
 

 

1 

 

Next-generation biocomputing: mimicking artificial neural network 1 

with genetic circuits 2 

Leo Chi U Seak*
a
, Owen Lok In Lo

 a1
, Wade Chun-Wai Suen

 a1
,  Ming-Tsung Wu

 a1
 3 

a. Genenet Technology (UK) Limited, Kemp House, 160 City Road, London, United Kingdom, 4 
EC1V 2NX 5 

1. These authors contributed equally and are listed alphabetically 6 

* Corresponding author: Leo Chi U Seak 7 

Email:  chiuseak@gmail.com 8 

Author Contributions: L.C.U.S. conceptualized research, L.C.U.S., L.I.L., W.C.W.S., and 9 
M.T.W. designed research, performed research. L.C.U.S. wrote the paper. W.C.W.S., and 10 
M.T.W. edited the paper. 11 

Competing Interest Statement: The authors declare no competing interest. 12 

Classification: Physical Sciences: Biophysics and Computational Biology 13 

Keywords: Biocomputing, artificial neural network, genetic circuits, synthetic biology 14 

This file includes: 15 

Main Text 16 
Figures 1 to 2 17 

 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.12.435120doi: bioRxiv preprint 

mailto:chiuseak@gmail.com
https://doi.org/10.1101/2021.03.12.435120
http://creativecommons.org/licenses/by-nc/4.0/


 

 

2 

 

Abstract 43 

Artificial neural network (ANN) is nowadays one of the most used and researched computational 44 
methods. In the field of biocomputing, however, synthetic biologists are still using logic gate 45 
technologies to design genetic circuits. We here propose and computationally validate a novel 46 
method to mimic ANN with genetic circuits. We first describe the flow and the mathematical 47 
expression of this genetic circuit design and then we provide in silico proof to support the 48 
functionality of our method in regression and classification analyses. We believe that this de novo 49 
genetic circuit design method would have wide applications in biotechnology. 50 
 51 
Main Text 52 
 53 
Introduction 54 
 55 
In the last decade, genetic circuits have been used to simulate logic gates (1-3). In synthetic 56 
biology, these logic-gate genetic circuits have been applied to many different aspects including 57 
advanced cell therapy (4), chemical sensing (5), and clinical diagnosis (6). Although these studies 58 
promote the use of biocomputing from theoretical to clinical applications, the application of 59 
genetic circuit was not widely adapted because of the limited computing power of logic gate 60 
methodologies. 61 

Machine learning is one of the most popular fields of research nowadays. Every year, thousands 62 
of papers were published to develop machine learning algorithms and their applications (7). Many 63 
of these algorithms, such as recurrent neural network and convolutional neural network, was 64 
developed based on artificial neural network (ANN). An ANN consists of multiple layers and each 65 
of them contains multiple nodes. These nodes are regarded as "neurons" in the ANN algorithm, 66 
which compute an output according to its activation function, weighting, biases and the current 67 
input (8). 68 

Despite the fast growth of computing power and the great advances in machine learning, 69 
biocomputing in synthetic biology is still applying the out-of-date simple logic gates, an analog to 70 
the first generation of computers which can be dated back to the 1930s. In this paper, we 71 
describe a novel method to use genetic circuits to simulate ANNs and this method can unleash 72 
the potential of biocomputing algorithms to the next level. With the support of our computational 73 
models, we suggest that our method is feasible and applicable to solve real-world biocomputing 74 
problems. 75 
 76 
Results 77 
 78 
Flow to design genetic circuit mimicking artificial neural network 79 

Artificial neural networks (ANNs) are sometimes regarded as black boxes. These "black boxes" 80 
are equivalent to a group of functions that can solve classification and regression problems, but it 81 
is difficult to explain its mechanism of working by mathematical approach (9). Each ANN consists 82 
of multiple layers and each layer has multiple nodes. Each of these nodes contains a function 83 
defined by the predefined parameters (such as activation functions, number of layers, and nodes) 84 
and the training of the network. When we carry out functional training to the network, it is 85 
essential to optimize the weighting and the biases of each node, in order to shape the function 86 
inside the nodes for more accurate predictions. As shown in figure 1A, the inputted data goes 87 
through the calculation inside each ANN node following the order of the layers: all calculated 88 
results will be passed through from the current layer to the next layer for further calculation inside 89 
each node until reaching the last output layer. Therefore, whether an ANN is successful or not 90 
relies on the mathematical functions inside each node (Fig. 1B; top), which its quality is 91 
determined by the activation function (Sigmoid, Relu, Tanh, etc), and the transfer function (Eq.1). 92 
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𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑥) = ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖      Eq. 1 93 

Where in a trained ANN, weighting 𝑤 and biases 𝑏 are fixed constants; 𝑥 represents the input 94 
variable from the last hidden layer; 𝑖 represents the number of nodes in the previous hidden layer. 95 

Previous studies (10,11) found that many gene regulations have a shape of sigmoid function 96 
(Eq.2), which is also commonly used in ANNs in silico. We, therefore, chose the sigmoid function 97 
as the activation function to train our ANNs and mimic the transfer and activation functions using 98 
transcriptional or translational regulators. 99 

𝑓(𝑥𝑡) =
1

1+e−𝑥𝑡
    Eq. 2 100 

In this sigmoid activation function, the output of the transfer function (Eq. 1) is used as the input 101 
𝑥𝑡. The e represents the Euler's number. 102 

We can therefore mimic the ANN using genetic elements by matching the characteristics of 103 
genetic regulators to the trained ANN model, forming a genetic circuit that is the analog to a well-104 
trained ANN in computer (Fig. 1B). The regulation status in each regulator binding site (e.g. 105 
transcription factors binding sites; RNA binding sites) can mimic the input of each node, and 106 
thereby the number of binding sites will be on the number of nodes in the previous layer. The 107 
promoters mimic the biases and the regulators (eg. transcription factors; regulatory RNAs) mimic 108 
the activation function.  109 

We can then repeatedly match the reconstructed function from each node to the genetic 110 
regulatory elements (Fig. 1C). In practice, because each pair of regulator and binding site only 111 
has a single genetic regulation, the mimicking of the transfer function and activation function are 112 
conducted within one single function. We choose a regulator and its binding sites based on the 113 
weighting function from the current layer and the activation function from the previous layer, and 114 
then we get Eq. 3 (hypothesizing the regulations do not interact). 115 

    116 
  117 
 Eq. 3    118 

Where 𝑥𝑡(𝑖−1) equals to transfer function from the node in the previous layer, which represents the 119 
quantity of the regulator from that previous node. When training an ANN in silico, 𝑤𝑖 is the only 120 
variable used to improve the prediction power. Therefore, if we regard 𝑥𝑡(𝑖−1) as 𝑥’, regulation as 121 
𝑦’ (𝑦’ is a function of 𝑥’), matching the 𝑤𝑖 from pre-trained ANN to genetic regulations (regulators 122 
+ binding sites) with sigmoid function, we can mimic the ANN using genetic circuits (as shown in 123 
Fig. 1C). The progress of matching the genetic regulators can be done by correlation analyses 124 
which correlate the functions estimated with Eq. 3 to the regulatory function according to the 125 
library of regulators and their binding sites. 126 

Furthermore, we here also propose the flow (Fig. 1D) to generate a new validated ANN genetic 127 
circuit and it has three steps: (1) Training ANN models in the computer (2) Design and 128 
synthesizing genetic circuits according to the trained ANN (3) Functional testing of the genetic 129 
circuit. 130 

Computational validation of ANN genetic circuit 131 

We also built an ANN in silico to prove the feasibility of our proposed method. First, we simulated 132 
a data set consisted of three type of inputs (𝑥1, 𝑥2, 𝑥3) and one output (𝑌) in python. A set of 500 133 
triplet values(𝑥1, 𝑥2, 𝑥3), were pseudorandomly picked from any real number between 0 to 1. The 134 
actual Y value was calculated as: 135 

𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑤𝑖𝑥𝑖 =
𝑤𝑖

1 + 𝑒−𝑥𝑡(𝑖−1)
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𝑌 = 𝑥1*(0.5 - 𝑥2) + 𝑥3     Eq. 4 136 

We chose this equation (Eq. 4) to prove that ANN genetic circuit is applicable to perform 137 
complicated calculations. We then used these simulated data to train ANN networks with Keras in 138 
python (Fig. 2A; two hidden layers and each contains four nodes; epochs=1000) with the leave-139 
one-out method as the validation approach and mean square error (MSE) as the performance 140 
function. To mimic the environment of the genetic regulators, we used the sigmoid function as an 141 
activation function in all nodes in the ANN. We also introduced a 10% Gaussian noise to each 142 
output in the neural nodes to simulate the noise generated by the genetic regulators. We found 143 
that even further limiting the activation function by using the "sigmoid" function and adding 10% 144 
Gaussian noise, our ANN is still able to predict the simulated data as shown in figure 2B 145 
(R=0.9546, p=3.512e-264). 146 

To show that our ANN genetic circuit design is a valid solution for real research questions, we 147 
used a previously published (12) gene expression dataset of three classified subtypes of breast 148 
cancer, basal-like, HER2-enriched, and Luminal (A/B) and selected the expression level of ESR1, 149 
PGR, and ERBB2 as input. We built simple ANN circuits with Keras in python (Fig. 2C; one 150 
hidden layer which contains six notes; epochs=200) to predict breast cancer subtypes. Like the 151 
ANN circuit shown in fig. 2A, we only used the "sigmoid" functions as activation functions in all 152 
nodes. We also introduced a 10% Gaussian noise to each output to mimic the noise of the gene 153 
regulations. As shown in Figure 2D, with the validated data from the published expression profile, 154 
our ANN model performed significantly better in predicting the class of breast cancers (69.29% vs 155 
33.57%; p=0.00165; 10-fold validation) than using pseudorandomly paired expression profile. 156 
 157 
Discussion  158 
 159 
In the past decades, the field of biocomputing has been limited to logic gates only, despite the 160 
skyrocketing development in computer science. We here described and computationally proved a 161 
de novo method to mimic artificial neural networks with genetic elements. We used two ANN 162 
models to prove the applications of our method in regression and classification analyses and the 163 
possibility to solve artificial and real research problems. 164 

It is not the first time that a neural network DNA circuit is being proposed. However, previous 165 
researches (13) only used genetic regulators as Boolean classifiers instead of mimicking the ANN 166 
with genetic elements. Without the properties we proposed and proved in this paper, the 167 
applications of ANN genetic circuits are unfortunately restricted. For instance, if we use the 168 
Boolean neural network to design a gene circuit that is similar to the one shown in figure 2C, we 169 
will not able to quantify the input.  Moreover, such gene circuit will not be able to do any 170 
regression (quantification) analysis, which is demonstrated in the ANN shown in figure 2A. Since 171 
ANNs designed with our novel gene circuit method can do quantification analyses and perform 172 
complicated calculation with fewer neural nodes, we believe our method has a great potential to 173 
be applied in many fields in synthetic biology, such as for pharmaceuticals to test drug efficacy, 174 
researchers to predict cytokine storms, etc. Furthermore, this biocomputing design can be easily 175 
upgraded to other more advanced ANNs, such as recurrent neural networks (RNN; by introducing 176 
a regulator binding site that allows the regulator to regulate itself), which gives researchers a 177 
great flexibility to adapt the ANN to their researches. 178 
 179 
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Figures  222 

 223 

 224 
 225 
Figure 1. Method to design genetic circuits mimicking artificial neural networks (ANNs). 226 
Schematic diagrams showing (A) an example of an ANN in silico (B) transfer and activation 227 
function in one node of the ANN (top), and the corresponding genetic circuit design to mimic this 228 
node (bottom) (C) exemplary regulations in a genetic circuit to mimic the ANN node with different 229 
input weightings (see Eq. 3) (D) flow of designing and testing an ANN genetic circuit. (A-C) The 230 
colors of the outlines of regulator binding sites in (B-C) represent the respective regulating nodes 231 
from the previous layer as shown in (A). 232 

233 
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 234 

Figure 2. Computational models show that our ANN genetic circuit design can be used for (A-B) 235 
Regression analyses and (C-D) Classification analyses. (A) and (C) showing the respective ANN 236 
design while (B) and (D) showing the respective modeling result of the two types of machine 237 
learning analyses. The black line in (B) represents the Least Squares Regression line. Error bars 238 
in (D) represent the Standard Deviations. 239 
 240 
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