicate p < padj (FDR fixed at q = 0.05). Panels g and h show corresponding
plots for community 2.

expressed at the peaks of high-amplitude events can, on
their own, explain a significant fraction of participant-
specific variance in time-averaged FC. More importantly,
our results reaffirm that cofluctuation patterns during
event peaks are participant specific; even when predict-
ing a held-out scan, when centroids are estimated using
participant-specific data, we find marked improvement in
model performance.

DISCUSSION

Here, we extended our recent analyses of edge time
series and putative high-amplitude cofluctuation events
[19, 26]. We proposed a simple null model that allowed
us to identify frames whose amplitude was significantly
greater or less than chance. We then analyzed the cofluc-
tuation patterns expressed during these frames, discover-
ing that across scans of the same individual, the cofluc-
tuation patterns expressed during frames with lower-
than-expected amplitude were dissimilar. In contrast,
we found that the cofluctuation during high-amplitude
frames was repeatable within an individual and dissim-

ilar between individuals. We then clustered patterns
of cofluctuation expressed during high-amplitude frames,
identifying a small number of cofluctuation patterns that
were shared across individuals. These patterns, however,
were altered subtly yet systematically, so that they could
be used to reliably distinguish participants from one an-
other. Finally, we tested the hypothesis that FC could
be predicted exclusively from the co-fluctuation patterns
expressed during events, and constructed a model that
generated estimates of FC given a set of cofluctuation
community centroids and the frequency that those cen-
troids are expressed by that individual. We found that
the model performed well only when the centroids were
estimated using data from the participants whose FC we
were aiming to predict.

High-amplitude cofluctuations can be partitioned
into different communities based on their topology

Intrinsic or resting-state functional connectivity re-
flects the coupling of spontaneous activity between dis-
tant brain regions [1, 32]. It is often used to construct a
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FIG. 5. Personalization of cofluctuation patterns. We separately extracted cofluctuation patterns for communities 1 and
2 and computed the pairwise similarity. Similarity matrices are shown in panels a and c. In both cases, we found that within-
individual similarity was statistically greater than between-individual similarity. Boxplots of similarity scores are depicted in
panels b and d. Asterisks indicate p < padj based on permutation test (FDR fixed at q = 0.05). For each community, we
calculated mean cofluctuation patterns for each participant and, across participants, computed the standard deviation of each
node-pairs cofluctuation magnitude. The patterns of variability for communities 1, 2, and 3 are depicted in panels e, f, and g,
respectively.

graphical representation of the brain to be analyzed us-
ing tools from network science [33, 34]. Although inter-
individual differences in FC have been linked to an in-
dividual’s clinical [16], cognitive [35], and developmental
state [15], the dynamic origins of individualized FC re-
main unknown.

Recently, we presented a method for decomposing FC
into its framewise (instantaneous) contributions [19, 23].
Our work, in agreement with other recent studies [3, 4,
6, 7], demonstrated that all frames do not contribute
equally to FC – rather only a small number of high-
amplitude frames – “events” – when averaged together,
are necessary for explaining a high proportion of variance
in FC. In that study, however, we only examined the
mean pattern of high-amplitude cofluctuations and did
not investigate individual events nor did we characterize
variation in the co-fluctuation patterns across events.

Here, we address these issues using two dense pheno-
typing datasets. Leveraging a statistical test for identi-
fying high-amplitude frames, we show that “events” are
not monolithic and comprise distinct patterns of cofluc-
tuations. Using a data-driven clustering method, we find
evidence of two patterns of cofluctuation that are con-
served across all participants and scans. These patterns
emphasize opposed activation of default mode regions

with cingulo-opercular and sensorimotor systems (com-
munity 1) and with dorsal attention and fronto-parietal
systems (community 2). We also find evidence of smaller
communities corresponding to less frequent events involv-
ing only a fraction of participants. In the main text we
grouped these patterns into a single community, but find
that the two largest (accounting for 8.6% of event peaks)
involve cofluctuations of sensorimotor systems, which we
explore in the Supplementary Material.

The two largest communities have interesting proper-
ties. For instance, the default mode is cohesive (densely
interconnected, internally) in both, but is selectively de-
coupled from distinct sets of brain systems associated
with processing sensorimotor information [36] and co-
ordinating flexible, goal-directed behavior [37]. In nei-
ther community does the default mode couple strongly
to other systems. Rather, in these high-amplitude states
it maintains relative autonomy, in agreement with studies
that have examined its “hubness” using the participation
coefficient [38] – a graph-theoretic measure that describes
the extent to which a node’s connections are distributed
across or concentrated within communities [39].

Another interesting feature of these communities is
their possible relationship to network states obtained by
clustering sliding-window estimates of time-varying FC
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FIG. 6. Modeling participant- and scan-specific FC with cofluctuation patterns. (a) We hypothesized that FC is
driven by brief high-amplitude patterns of cofluctuation. A scan session can be abstracted, then, as periods of time where
cofluctuation is close to zero punctuated by periods of time where cofluctuation corresponds to one of the cofluctuation
communities. (b) We modeled FC as a linear combination of cofluctuation patterns corresponding to communities 1, 2,
and 3 as well as a blank state where cofluctuation was treated as zeros (low-amplitude frames). We varied the cofluctuation
patterns so that they came either from the participant whose FC we were modeling and were estimated using all data or data
excluding the current scan. We tested a variant of the model where the cofluctuation patterns were estimated at the group
level and therefore contained information from all participants. Again, we tested versions of this model where cofluctuation
patterns were estimated using all available data or all available data excluding the current scan. Lastly, we tested a version of
the model where data from a different participant was used to predict FC. (c) Performance of the five models. Overall, models
that included participant-specific information outperformed other models.

[40] or co-activation patterns (CAPs) [41]. We note,
however, that these relationships may be superficial, as
there are several key methodological differences. Here,
we analyze edge time series, a parameter-free method
for estimating instantaneous cofluctuations between re-
gional activity (localized to individual frames) and whose
sum is precisely time-averaged FC. In contrast, sliding-
window estimates of time-varying FC require users to
specify a window duration and overlap fraction (the num-
ber of frames shared by successive estimates of FC) and,
due to the sliding window, lead to temporally blurred
connectivity estimates that cannot be precisely localized
in time [42, 43]. In fact, we speculate that brief high-
amplitude events may be present in sliding-window esti-
mates of time-varying FC, but because they evolve over
timescales much shorter than that of the typical win-
dow duration, are effectively obscured due to blurring.
CAPs, on the other hand, identifies whole-brain cofluc-
tuation patterns in frames when a seed voxel’s activity
exceeds some threshold, parameters selected by the user.
Critically, because edge time series are a decomposition
of FC, events can be viewed as the “atoms” or “building
blocks” of FC.

Collectively, our findings suggest that cofluctuation
patterns expressed during putative network-wide events
are variable but can be described in terms of two princi-
pal patterns. These findings extend our previous study
[19] and open up opportunities for future studies to in-
vestigate inter-individual differences in these patterns as
well as the smaller and less frequent patterns.

High-amplitude cofluctuation patterns are
individualized and drive time-averaged FC

One of the questions we aimed to address was whether
the individualization of FC occurred because: a) high-
amplitude cofluctuation patterns are shared across indi-
viduals but expressed in different subject-specific propor-
tions or b) cofluctuation patterns expressed during high-
amplitude events are inherently subject-specific. The an-
swer to this question is important, as it speaks to the
origins of individual differences in FC [22, 44], has impli-
cations for brain-behavior studies [14], and also informs
our understanding of time-varying FC [45].

Here, we addressed these questions by aggregating and
clustering high-amplitude cofluctuation patterns from
across all participants. This analysis returned two large
communities in which every participant and scan were
represented, indicating that, to some extent, patterns of
high-amplitude cofluctuations are indeed shared across
individuals. However, when we examined these commu-
nities in greater detail, we found that within communities
there existed more cohesive sub-communities correspond-
ing to individual participants.

To better adjudicate between hypotheses, we con-
structed a simple model to predict an individual’s scan-
specific pattern of FC. Motivated by previous studies
[3, 4, 6, 7], this model assumed that FC is driven ex-
clusively by high-amplitude cofluctuations and that all
other time points made negligible contributions to FC.
We then replaced FC during high-amplitude frames with
the centroid of the community to which those frames were

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.12.435168doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435168
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

assigned. We found that, when centroids were generated
using data pooled from across all participants we could
explain only ≈50% of the variance in functional connec-
tion weights. However, when we estimated centroids us-
ing data from the same participant whose FC we were
predicting, the model exhibited a significant increase in
performance, accounting for ≈75% of variance in connec-
tion weights.

These observations suggest that incorrectly ascribing
group-level features to an individual participant dis-
torts our prediction of their FC, favoring the hypothesis
that high-amplitude cofluctuation patterns are individ-
ualized. This endorsement of hypothesis b comes with
some caveats, however. Although FC is the product
of individualized cofluctuation patterns, those patterns
appear to be variants of archetypal patterns, i.e. the
two large communities discussed in the previous section.
These observations align with other studies showing that
the individualization of FC is generally a subtle modula-
tion of features that are evident in group-level data, from
brain systems [46–48] to regional FC fingerprints [8].

Our results have implications for studies of brain-
behavior correlations as well as state-based analyses of
time-varying FC. We show that inter-individual differ-
ences in FC are largely shaped by differences in high-
amplitude cofluctuation patterns. However, our sensitiv-
ity analysis (Fig. S14) demonstrated that of the three
communities we considered, one contributed dispropor-
tionately to the individualization of FC relative to the
other two. This suggests that, rather than linking inter-
individual differences in FC across individuals, it may be
more profitable to directly investigate specific community
centroids, e.g. those that drive individual variation, po-
tentially leading to improvements in brain-behavior cor-
relations.

Our results also have implications for studies of net-
work states in time-varying FC [40, 43]. In general, these
studies cluster time points together based on the similar-
ity of networks to one another. To facilitate ease of com-
parison across individuals, this step is usually performed
using concatenated data from many participants or con-
ditions. Different metrics can be calculated from these
partitions, e.g. cumulative time a participant spends in
any cluster, transition matrices, etc., and linked to be-
havioral and clinical phenotypes. Our results suggest
that, although methodologically convenient, clustering
time points together and treating them as recurrences
of the same “network state” likely obscures meaningful
participant-level variation.

Future directions

The results presented here raise important questions
that should be investigated in future research. First, be-
cause events contribute disproportionately to the organi-
zation of time-averaged FC and because they appear to
be drivers of individualization, they should be the target

of future studies. We investigated events in two dense
sampling studies and in a total of nine brains. Although
these data allowed us to investigate the extent to which
cofluctuation patterns during events are shared versus in-
dividualized, the small number of participants precludes
the possibility of investigating behavioral, cognitive, or
disease correlates of events [49]. Future studies should in-
vestigate communities of high-amplitude events in larger
datasets.

Relatedly, our study examined event structure ex-
clusively during task-free resting-state conditions. We
demonstrated that time-averaged FC could be well-
approximated using only high-amplitude frames and in-
dividualized estimates of cofluctuations during those
frames. What happens to events when participants are
asked to perform tasks in the scanner? Previous studies
have demonstrated that tasks systematically modulates
patterns of FC [35]. Do these changes reflect different
patterns of cofluctuations during events? Are they the
same patterns as rest but in different proportions? And
directly related to the aims of this study, are task events
similarly personalized or can they be used to strengthen
brain-behavior associations [50]?

Here, we focused on the contributions of high-
amplitude “events” to patterns of time-averaged FC. The
simple model we proposed even goes so far as to con-
sider contributions from all other frames as negligible.
Is this really the case? What biases might we reinforce
by focusing on high-amplitude frames? High-amplitude
cofluctuations make proportionally bigger contributions
to time-averaged FC than low-amplitude cofluctuations.
This statement is non-controversial; edge time series are
a mathematically precise “temporal unwrapping” of the
Pearson correlation into its framewise contributions, the
average of which is simply FC [19, 23–26]. For this
reason, it makes sense to focus on frames where many
edges simultaneously make big contributions – those
same frames necessarily will, on average, make bigger
contributions to FC than, say, frames where only a few
edges exhibit high-amplitude edge time series. How-
ever, this does not rule out the possibility that frames
outside of high-RSS events, which are more numerous,
make contributions that outweigh or match those of high-
amplitude frames. Additionally, in focusing on global
high-amplitude events, we may miss out on events involv-
ing small brain systems, which will fail to meet statistical
criteria for significance due to their size.

Finally, a key overarching and open question concerns
the origins of high-amplitude cofluctuations. In our pre-
vious study, we demonstrated that movie-watching leads
to synchronization of events across participants [19], sug-
gesting that their timing can be modulated selectively,
in that case by sensory input. But what about rest?
In that previous study, we found no differences in event
amplitude between rest and movie-watching, suggesting
that spontaneous events are just as large as those driven
by sensory input. A couple recent studies help us spec-
ulate on the origins of events. One possibility is that
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events help preserve brain circuit function in the absence
of use. In [51], the authors demonstrated that disuse of
motor circuits by casting participants’ arms leads to in-
creases in high-amplitude pulses and that manually cen-
soring these pulses reduces FC magnitude [52]. Another
possibility is that burst activation of distinct systems, in-
cluding default mode networks, co-occurs with the recall
or previously-observed stimuli [53]. In both cases, these
activation patterns are likely constrained by the under-
lying anatomical connectivity and reflect groups of mu-
tually connected brain regions [54]. A final possibility is
that events are truly stochastic and are mere bi-products
of modular correlated time series, where the activation
of one element within a module implies the activation
of the others. In any case, future experimental studies
– possibly invasive studies that allow for more targeted
and temporally resolved recording – should be directed
to investigate their origins.

Limitations

The conclusions of this study are limited in several
ways. Notably, we analyze fMRI data, which affords
whole-brain coverage but at a spatial resolution of mil-
limeters and a temporal resolution of, at best tenths of
a second. Moreover, fMRI BOLD samples a slow sig-
nal slowly, and is only indirectly related to population
activity. However, many studies have demonstrated a
correspondence between BOLD fluctuations and FC es-
timated from fMRI with other modalities, including local
field potentials [55], intracranial EEG [56], and optically
recorded calcium imaging signals [57], positing a neu-
ral basis for functional connectivity estimated from the
fMRI BOLD signal. Future studies could apply methods
similar to those used here to other imaging modalities.

A second limitation concerns data quality, in-scanner
motion, and other artifacts, which are known to impact
estimates of FC and can produce burst-like behavior in
fMRI time series [58, 59]. Here, we adopted a conser-
vative approach and discarded putative events that oc-
curred near censored frames. Notably, this procedure
impacted low-amplitude frames to a greater extent than
high-amplitude frames, suggesting that high-amplitude
frames, in addition to contributing disproportionately to
FC, are also less likely to be contaminated by artifacts.
Nonetheless, how to adequately address motion-related
issues in the analysis of FC remains an ongoing and dis-
puted topic [60–62].

A final limitation concerns the use of PCA to ex-
tract “modes” of activity underlying communities. While
we find that each community’s first component explains
≈25% variance, we do not investigate the remaining com-
ponents, which likely include other meaningful modes of
activity. Future studies should further investigate the
link between brain activity and connectivity. Because
edge time series is a mathematically exact decomposition
of FC into its time-varying contributions, it represents a

useful framework for doing so.

Conclusion

In conclusion, we find that FC can be explained us-
ing a small number of high-amplitude frames. These
frames can be clustered into a small number of commu-
nities corresponding to archetypal patterns of cofluctua-
tion, broadly shared across individuals. However, these
patterns undergo refinement at the level of individual
participants, yielding reliable and individualized cofluc-
tuation patterns. Finally, we show that participants’ FC
is more accurately predicted using participant-specific es-
timates of their high-amplitude cofluctuation patterns
compared to group-level estimates. Our study discloses
high-amplitude, network-wide cofluctuations as dynami-
cal drivers of individualized FC and introduces method-
ology for exploring their role in cognition, development,
and disease in future studies.

MATERIALS AND METHODS

Datasets

Midnight Scan Club

The description of the Midnight Scan Club dataset ac-
quisition, pre-processing, and network modeling is de-
scribed in detail in [11]. Here, we provide a high-level
overview. Data were collected from ten healthy, right-
handed, young adult participants (5 females; age: 24-34).
Participants were recruited from the Washington Univer-
sity community. Informed consent was obtained from all
participants. The study was approved by the Washing-
ton University School of Medicine Human Studies Com-
mittee and Institutional Review Board. This dataset
was previously reported in [11, 12] and is publicly avail-
able at https://openneuro.org/datasets/ds000224/
versions/00002. Imaging for each participant was per-
formed on a Siemens TRIO 3T MRI scanner over the
course of 12 sessions conducted on separate days, each
beginning at midnight. In total, four T1-weighted im-
ages, four T2-weighted images, and 5 hours of resting-
state BOLD fMRI were collected from each participant.
For further details regarding data acquisition parameters,
see [11].

High-resolution structural MRI data were averaged to-
gether, and the average T1 images were used to generate
hand-edited cortical surfaces using Freesurfer [63]. The
resulting surfaces were registered into fs LR 32k surface
space as described in [64]. Separately, an average native
T1-to-Talaraich [65] volumetric atlas transform was cal-
culated. That transform was applied to the fs LR 32k
surfaces to put them into Talaraich volumetric space.

Volumetric fMRI pre-processing included including
slice-timing correction, frame-to-frame alignment to cor-
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rect for motion, intensity normalization to mode 1000,
registration to the T2 image (which was registered to
the high-resolution T1 anatomical image, which in turn
had been previously registered to the template space),
and distortion correction [11]. Registration, atlas trans-
formation, resampling to 3 mm isotropic resolution, and
distortion correction were all combined and applied in a
single transformation step [66]. Subsequent steps were all
completed on the atlas transformed and resampled data.

Several connectivity-specific steps were included (see
[67]): (1) demeaning and de-trending of the data, (2)
nuisance regression of signals from white matter, cere-
brospinal fluid, and the global signal, (3) removal of
high motion frames (with framewise displacement (FD)
> 0.2 mm; see [11]) and their interpolation using power-
spectral matched data, and (4) bandpass filtering (0.009
Hz to 0.08 Hz). Functional data were sampled to the cor-
tical surface and smoothed (Gaussian kernel, σ = 2.55
mm) with 2-D geodesic smoothing.

The following steps were also undertaken to reduce
contributions from non-neuronal sources [67, 68]. First,
motion-contaminated frames were flagged. Two partic-
ipants (MSC03 and MSC10) had high-frequency arti-
facts in the motion estimates calculated in the phase
encode (anterior-posterior) direction. Motion estimate
time courses were filtered in this direction to retain ef-
fects occurring below 0.1 Hz. Motion contaminated vol-
umes were then identified by frame-by-frame displace-
ment (FD, described in [69]), calculated as the sum of ab-
solute values of the differentials of the 3 translational mo-
tion parameters (including one filtered parameter) and 3
rotational motion parameters. Frames with FD > 0.2
mm were flagged as motion-contaminated. Across all
participants, these masks censored 28%±18% (range: 6%
– 67%) of the data; on average, participants retained
5929±1508 volumes (range: 2733 – 7667). Note that in
this paradigm, even the worst participant retained almost
two hours of data.

Time courses were extracted from N = 333 cortical
regions using a common (group) functional parcellation
[28]. We also analyze time courses estimated from using
individualized parcellations (see [70] for details). Both
group and individualized time series were used for FC
estimation and edge time series generation.

MyConnectome dataset

All data and cortical surface files are freely available
and were obtained from the MyConnectome Project ’s
data-sharing webpage (http://myconnectome.org/wp/
data-sharing/). Specifically, we studied pre-processed
parcel fMRI time series for scan sessions 14–104. Details
of the pre-processing procedure have been described else-
where [10, 27]. Each session consisted of 518 time points
during which the average fMRI BOLD signal was mea-
sured for N = 630 parcels or regions of interest (ROIs).
With a TR of 1.16 s, the analyzed segment of each session

was approximately 10 minutes long.

Functional connectivity

Functional connectivity (FC) measures the statisti-
cal dependence between the activity of distinct neural
elements. In the modeling of macroscale brain net-
works with fMRI data, this usually means computing
the Pearson correlation of brain regions’ activity time
series. To calculate FC for regions i and j, then, we first
standardize their time series and represent them as z-
scores. We denote the z-scored time series of region i as
zi = [zi(1), . . . , zi(T )], where T is the number of samples.
The Pearson correlation is then calculated as:

rij =
1

T − 1

T∑
t=1

zi(t) · zj(t). (1)

In other words, the correlation is equal to the temporal
average of two regions’ cofluctuation.

Edge time series

Recently, we proposed a method for decomposing FC
into its framewise contributions. This is accomplished by
simply omitting the averaging step in computing Pear-
son’s correlation. This omission results in a new time
series:

rij(t) = zi(t) · zj(t). (2)

where the value of rij(t) indexes the instantaneous cofluc-
tuation between regions i and j at time t. When regions i
and j both deflect from their mean in the same direction
rij > 0, when they deflect in opposite direction, rij < 0,
and when one (or both) of their activities is near their
mean then rij ≈ 0. Importantly, the mean of this time
series is exactly equal to the FC between regions i and j,
and therefore we can think of rij(t) as the instantaneous
contribution of frame t to the overall FC.

If we consider the set of cofluctuation between all pairs
of regions {ij} at time t, we can arrange those elements
into a node-by-node connectivity matrix and analyze it
as a network. We can also calculate the total amplitude
of cofluctuation between all node pairs as their root sum

square, RSS(t) =
√∑

i,j>i rij(t)
2.

Multiresolution consensus clustering

We used a variation of modularity maximization [71]
to group cofluctuation patterns into clusters or “commu-
nities”. Briefly, modularity maximization is a commu-
nity detection method for partitioning relational data,
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e.g. networks, into non-overlapping communities. This
is accomplished by optimizing a modularity quality func-
tion:

Q(γ) =
∑
rs

[Srs − γPrs]δ(zr, zs). (3)

In this expression, Srs is the similarity of cofluctuation
patterns r and s; Prs is the level of similarity expected
by chance; δ(zr, zs) is the Kronecker delta function and is
equal to 1 when the community assignments of patterns
r and s, denoted as zr and zs, are identical, and 0 oth-
erwise. The structural resolution parameter, γ, controls
the importance of Srs relative to Prs and, in effect, can
be tuned to recover smaller or larger communities.

Here, we use modularity maximization to obtain a
representative set of multi-resolution communities [30].
That is, a partition of cofluctuation patterns into commu-
nities that takes into account how strongly coupled pat-
terns are to one another at different scales, from finescale
partitions of patterns into many small communities to
coarse partitions of patterns into a few large communi-
ties. To do this, we sample communities at various scales
by changing the value of γ. Specifically, we sample 10,000
different values of γ based from the distribution of Srs

values. At each value, we use a generalized version of the
Louvain algorithm to optimize the corresponding Q(γ)
[31].

This procedure results in 10000 estimates of commu-
nities at a range of scales. We transform these estimates
into a probabilistic co-assignment matrix, whose element
Trs is equal to the fraction of the 10000 partitions in
which nodes r and s were assigned to the same commu-
nity. From this matrix, we construct a new modularity:

Qc =
∑
rs

[Trs − P c
rs]δ(z

c
r, z

c
s). (4)

In this expression, P c
rs is the expected co-assignment of

r and s to the same community and can be estimated
as the mean value of the elements in the empirical co-
assignment matrix. zcr and zcs are the consensus commu-
nity assignment of patterns r and s, respectively.

Optimizing Qc tends to return partitions that are, as a
group, more similar to one another and, possibly, identi-
cal. If this is the case, the algorithm ends and the result-
ing partition is accepted as the representative consensus
partition. However, if there is any variability in the out-
put so that the algorithm does not arrive at the same
solution each run, the a new co-assignment matrix is es-
timated and its modularity optimized. This procedure
repeats until the algorithm converges.

Predictive model of FC

In the main text we described a procedure for modeling
FC in terms of cofluctuation community centroids. In

this section, we provide more details of how the model
works.

In our previous work [19], we claimed that FC is driven
by high-amplitude frames. One way to test whether
this is the case is to “zero out” all low-amplitude and
non-significant frames and to compute FC as the sum of
whatever cofluctuation patterns are expressed at high-
amplitude frames. Here, we take this claim one step fur-
ther and state that the cofluctuation patterns expressed
during high-amplitude frames are recurrences of one of
three template patterns, which we obtained from the
community detection analysis.

This intuition can be formalized by the following
model:

FCsubject,scan = f1c1 + f2c2 + f3c3 + f00. (5)

In this expression, f1, f2, and f3 are the fractions of
all low-motion frames in which a participant expresses
communities 1, 2, and 3, respectively. The parameter f0
is the fraction of frames in which a participant is in a low-
amplitude or non-significant state. The values of these
parameters come from the results of the multiresolution
consensus clustering analysis. The other parameters c1,
c2, and c3 represent the average pattern of cofluctuation
for of the three communities. The final parameter, 0 is
a node-by-node matrix where all elements are zero.

We test five versions of this model that vary in terms
of how c1, c2, and c3 are defined. In the first model,
we define centroids using all available data, including
data from other participants and from the scan whose
FC we are trying to predict. The second model is similar,
but estimates centroids excluding data from the current
scan. Models three and four are personalized estimate
centroids using data from participant whose scan is being
predicted. Like models one and two, we test variants
of models three and four that use all data and all data
excluding the scan being predicted. Lastly, we tested a
model in which centroids are estimated using data from
participants other than the participant whose FC we are
trying to predict.

In general, the model does not yield admissible corre-
lation matrices. Accordingly, we transform each matrix
(translation/rotation/scaling) to match the nearest ad-
missible matrix. In all cases, we measure model fitness
as the correlation of upper triangle elements in the true
FC with those of the predicted FC matrix.
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FIG. S1. Statistical comparison of high- and low-amplitude frames using individualized parcels and Midnight
Scan Club data. IIn the main text, we described a statistical procedure for partitioning frames into three categories based on
how their RSS values compared to those of a null model. We applied that model to data from the Midnight Scan Club in which
participants’ brains were parcellated into individualized regions and compared the three categories across multiple features,
including their RSS amplitude, number of frames associated with each category, the number of contiguous frames of the same
category (we call these “sequences”), sequence duration, the similarity of FC reconstructed using frames of each category to
the static FC matrix, and the fraction of frames of a given category that were censored due to motion/data quality issues.

FIG. S2. Statistical comparison of high- and low-amplitude frames using MyConnectome dataset. In the main
text, we described a statistical procedure for partitioning frames into three categories based on how their RSS values compared to
those of a null model. We applied that model to data from the MyConnectome Project and compared the three categories across
multiple features, including their RSS amplitude, number of frames associated with each category, the number of contiguous
frames of the same category (we call these “sequences”), sequence duration, the similarity of FC reconstructed using frames of
each category to the static FC matrix, and the fraction of frames of a given category that were censored due to motion/data
quality issues.
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FIG. S3. Cross-scan similarity of cofluctuation patterns in MyConnectome data and Midnight Scan Club data
with individualized parcels. In the main text we demonstrated that peak cofluctuation patterns were repeated across
scans, while trough cofluctuation were not. Here, we replicate this finding using data from 84 resting-state scans from the
MyConnectome data. (a) Similarity matrix of cofluctuation patterns, including both peaks and troughs. (b) We show a smaller
section of the complete similarity matrix in greater detail to highlight the relationship between peak and trough similarity. (c)
Boxplot of similarity scores, aggregated based on whether the similarity was computed between two trough patterns, a trough
and a peak pattern, or a peak and a peak pattern. We also show that we obtain a similar effect when using individualized
parcellations of participant’s brains in the Midnight Scan Club. As in panel c, panel d depicts similarity scores, aggregated
based on whether the similarity was computed between two trough patterns, a trough and a peak pattern, or a peak and a
peak pattern.

FIG. S4. Summary of community 3 as an aggregated community. In the main text, we described the two large, cohesive
communities that resulted from clustering peak cofluctuation patterns. The clustering algorithm also generated a large number
of smaller communities. Only a fraction of participants were represented in each of these communities (there were no cases
where all participants were represented). For simplicity, we grouped the smaller communities and treated them as if they had
the same community label (community 3). Here, we summarize some features of that community. (a) cofluctuation pattern.
We applied PCA to the fMRI BOLD time series associated with each peak cofluctuation pattern. In panel b, we show the first
component divided into brain systems. (c) The same component projected onto the cortical surface.
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FIG. S5. Summary of the individual communities that comprise community 3. In the main text, we described the two
large, cohesive communities that resulted from clustering peak cofluctuation patterns. The clustering algorithm also generated
a large number of smaller communities. In the main text we grouped these smaller communities into a single community labeled
‘3’. Here, we examine those smaller communities in greater detail along with communities 1 and 2, for completeness. In panels
a -h, we show cofluctuation patterns for eight communities that included data from multiple participants and accounted for at
least 0.5% of all detected events. Above each matrix, we show the fraction of all events accounted for by that community. In
panels i-p, we show the activity patterns that underpin each community, plotting the first principal component of corresponding
activity on the surface of the brain. In panel q, we show participant composition of each community. Here, different colors
correspond to different participants. The height of each bar indicates the relative number of events assigned to a given
community from a given participant.
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FIG. S6. Brain systems projected onto cortical surface. (left) Gordon atlas. (right) MyConnectome atlas.
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FIG. S7. Participant-level PCA analysis of peak activity patterns. In the main text we, applied PCA to activity
patterns corresponding to peak cofluctuation. Those analyses were performed at the group level. Here, we repeat this analysis
at the level of individual participants. Panels a-c show PC1 for each of the three communities. The text below each surface
plot indicates the percent variance explained by that PC.
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FIG. S8. Alternative method for estimating cofluctuation and activity patterns. In the main text we identified three
recurring patterns of cofluctuation and used a PCA-based method to identify their corresponding modes of activity. However,
the cofluctuation between nodes i and j must satisfy for all {i, j} the following relationship: Cij = xixj , where xi is the activity
level of region i. In general, PCA will generate modes of activity that do not satisfy this relationship. To estimate this pattern,
we used a greedy algorithm to identify the vector x = [x1, . . . , xN ] whose cofluctuation matrix C = {Cij} minimizes the distance
(root sum of squares) between the community-representative centroid. In panels a, c, and e, we show the cofluctuation matrices
for communities 1, 2, and 3. Panels b, d, and f depict the activity pattern used to estimate cofluctuation.
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FIG. S9. participant-level PCA analysis of peak activity patterns using individualized parcels. In the main text,
we applied PCA to activity patterns corresponding to peak cofluctuation. Those analyses were performed at the group level
using a common set of N = 333 brain regions. Here, we repeat this analysis at the level of individual participants using parcels
fit individually to each participant. Panels a-c show PC1 for each of the three communities.
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FIG. S10. Similar system-level centroids using both group and individualized parcels. In the main text, we
described three distinct cofluctuation patterns that were broadly shared across participants. Those patterns were estimated
using a common set of N = 333 parcels. We also repeated those analyses using individualized parcels, which differed in number
across participants. This variability made it impossible to compare cofluctuation patterns between participants as well as with
the cofluctuation patterns estimated using the common set of parcels. To circumvent this issue, we estimated centroids at
a system level by averaging the cofluctuation magnitude within and between nine systems that were expressed both at the
group and individual level: Auditory, cingulo-opercular, default mode, dorsal attention, fronto-parietal, somatomotor, salience,
ventral attention, and visual networks. Note, that with the group parcels the somatomotor network contains the somatmotor-
hand and somatomotor-mouth networks. In the case of the individualized parcels, the somatomotor network contains the
somatmotor-hand, somatomotor-foot, and somatomotor-mouth networks. Similarly, the visual network contains both lateral
and primary visual networks for the individualized parcels. In general, we found a high level of correspondence between the
two parcellations. The similarity values (Pearson correlation) of centroids for communities 1, 2, and 3 between datasets were
r = 0.85, r = 0.97, and r = 0.84. In contrast, the similarity between centroids of r = 0.63± 0.07. In a and b we show centroids
estimated using the group and individualized parcels.
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FIG. S11. Results of multi-resolution consensus cluster applied to peak cofluctuation in MyConnectome dataset.
In the main text we extracted peak cofluctuation patterns in the Midnight Scan Club dataset and applied a clustering algorithm
to group patterns into communities. Here, we apply an identical analysis to MyConnectome data. The algorithm identified
four large communities, which we summarize here. In panels a, d, g, and j, we show the mean cofluctuation for each community.
Note that community 1 and community 4 in the MyConnectome data is nearly identical to community 1 in the Midnight Scan
Club. Similarly, communities 2 and 3 bear strong resemblance to community 2 in the Midnight Scan Club analysis. Panels b,
e, h, and k show the first principal component (PC1) of activity during each peak. Panels c, f, i, and l show boxplots of PCs
sorted by system.
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FIG. S12. Interdigitated activity during peaks. We clustered cofluctuation during peaks and found that the four main
communities we reported could be grouped into pairs that involved similar brain systems. Here, we show these pairs for
interdigitated sub-divisions of canonical systems. To do this, we calculated PC1 for each of the four communities. We then
normalized PC1, dividing every element by

√∑
i vi.

2), where vi is the ith element (corresponding to region i) of PC1. This
normalization ensures that the eigenvector has magnitude equal to unity. We then paired communities 1 with 4 and 2 with 3
and, for each region, we calculated which of the two normalized eigenvectors had a larger value. Here, we visualize the winners
of the top quartile (25%) of regions. In a we show communities 1 and 4 and in b we show communities 2 and 3.

FIG. S13. Within and between community similarity of centroids. In the main text we clustered cofluctuation peaks
into three communities. Here, we calculated each participant’s centroid (mean cofluctuation pattern for each community) using
only those peaks assigned to that community. (a) The similarity (Pearson correlation) of participants’ centroids to one another
for communities 1, 2, and 3. We also show the similarity of centroids from different communities (right). (b) Similarity scores
grouped by community. Note that in the “between” category, some points are solid and others outlined. The outlined points
represent similarity scores from the same participant across different centroids.

FIG. S14. Sensitivity analysis using predictive model. In the main text we predicted participant’s FC using three
community centroids estimated several different ways. Here, we perform a sensitivity analysis in which we selectively exclude
each of the three communities so that it does not contribute to the prediction. For instance, when we remove data from
community 1 we then only use data from communities 2 and 3 to make a prediction.
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