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Abstract 25 

Poor metabolic health, characterized by insulin resistance and dyslipidemia, is higher in people 26 

living with HIV (PLWH) and has been linked with inflammation, anti-retroviral therapy (ART) drugs, 27 

and ART-associated lipodystrophy (LD). Metabolic disease is associated with gut microbiome 28 

composition outside the context of HIV but has not been deeply explored in HIV infection nor in 29 

high-risk men who have sex with men (HR-MSM), who have a highly altered gut microbiome 30 

composition. Furthermore, the contribution of increased bacterial translocation and associated 31 

systemic inflammation that has been described in HIV-positive and HR-MSM individuals has not 32 

been explored. We used a multi-omic approach to explore relationships between gut microbes, 33 

immune phenotypes, diet, and metabolic health across ART-treated PLWH with and without LD; 34 

untreated PLWH; and HR-MSM. For PLWH on ART, we further explored associations with the 35 

plasma metabolome. Sixty-nine measures of diet, gut microbes, inflammation, and demographics 36 

were associated with impaired metabolic health defined using fasting blood markers including 37 

lipids, glucose and hormones. We found microbiome-associated metabolites associated with 38 

metabolic disease including the microbially produced metabolites, dehydroalanine and 39 

bacteriohopane-32,33,34,35-tetrol. Our central result was that elevated plasma 40 

lipopolysaccharide binding protein (LBP) was the most important predictor of metabolic disease 41 

in PLWH and HR-MSM, with network analysis of predictors showing that LBP formed a hub joining 42 

correlated microbial and immune predictors of metabolic disease. Our results suggest the role of 43 

inflammatory processes linked with bacterial translocation (measured by LBP) and interaction 44 

with dietary components and the gut microbiome in metabolic disease among PLWH and HR-45 

MSM. 46 

 47 
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Importance Statement 48 

The role of the gut microbiome in the health of HIV infected individuals is of interest because 49 

current therapies, while effective at controlling disease, still result in long term comorbidities. 50 

Metabolic disease is prevalent in HIV-infected individuals even in well-controlled infection. 51 

Metabolic disease has been linked with the gut microbiome in previous studies but little attention 52 

has been given to HIV infected populations. Furthermore, integrated analyses that consider gut 53 

microbiome composition together with data on diet, systemic immune activation, metabolites and 54 

demographic data have been lacking. By conducting a systems level analysis of predictors of 55 

metabolic disease in people living with HIV and men who are at high risk of acquiring HIV, we 56 

found that increased LBP, an inflammatory marker indicative of compromised intestinal barrier 57 

function, was associated with worse metabolic health. We also found this relationship to be 58 

associated with dietary, microbial, and metabolic factors suggesting a systemic gut microbiome 59 

influence on the presence of increased inflammatory markers which, in turn, influences the risk of 60 

metabolic disease. This work lays the framework for mechanistic studies aimed at targeting the 61 

microbiome and diet to prevent or treat metabolic endotoxemia in HIV-infected individuals. 62 

 63 

Keywords 64 

HIV; microbiome; men who have sex with men (MSM); metabolic disease 65 

 66 

Background 67 

The gut microbiome in people living with human immunodeficiency virus type 1(HIV) (PLWH) is 68 

of interest as a potential contributor to infection, disease progression, and development of co-69 

morbidities. Poor metabolic health characterized by insulin resistance and dyslipidemia is frequent 70 

in PLWH (1-3) and has been linked with chronic inflammation (4-7) and several anti-retroviral 71 

therapy (ART) drugs (8). Metabolic disease is particularly prevalent in HIV-positive individuals 72 

with lipodystrophy (LD), a disease linked with early ART drugs that is manifested by lipoatrophy 73 
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in the face, extremities, and buttocks with or without visceral fat accumulation. LD can have a 74 

severe impact on the quality of life of PLWH and is associated with the development of diabetes 75 

and cardiovascular disease (9).  76 

 77 

Metabolic disease has been linked with gut microbiome structure and function outside the context 78 

of HIV infection (10-14), but this relationship has not been explored deeply in PLWH. We and 79 

others have found an altered gut microbiome composition in both PLWH (15-17) and men who 80 

have sex with men at high-risk of contracting HIV (HR-MSM) (16, 18). Furthermore, we have 81 

demonstrated that the altered microbiome in HIV (15) and HR-MSM (15, 19) are pro-inflammatory 82 

both in vitro and/or in gnotobiotic mice (15, 19). This is of interest as peripheral inflammatory 83 

signals have been implicated in both cardiovascular disease risk (7, 20) and insulin sensitivity (4, 84 

5, 21-23) in PLWH. Increased peripheral immune activation in HIV-positive individuals is driven 85 

in part by bacterial translocation (24, 25), as indicated by higher levels of the bacteria product 86 

lipopolysaccharide (LPS) or LPS-binding protein (LBP) in blood. Increased blood LPS levels have 87 

also been observed in MSM and linked with recent sexual behavior (26). An association between 88 

LBP and metabolic disease in other diseases (e.g. hemodialysis patients) has been described 89 

(27), however there are mixed data regarding a role in obesity associated metabolic disease (28-90 

30). Additionally, a recent study of metabolic syndrome in PLWH found greater immune 91 

dysfunction and a more HIV-associated microbiome associated with risk of metabolic syndrome 92 

(31). 93 

 94 

We hypothesized that PLWH and HR-MSM with poor metabolic health would harbor a distinct gut 95 

microbial signature that was in turn also associated with elevated peripheral immune activation. 96 

We evaluated this relationship while considering other factors known to influence the microbiome, 97 

immunity and metabolic health. This analysis included typical diet; HIV, ART, and LD status; and 98 

other demographic characteristics such as age and body mass index (BMI). For HIV-positive 99 
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individuals on ART with and without LD, we further explored associations with the plasma 100 

metabolome (Figure 1). Our results suggest a central role of inflammatory processes linked with  101 

bacterial translocation as measured by LBP, and co-correlated intestinal microbes, dietary and 102 

demographic attributes in metabolic disease risk.  103 

 104 

Results 105 

Study Population 106 

This study examined a cohort of 113 men, including men who have sex with women (MSW; n=22, 107 

19.5%) and men who have sex with men (MSM; n=91, 80.5%) (Table 1). Of the MSM, 32 were 108 

HIV-negative (35.2%), 14 were HIV-positive and not on ART (15.4%), and 45 were HIV-positive 109 

ART-treated (49.4%). The HIV-positive, treated group included those with lipodystrophy (LD; 110 

n=25, 55.6%) and those without (n=20, 44.4%). The HIV-negative MSM participated in activities 111 

that put them at high risk of contracting HIV as defined in a prior study of a candidate HIV vaccine: 112 

1) a history of unprotected anal intercourse with one or more male or male-to-female transgender 113 

partners; 2) anal intercourse with two or more male or male-to-female transgender partners; or 3) 114 

being in a sexual relationship with a person who has been diagnosed with HIV (32). In order to 115 

focus on HIV-associated metabolic disease, obese individuals (BMI >30) were excluded. There 116 

was no significant difference in BMI between the cohorts (Kruskal-Wallis test, p = 0.085). HIV- 117 

positive, treated cohorts were significantly older than HIV-negative MSM and HIV-positive, 118 

untreated MSM (Kruskal-Wallis test, p < 0.001). Age matching across all cohorts was not feasible 119 

in part because LD is associated with early-generation ART drugs and thus most common in older 120 

HIV-positive individuals and HR-MSM behavior as well as new HIV infections are predominantly 121 

in younger individuals. However, age is carefully considered in downstream analyses. All treated, 122 

HIV-positive individuals were on successful ART with suppressed viral loads (Table 1).  123 
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 124 
Figure 1. Study design schematic. Measures were collected from four compartments: gut 125 
microbiome, peripheral immune, diet questionnaire, and plasma metabolome. These separate 126 
compartments can all influence each other, forming complex systems that together influence 127 
metabolic health. Furthermore, the compartments can be influenced by other clinical and 128 
demographic characteristics such as HIV and treatment status. In this study we examine all of 129 
these measures together in order to investigate   130 
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Table 1. Description of full study cohort 131 

 

HIV-
negative 

MSW 

HIV-
negative 

MSM 

HIV-positive 
MSM, 

untreated 

HIV-positive 
MSM, 

treated 

HIV-positive 
MSM, treated, 

with LD 
n 22 32 14 20 25 

Age  
(years) 

33 
(27.3-38.5) 

34 
(29.8-44.5) 

34 
(26.5-40.3) 

46 
(42.8-50.5) 

60 
(54-64) 

BMI (kg/m2) 25.2 
(23.0-27.0) 

25.5 
(20.2-28.0) 

21.4 
(20.2-25.6) 

23.9 
(22.6-26.2) 

25.8 
(23.0-28.0) 

CD4  
cell count NA NA 538 

(408.5-731.8) 
586 

(419.5-878.0) 
659 

(550.0-908.0) 

Viral load NA NA 
101,400 
(20,300-
292,514) 

20 
(0-20) 

0 
(0-20) 

Cholesterol 
drugs/statins 
n (%) 

2 (9.1%) 3 (9.4%) 1 (7.1%) 4 (20%) 14 (56%) 

Numbers reported are median (IQR)  132 
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Metabolic Disease Score as a Marker for Metabolic Health 133 

We measured seven common clinical markers of metabolic health from fasting blood: 134 

triglycerides, glucose, insulin, LDL, HDL, leptin, and adiponectin. Since these markers are often  135 

correlated with each other, we used principal component analysis (PCA) to define a single 136 

continuous measure of overall metabolic health of study participants, as has been done previously  137 

(Figure 2A) (33, 34). The first principal component (PC1) explained 28.8% of the variability within 138 

the clinical marker data and separated individuals by multiple correlated markers of metabolic 139 

disease. Specifically, individuals with higher values of PC1 generally had high triglycerides and 140 

low HDL, indicating dyslipidemia, and higher levels of fasting blood glucose and insulin, indicating 141 

insulin resistance (Figure 2A, Supplemental Figure 1). We thus decided to use values of PC1 as 142 

an outcome. Values of PC1 were shifted to a minimum of one and log transformed to define the 143 

metabolic disease score, which ranged from 0 as healthy and 2.5 as impaired. In order to 144 

determine how this score related to metabolic health, we performed regressions between the 145 

metabolic disease score and individual measures to define a metabolic score threshold that 146 

corresponded with clinically defined cutoffs for normal levels (Supplemental Figure 1). For 147 

example, triglycerides positively correlated with metabolic disease score and almost all individuals 148 

with a score above 1.45 had triglyceride levels in the unhealthy range of greater than 200 mg/dL. 149 

Similar patterns and cutoffs were true for HDL, LDL, and glucose (Supplemental Figure 1). The 150 

intersect of the regression with these cutoffs were all averaged to a single number of 1.4. 151 

Individuals below the cutoff were categorized as metabolically normal and those above were 152 

categorized as metabolically impaired. 153 

 154 

When comparing the metabolic disease score across cohorts, we found that ART-treated, HIV-155 

positive individuals with LD trended higher in both the average metabolic disease score and the 156 

proportion of individuals with scores in the metabolically impaired group but intergroup  157 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.12.435118doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435118
http://creativecommons.org/licenses/by/4.0/


Armstrong et al. 9 

 158 
Figure 2. Metabolic disease score for marker of metabolic health. A. PCA of metabolic 159 
measures in fasting blood of 164 men and women: 113 participants described in this paper 160 
along with 51 individuals recruited at the same time and under the same exclusion criteria as 161 
study participants. Metabolic disease score is calculated as the PC1 coordinates shifted to a 162 
minimum of one and log transformed. B. Metabolic disease scores broken up by cohort. The 163 
percentages noted above groups are the percent of individuals with a score above our 164 
metabolic impairment cutoff (Supplemental Figure 1). There is no significant difference between 165 
the proportions in each group (Fischer’s exact test, p = 0.11) or between mean ranks in each 166 
group (Kruskal-Wallis test p = 0.13). C. Relationships between metabolic disease score and age 167 
stratified by cohort. Statistical significance of slopes are indicated and were calculated with the 168 
linear model: score ~ age + cohort + age*cohort. P-value annotations: ** < 0.01; * < 0.05.  169 
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significance was lost after multiple test corrections (Figure 2B). Furthermore, because our HIV-170 

positive, treated cohorts were significantly older than our HIV-negative MSM and HIV-positive,  171 

untreated MSM, we used a linear model to explore differences in the metabolic disease score 172 

across cohorts while accounting for age (Figure 2C). This score was positively associated with  173 

age only in HIV-negative MSM and HIV-positive, untreated MSM (Figure 2C; linear model; p < 174 

0.001 and p = 0.036 respectively) and only HIV-negative MSM had significantly higher  175 

metabolic disease score compared to HIV-negative MSW when accounting for age (linear 176 

model; p < 0.001). 177 

 178 

Selection of Features that Predict the Metabolic Disease Score and Interactions Between 179 

Selected Features 180 

To explore the complex relationships of the gut microbiome, peripheral immune activation, and 181 

diet to the metabolic disease score and to each other, we first selected features that were 182 

important predictors of the metabolic score using the tool VSURF (Variable Selection Using 183 

Random Forest) tool (35). The VSURF implementation of random forest is optimized for feature 184 

selection, returning all features that are highly predictive of the response variable, even when a 185 

smaller subset of highly predictive variables with redundant features removed could be just as 186 

accurate for prediction (35). We input the following features into the VSURF tool: 1) 130 microbial 187 

features (99% identity Operational Taxonomic Units (OTUs) with highly co-correlated OTUs 188 

binned into modules as described in the methods (detailed in Supplemental Table 1) and filtered 189 

to OTUs only in >20% of samples). 2) 21 immune features that were measured in plasma using 190 

multiplex ELISA (detailed in Supplemental Table 2). These immune measures were selected 191 

based on a literature search for those previously shown to be altered in HIV infection and/or 192 

metabolic disease. 3) 21 clinical/demographic features that were collected in questionnaires or 193 

measured in study participants such as age, BMI, HIV infection and treatment status, typical 194 

gastrointestinal symptoms including constipation, diarrhea and bloating, and sexual behavior 195 
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(detailed in Supplemental Table 3). 4) 29 dietary features that were collected using a food 196 

frequency questionnaire of typical dietary intake over the prior year as detailed in the methods.  197 

 198 

From the initial 201 measures, VSURF identified 69 important variables (four clinical data 199 

measures, six diet measures, 14 immune measures, 45 microbes) and a subset of ten highly 200 

predictive variables (Supplemental Table 4). These 69 features were sufficient to accurately 201 

predict metabolic disease score using traditional random forest (linear model: r^2 = 31.05%, p < 202 

0.001). Additionally, permutation testing revealed that VSURF performed better at selecting 203 

explanatory variables than a null model where the outcome was randomly permuted (permutation 204 

test; p = 0.049, Supplemental Figure 2). We found that 21 of the 69 selected variables were 205 

positively or negatively correlated with the metabolic disease score, indicating either increased or 206 

decreased risk respectively (Spearman rank correlation, FDR p < 0.1, Supplemental Table 4). 207 

Since random forest can detect non-linear relationships and/or features that are only important 208 

when also considering another feature, it is not surprising that all features were not correlated 209 

linearly with the metabolic disease score.  210 

 211 

All VSURF selected clinical measures were positively correlated with metabolic disease score 212 

and included age, BMI, lipodystrophy, and bloating (Supplemental Table 4). None of the six 213 

selected diet measures correlated with metabolic disease score (Supplemental Table 4). VSURF 214 

selected several inflammatory immune measures that were positively correlated with metabolic 215 

disease score: LBP, intercellular adhesion molecule 1 (ICAM-1), interleukin (IL) 16, IL-12, and 216 

granulocyte-macrophage colony-stimulating factor (GM-CSF) (Supplemental Table 4). The most 217 

important feature as determined by random forest importance score was LBP.  218 

 219 

Diet, the microbiome, and immune phenotypes can all influence each other (Figure 1). They can 220 

also relate to the measured clinical/demographic factors that we had identified as predictors of 221 
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the metabolic disease score such as BMI and age. For this reason, we also investigated the 222 

relationship between the 69 important factors using pairwise Spearman rank correlation and 223 

network visualization (Figure 3, Supplemental Figure 3, Supplemental Table 5). This approach  224 

revealed many within data type associations such as positive correlations within many selected 225 

dietary, microbiome, and immune features. It also identified correlations between data types such 226 

as a negative relationship between LBP and several Gram-negative bacteria or a positive 227 

correlation between age and immune measures such as LBP or IL-6 (Figure 3A, Supplemental 228 

Table 5). 229 

 230 

The selected important microbes included many that positively or negatively correlated with the 231 

metabolic disease score (Supplemental Table 4) and that were highly co-correlated with each 232 

other and with dietary, clinical/demographic, and inflammatory phenotypes (Supplemental Figure 233 

3A, Supplemental Table 5). For example, a module of bacteria identified within the Prevotella 234 

genus and the Paraprevotellaceae family, negatively associated with metabolic disease score 235 

and positively associated with dietary fiber (Supplemental Figure 3B). Because bacterial 236 

translocation is known to occur at increased levels in both HIV-positive individuals (36) and HR-237 

MSM (26), we were specifically interested in looking at the selected microbes and other features 238 

that correlated with LBP, a marker of bacterial translocation. The network of LBP neighbors is 239 

shown in Figure 3B. All of the microbes correlating with LBP were classified to the order 240 

Clostridiales. More specifically, LBP is negatively correlated with several butyrate or putative 241 

butyrate producing bacteria/bacterial modules such as OTUs in the genera Coprococcus (37, 38). 242 

LBP was also positively correlated with Dorea species (Supplemental Table 5).  243 

 244 

In addition to correlations, we evaluated interactions between variables using the tool iRF 245 

(iterative Random Forest)(39). These interactions represent variables that are in adjacent nodes  246 
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 247 
Figure 3. Networks of selected measures reveal several strong associations with 248 
metabolic disease score and between measures. Correlation sub-networks of A. all the non-249 
microbe selected measures. B. the nearest neighbors of LBP. All Spearman rank correlations 250 
with an FDR p < 0.25 are shown. Subnetworks were pulled from a larger network of all VSURF 251 
selected measures (Supplemental Figure 3, Supplemental Table 2). C. Network of interactions 252 
between measures calculated using iRF. All edges represent an interaction (i.e. proximity in a 253 
decision tree) that occurred in 30% or more of the decision trees.  254 
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 in a random forest tree in which the value of one influences the predictability of the other. 255 

Interactions between variables in more than 30% of the trees were kept for further analysis (Figure 256 

3C). This analysis identified a group of 5 interactive features: LBP, age, BMI, an OTU in the 257 

Lachnospiraceae family, and microbiome module 24 (Coprococcus sp. and Blautia sp.). These 258 

features were also significantly correlated with LBP and suggest a subset of features that when 259 

taken together may be predictive of metabolic disease risk.  260 

 261 

The Plasma Metabolome as a Potential Mechanism of Microbial Influence on Metabolic Disease 262 

Score in ART-treated HIV-positive Individuals with and without LD  263 

To pursue a further mechanistic understanding of how the gut microbiome may influence the 264 

metabolic disease score in PLWH, we performed untargeted metabolomics (LC/MS) on plasma 265 

from our cohort of ART-treated, HIV-positive individuals with and without LD (n=44). Metabolite 266 

identities were then validated using untargeted MS/MS. We used two approaches to determine 267 

which plasma metabolites were either directly produced or indirectly influenced by the presence 268 

of a microbiome. First, metabolites found in the human plasma were run through the 269 

computational tool AMON (40), which uses the KEGG database (41) and inferred metagenomes 270 

(calculated using PICRUSt2 (42)) to determine which of the measured metabolites could have 271 

been produced by the microbiome. Second, plasma from both germ free (GF) and humanized 272 

mice was analyzed using metabolomics to determine metabolites that had significantly altered 273 

levels in mice with human microbiomes compared to GF mice, i.e. microbiome influenced 274 

metabolites. For this purpose, GF mice were gavaged using fecal samples from eight men from 275 

the study cohort (humanized mice) while two mice were gavaged using PBS as control 276 

(Supplemental Table 6). Plasma was collected before and after gavage.  All mice were fed a high-277 

fat western diet.  278 

 279 
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We found that 820 metabolites were different in abundance between GF and humanized mice 280 

after multiple test corrections (Student’s t-test, FDR p < 0.05), 493 of which were also present in 281 

the human plasma samples. However, only 376 of these 493 metabolites could be annotated (see 282 

Methods and Supplemental Table 7) while the remaining 148 were only assigned a mass. From 283 

the full set of 5,332 metabolites identified in the human plasma, 416 were able to be annotated 284 

with KEGG IDs. These were further analyzed using AMON. 146 microbiome-associated 285 

metabolites were identified that are putatively produced by the gut microbiome; however, many 286 

of these could also be produced by the host. Twenty-six of the 134 microbiome-associated 287 

metabolites identified by AMON were also identified in the gnotobiotic mouse analysis 288 

(Supplemental Table 7). 289 

 290 

Of the 5,332 total measured metabolites in the human samples, 150 correlated with metabolic 291 

score (Spearman rank correlation, FDR p < 0.05; Supplemental Table 8). Of these 68 could not 292 

be annotated. The annotated correlated compounds were enriched in a number of different 293 

metabolic pathways with both the Phospholipid and the Glycerolipid pathways of the Small 294 

Molecule Pathway Database (SMDPH)(43) being highly enriched (Supplemental Table 9). 295 

Consistent with the metabolic score being defined in part by dyslipidemia, 17 of the significant 296 

compounds were annotated as triglycerides. Of the 150 correlated metabolites, seven were 297 

associated with the microbiome either because they were predicted microbial products of the gut 298 

microbiome (as determined with AMON (40)), because they were significantly different while 299 

comparing the metabolome of germ-free mice to that of mice colonized with the feces of study 300 

participants, or by literature search. We confirmed the identity of 5 of the 7 of these with MS/MS 301 

(Supplemental Table 8). Of these seven microbiome-associated metabolites, two could 302 

exclusively be explained by direct production by the microbiome. Specifically, dehydroalanine was 303 

identified as a microbial product with AMON and negatively correlated with metabolic disease 304 

score (Supplemental Table 8). Bacteriohopane-32,33,34,35-tetrol is a bacterial metabolite that 305 
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positively correlated with the metabolic disease score. Two additional microbiome-associated 306 

compounds were triglycerides (TG(54:6) and TG (16:0/18:2.20:4)) that were positively correlated 307 

with metabolic disease score and elevated in humanized mice compared to GF mice. Another of 308 

these metabolites, 1-Linleoyl-2-oleoyl-rac-glycerol is a 1,2-diglyceride in the triglyceride 309 

biosynthesis pathway.  Finally, phosphatidylcholine (PC(17:0/18:2)) and 310 

phosphatidylethanolamine (PE(20:3/18:0)) compounds were identified as microbiome associated 311 

and positively and negatively correlated with the metabolic disease score respectively (44). 312 

 313 

Discussion 314 

In this study, we identified several bacterial, diet, and immune measures that predicted higher 315 

metabolic disease score in a cohort of MSM with and without HIV, ART, and LD. Notably, we 316 

identified a strong relationship between circulating LBP and higher metabolic disease score which 317 

in turn correlated with other markers of systemic inflammation, a loss of beneficial microbes such 318 

as Gram-positive, butyrate-producing bacteria, and higher BMI, indicating that diverse modifiable 319 

factors may influence LPS/inflammation driven metabolic disease in this population.   320 

 321 

There was a positive association between metabolic disease score and age, as has been reported 322 

previously for non-HIV populations (45), but linear modeling suggested that this relationship was 323 

driven by an association in HIV-negative MSM and HIV-positive untreated MSM in our study, 324 

revealing a possibly larger effect size than in our other cohorts. Also, when controlling for age, 325 

HIV-negative and positive untreated MSM had the highest metabolic disease score, even 326 

compared to HIV positive individuals on ART with LD, a population that has previously been 327 

reported to have higher incidence (46). This result is intriguing given our results supporting a role 328 

for LBP driven inflammation in metabolic disease and prior research linking increased levels of 329 

LPS in blood with high-risk behavior in MSM (26). Larger cohorts and more detailed behavior 330 
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information are required, however, to make any definitive claims on impaired metabolic health in 331 

ageing in HR-MSM.  332 

 333 

Consistent with prior studies that have associated high BMI with dyslipidemia, insulin resistance, 334 

and/or metabolic syndrome (9, 47, 48), BMI was a positive predictor of metabolic disease score 335 

in our cohort even though our study excluded obese individuals, but did include overweight. This 336 

suggests the importance of weight management even among overweight, non-obese individuals 337 

as a strategy for reducing metabolic health impairment in this population. 338 

 339 

We did not find a positive association between ART treatment status and metabolic disease score, 340 

but this may be because individuals in our study were on a wide variety of drug combinations with 341 

the potential to have varied/contrasting effects. For instance, both integrase stand transfer 342 

inhibitors (ISTI) (49) and regimens including the nucleoside reverse transcriptase inhibitor (NRTI) 343 

tenofovir have been shown to increase risk of weight gain (50). Conversely, the CCR5 antagonist, 344 

maraviroc, may confer a benefit to cardiovascular function and body weight maintenance and 345 

evidence in mice suggests that this may be linked to differences in gut microbiome composition 346 

with treatment (21, 51). Thus, future studies more targeted to particular ART regimes will be 347 

required to look at factors important in particular drug contexts. 348 

 349 

Several of the dietary components identified as important predictors of metabolic disease score 350 

in our cohort have been previously associated with metabolic health, including dietary carotenoid, 351 

lycopene, and fiber (52-56). Fiber’s benefit in glucose response has been linked with the activity 352 

of Prevotella copri. Individuals who had improved glucose response upon 3 days of a high-fiber 353 

diet consumption were characterized by a higher increase in P. copri (55) and beneficial effects 354 

of P. copri were confirmed in mice fed a high-fiber diet (55). Interactions between Prevotella, 355 

dietary fiber, and metabolic health were of particular interest in this cohort of HIV positive and 356 
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negative MSM since these individuals have much higher Prevotella, including P. copri, than in 357 

non-MSM (16, 18). However, other published studies suggested that high Prevotella might predict 358 

increased risk of metabolic disease. One group observed that P. copri in mice fed a western diet 359 

low in fiber could promote poor glucose response through the production of branched chain amino 360 

acids (BCAAs) (12). Additionally, our prior study using in vitro stimulations of human immune cells 361 

with fecal bacteria of HIV positive and negative MSM indicated that the Prevotella-rich 362 

microbiomes of MSM could drive systemic inflammation (15). Interestingly, in our data, a module 363 

of three OTUs, two of which are identified as within the genus Prevotella and the other within the 364 

family Paraprevotellaceae, negatively associated with metabolic disease score and positively 365 

associated with dietary fiber (Supplemental Figure 3B), supporting a relationship between 366 

particular Prevotella strains and dietary fiber towards improved metabolic health, and not 367 

supporting deleterious effects. Further work will be needed to decompose the complex 368 

relationship between dietary fiber, particular Prevotella strains, and metabolic health in HIV 369 

positive and negative MSM with unique Prevotella-dominated communities.  370 

 371 

LBP was the most important feature in the random forest analysis and also a highly interactive 372 

measure in the iRF analysis. LBP binds to both microbial LPS and lipoteichoic acid (LTA) in the 373 

blood (57) and the presence of elevated LBP is indicative of increased intestinal barrier 374 

permeability (58). LBP levels were correlated with other inflammatory markers that have been 375 

linked with worse metabolic health in HIV-negative populations suggesting a role as a central 376 

mediator of metabolic-disease associated immune phenotypes. These included 1) I-CAM 1, 377 

whose expression in adipose tissue has been associated with diet-induced obesity in mice (59) 378 

and metabolic syndrome in humans (60) 2) IL-6, a pro-inflammatory cytokine that has been shown 379 

to play a direct role in insulin resistance (61), and 3) SAA, which is regulated in part by IL-6 and 380 

plays a role in cholesterol metabolism (60); SSA3 specifically has been shown to be produced in 381 

response to gut bacteria in obesity mice (62). We observed a positive association between 382 
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metabolic disease score and frequency of abdominal bloating, further supporting a role of 383 

intestinal dysfunction in this population. Taken together these associations suggest that 384 

inflammation originating from an impaired intestinal barrier is promoting worse metabolic health.  385 

 386 

Although prior studies have connected LBP-associated inflammation with worse metabolic health 387 

(27, 28, 63); the strength of this relationship is disease specific with less clear results in obesity-388 

associated metabolic disease (29, 30). An importance of bacterial translocation in HIV-associated 389 

metabolic syndrome was demonstrated in a recent study of metabolic comorbidities in HIV-390 

positive individuals which found that lower CD4 nadir and/or AIDS events, HIV-associated 391 

microbiota, and low alpha diversity was correlated with increases in sCD14 and LBP and increase 392 

risk of metabolic syndrome (31). Additionally, in our study LBP was correlated with age and BMI, 393 

a relationship that was previously observed in a cohort of HIV-negative men of African ancestry 394 

with this trio being further associated with adiposity and pre-diabetes (64). Lastly, the negative 395 

association of LBP with putative butyrate producing bacteria suggests that a lack of microbes that 396 

promote intestinal barrier integrity contributes to increased intestinal permeability and thus 397 

microbial components in circulating blood.  398 

 399 

In our metabolomic analysis, we identified 150 metabolites in blood that correlated with metabolic 400 

disease score. In order to identify compounds whose prevalence may be related to the gut 401 

microbiome we used two complimentary approaches. First, we predicted which of these 402 

compounds could have been produced by the microbiome using information in KEGG and the 403 

bioinformatics tool AMON (40).  Second, we measured which compounds changed in relative 404 

abundance in germ-free versus mice colonized with feces from our study cohort. The AMON 405 

analysis allows us to specifically evaluate which compounds could have been directly produced 406 

by the gut microbiome but is limited by a lack of KEGG annotations for many compounds (40).   407 

The gnotobiotic mouse experiments can identify microbial influence in unannotated compounds 408 
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but cannot differentiate between direct production/consumption by microbes versus indirect 409 

influence. The results will also be influenced by physiological differences between mice and 410 

humans and the incomplete colonization of human microbes in humanized mice. Although these 411 

weaknesses may have led us to underestimate which of the 150 metabolic disease associated 412 

compounds may have been related to the microbiome, it still identified compounds that supported 413 

a mechanistic link between gut microbes, metabolites, and metabolic disease in HIV-infected 414 

individuals on ART.  415 

 416 

Firstly, we found a negative correlation between the microbially-produced non-canonical amino 417 

acid, dehydroalanine, and metabolic disease score. Dehydroalanine is a component of lantibiotics 418 

that are active against Gram-positive bacteria. We observed Gram-positive Dorea to positively 419 

correlate with LBP, suggesting a role of lantibiotics in regulating our proposed LBP-centered 420 

metabolic disease in this population.  421 

 422 

Secondly, we observed that bacteriohopane-32,33,34,35-tetrol positively correlated with the 423 

metabolic disease score. This compound has been found to be a lipoxygenase inhibitor that 424 

prevents the formation of hydroxyicosatetraenoic acid and various leukotrienes from arachidonic 425 

acid (65), which have been linked with the development of cardiovascular disease and metabolic 426 

syndrome (66). This association of a potentially protective metabolite increased in metabolic 427 

impairment seems counterintuitive; however, it may be indicative of larger systemic changes in 428 

arachidonic acid metabolism and is worthy of further exploration.  429 

 430 

Thirdly, we identified a PC and a PE associated with both the microbiome and metabolic disease 431 

score. Changes in PCs and/or PEs have been previously implicated in atherosclerosis, insulin 432 

resistance and obesity (44). AMON analysis indicated that both PCs and PEs can be synthesized 433 

by intestinal bacteria; however, these compounds can also be synthesized in the host and may 434 
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be found in the diet. In our analysis, PE(18:1/20:1) levels were higher in colonized compared to 435 

germ-free mice indicating that intestinal bacteria do influence overall levels despite diverse 436 

potential sources.  437 

 438 

Lastly, we observed increased levels of several plasma triglycerides in the humanized compared 439 

to germ-free mice, including two plasma triglycerides that were significantly associated with 440 

metabolic disease score. This confirms the influence of the gut microbiome on host plasma 441 

triglycerides (67-69). However, we did not find any strong associations between these 442 

triglycerides and specific microbes within our dataset, indicating a potential need for studies 443 

conducted in larger cohorts or with shotgun metagenomics to look for functional correlates.  444 

 445 

In conclusion, we observed a relationship between diet, gut microbiome, plasma metabolome, 446 

and peripheral immune markers of inflammation and metabolic disease in MSM. These data pull 447 

together several previously described relationships between pairs of these compartments 448 

observed in other populations. However, in this work we demonstrate both a novel collection of 449 

measures (microbiome, peripheral immune signaling, peripheral metabolites, demographic and 450 

diet information) and a novel approach for integrating several host compartments in order to 451 

examine a more complex system and applied it to the little studied population of HIV negative and 452 

positive MSM with and without LD. Our results suggest that an overall gut environment driven by 453 

low fiber, key vitamins, and microbes that promote intestinal barrier integrity and high in potentially 454 

pathogenic bacteria may work in conjunction to increase levels of LBP and other inflammatory 455 

cytokines to drive poor metabolic health. These results illuminate potential microbiome-targeted 456 

therapies and personalized diet recommendation given an interacting set of gut microbes and 457 

other host factors. Understanding these relationships further may provide novel treatments to 458 

improve the metabolic disease and inflammatory outcomes of MSM living with HIV. 459 

 460 
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Methods 461 

Subject Recruitment 462 

Participants were residents of the Denver, Colorado metropolitan area and the study was 463 

conducted at the Clinical Translational Research Center of the University of Colorado Hospital. 464 

The study was reviewed and approved by the Colorado Multiple Institutional Review Board and 465 

informed consent was obtained from all participants. For detailed criteria on recruitment of our 466 

five cohorts (HIV negative MSW; HIV negative MSM; HIV positive, ART naïve MSM; HIV positive 467 

ART-treated MSM with LD; and HIV positive ART-treated MSM without LD) see supplemental 468 

methods. 469 

 470 

Feces, a fasting blood sample, and clinical surveys were collected from participants in order to 471 

obtain analytes for the study design outlined in Figure 3 (Supplemental Table 2). To evaluate 472 

metabolic health, we measured seven common clinical markers from fasting blood: triglycerides, 473 

glucose, insulin, LDL, HDL, leptin, and adiponectin. Additional information about relevant clinical 474 

measures such as probiotic use were also collected via a questionnaire and study participants 475 

also filled out information on typical frequency of high-risk sexual practices and on typical levels 476 

of gastrointestinal issues such as bloating, constipation, nausea and diarrhea.  477 

 478 

Diet Data FFQ Collection 479 

Typical dietary consumption over the prior year was collected using Diet History Questionnaire II 480 

(70). Diet composition was processed using the Diet*Calc software and the 481 

dhq2.database.092914 database (71). All reported values are based on USDA nutrition 482 

guidelines. Reported dietary levels were normalized per 1000 kcal. To reduce the number of 483 

comparisons within the diet survey data, we binned highly co-correlating groups of measures 484 

within the data types into modules (Supplemental Table 3). These modules were defined using 485 

the tool, SCNIC (72). 486 
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 487 

Immune Data Collection 488 

Whole blood was collected in sodium heparin vacutainers and centrifuged at 1700rpm for 10 489 

minutes for plasma collection. Plasma was aliquoted into 1mL microcentrifuge tubes and stored 490 

at -80. For ELISA preparation, plasma was thawed, kept cold, and centrifuged at 2000xg for 20 491 

minutes before ELISA plating. Markers for sCD14, sCD163, and FABP-2 were measured from 492 

plasma using standard ELISA kits from R&D Systems (DC140, DC1630 &DFBP20). Positive 493 

testing controls for each ELISA kit were also included (R&D Systems QC20, QC61, & QC213). 494 

LBP was measured by standard ELISA using Hycult Biotech kit HK315-02. Markers for IL-6, IL-495 

10, TNF-α, MCP-1, and IL-22 were measured using Meso Scale Discovery’s U-PLEX Biomarker 496 

Group 1 multiplex kit K15067L-1. Markers for SAA, VCAM-1, ICAM-1, and CRP were measured 497 

using Meso Scale Discovery’s V-Plex Plus Vascular Injury Panel 2 multiplex kit K15198G-1. 498 

Vascular Injury Control Pack 1 C4198-1 was utilized as a positive control for this assay. Markers 499 

for GM-CSF, IL-7, IL-12/23p40, IL-15, IL-16, IL-17A, TNF-β, and VEGF were measured using 500 

Meso Scale Discovery’s V-Plex Plus Cytokine Panel 1 multiplex kit K151A0H-1. Cytokine Panel 501 

1 Control Pack C4050-1 was utilized as a positive control for this assay. Plasma samples were 502 

diluted per manufacturer’s recommendation for all assays. Standard ELISA kit plates were 503 

measured using a Vmax® Kinetic Microplate Reader with Softmax® Pro Software from Molecular 504 

Devices LLC. Multiplex ELISA kits from Meso Scale Discovery were measured using the 505 

QuickPlex SQ 120 with Discovery Workbench 4.0 software. 506 

 507 

Gnotobiotic Mouse Protocols 508 

Germ-free C57/BL6 mice were purchased from Taconic and bred and maintained in flexible film 509 

isolator bubbles, fed with standard mouse chow. Three days before they were gavaged, male 510 

mice between 5-7 weeks of age were switched over to a western high-fat diet and were fed this 511 

diet for the remainder of the experiment. Diets were all obtained from Envigo (Indiana): Standard 512 
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chow - Teklad global soy protein-free extruded (item 2920X - 513 

https://www.envigo.com/resources/data-sheets/2020x-datasheet-0915.pdf), Western Diet – New 514 

Total Western Diet (item TD.110919). See Supplemental Table 10 for detailed diet composition. 515 

Mice were gavaged with 200 μL of fecal solutions prepared from 1.5 g of donor feces mixed in 3 516 

mL of anaerobic PBS (19). Mice were housed individually following gavage for three weeks in a 517 

Tecniplast iso-positive caging system, with each cage having HEPA filters and positive 518 

pressurization for bioexclusion. Feces were collected from mice at day 21 for 16S rRNA gene 519 

sequencing. Mice were euthanized at 21 days post gavage using isoflurane overdose and all 520 

efforts were made to minimize suffering. Blood from euthanized animals was collected using 521 

cardiac puncture and cells were pelleted in K2-EDTA tubes; plasma was then aliquoted and 522 

stored at -80° C. 523 

 524 

Metabolomics Methods 525 

Plasma Sample Preparation 526 

A modified liquid-liquid extraction protocol was used to extract hydrophobic and hydrophilic 527 

compounds from the plasma samples (73). Briefly, 50 µL of plasma spiked with internal standards 528 

underwent a protein crash with 250 µL ice cold methanol. 750 µL methyl tert-butyl ether (MTBE) 529 

and 650 µL 25% methanol in water were added to extract the hydrophobic and hydrophilic 530 

compounds, respectively. 500 µL of the upper hydrophobic layer and 400 µL of the lower 531 

hydrophilic layer were transferred to separate autosampler vials and dried under nitrogen. The 532 

hydrophobic layer was reconstituted with 100 µL of methanol and the hydrophilic layer was 533 

reconstituted with 50 µL 5% acetonitrile in water. Both fractions were stored at -80 °C until LC/MS 534 

analysis.  535 

 536 

Liquid Chromatography Mass Spectrometry 537 
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The hydrophobic fractions were analyzed using reverse phase chromatography on an Agilent 538 

Technologies (Santa Clara, CA) 1290 ultra-high precision liquid chromatography (UHPLC) 539 

system on an Agilent Zorbax Rapid Resolution HD SB-C18, 1.8um (2.1 x 100mm) analytical 540 

column as previously described (73, 74). The hydrophilic fractions were analyzed using 541 

hydrophilic interaction liquid chromatography (HILIC) on a 1290 UHPLC system using an Agilent 542 

InfinityLab Poroshell 120 HILIC-Z (2.1 x 100mm) analytical column with gradient conditions as 543 

previously described (75) with mass spectrometry modifications as follows: nebulizer pressure: 544 

35psi, gas flow: 12L/min, sheath gas temperature: 275C, sheath gas flow: 12L/min, nozzle 545 

voltage: 250V, Fragmentor: 100V. The hydrophobic and hydrophilic fractions were run on Agilent 546 

Technologies (Santa Clara, CA) 6545 Quadrupole Time of Flight (QTOF) mass spectrometer. 547 

Both fractions were run in positive electrospray ionization (ESI) mode 548 

 549 

Mass Spectrometry Data Processing 550 

Compound data was extracted using Agilent Technologies (Santa Clara, CA) MassHunter 551 

Profinder Version 10 software in combination with Agilent Technologies Mass Profiler 552 

Professional Version 14.9 (MPP) as described previously (40). Briefly, Batch Molecular Feature 553 

Extraction (BMFE) was used in Profinder to extract compound data from all samples and sample 554 

preparation blanks. The following BMFE parameters were used to group individual molecular 555 

features into compounds: charge state 1-2, with +H, +Na, +NH4 and/or +K charge carriers. To 556 

reduce the presence of missing values, a theoretical mass and retention time database was 557 

generated for compounds present in samples only from a compound exchange format (.cef) file. 558 

This .cef file was then used to re-mine the raw sample data in Profinder using Batch Targeted 559 

Feature Extraction.  560 

 561 

An in-house database containing KEGG, METLIN, Lipid Maps, and HMDB spectral data was used 562 

to putatively annotate metabolites based on accurate mass (≤ 10 ppm), isotope ratios and isotopic 563 
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distribution. This corresponds to a Metabolomics Standards Initiative metabolite identification 564 

level three (76). To improve compound identification, statistically significant compounds 565 

underwent tandem MS using 10, 20, and 40V. Fragmentation patterns of identified compounds 566 

were matched to either NIST14 and NIST17 MSMS libraries, or to the in silico libraries, MetFrag 567 

(77) and Lipid Annotator 1.0 (Agilent) (78). 568 

 569 

Microbiome-associated metabolites 570 

Microbiome-associated metabolites were defined using metabolites identified as significantly 571 

different in abundance between germ-free compared to humanized gnotobiotic mice and/or 572 

metabolites identified as microbially produced by the tool AMON (40).  573 

 574 

For the gnotobiotic mouse analysis aqueous and lipid metabolites were analyzed separately (see 575 

mouse protocol above for details on experimental set-up). Metabolites that were present in <20% 576 

of samples were filtered out before analysis. Significant difference was determined using a 577 

Student’s t-test with FDR p-value correction. FDR-corrected p values < 0.05 were deemed 578 

significant. Significant metabolites also present in the human samples were retained for further 579 

analysis.  580 

 581 

For the AMON-identified metabolites, the tool used an inferred metagenome, which was 582 

calculated using the PICRUSt2 QIIME2 plugin (42) and default parameters; a list of all identified 583 

KEGG IDs from the metabolite data (see metabolome methods); and KEGG flat files (downloaded 584 

2019/06/10). AMON determined metabolites observed that could be produced by the given 585 

genome. These metabolites were kept for analysis in addition to the gnotobiotic mouse identified 586 

metabolites. Those without any putative classification were removed from analysis.  587 

 588 

Microbiome Methods 589 
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Sample Collection, Extraction, and Sequencing 590 

Stool samples were collected by the patient within 24 hours prior to their clinic visit on sterile 591 

swabs dipped into a full fecal sample deposited into a commode specimen collector. Samples 592 

were kept cold or frozen at -20°C during transport prior to being stored at -80°C. DNA was 593 

extracted using the standard DNeasy PowerSoil Kit protocol (Qiagen). Extracted DNA was PCR 594 

amplified with barcoded primers targeting the V4 region of 16S rRNA gene according to the Earth 595 

Microbiome Project 16S Illumina Amplicon protocol with the 515F:806R primer constructs (79). 596 

Control sterile swab samples that had undergone the same DNA extraction and PCR amplification 597 

procedures were also processed. Each PCR product was quantified using PicoGreen (Invitrogen), 598 

and equal amounts (ng) of DNA from each sample were pooled and cleaned using the UltraClean 599 

PCR Clean-Up Kit (MoBio). Sequences were generated on six runs on a MiSeq sequencing 600 

platform (Illumina, San Diego, CA). 601 

 602 

Microbiome Sequence Processing and Analysis 603 

Microbiome processing was performed using QIIME2 version 2018.8.0 (80). Data was sequenced 604 

across five sequencing runs. Each run was demultiplex and denoised separately using the 605 

DADA2 q2 plugin (81). Individual runs were then merged together and 99% de novo OTUs were 606 

defined using vSEARCH (82). Features were classified using the skLearn classifier in QIIME2 607 

with a classifier that was pre-trained on GreenGenes13_8 (83). The phylogenetic tree was 608 

building using the SEPP plugin (84). Features that did not classify at the phylum level or were 609 

classified as mitochondria or chloroplast were filtered from the analysis. Samples were rarefied 610 

at 19,986 reads. To reduce the number of comparisons within the microbiome, we binned highly 611 

co-correlating groups of measures within the data types into modules (Supplemental Table 1). 612 

These modules were defined using the tool, SCNIC (72). For statistical analysis features present 613 

in <20% of samples were filtered out.  614 

 615 
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Bioinformatics 616 

Module definition 617 

Modules were called on microbiome and diet data. Modules were defined using the tool SCNIC 618 

(72). The q2-SCNIC plugin was used with default parameters for the microbiome data and 619 

standalone SCNIC was used for the diet data (https://github.com/shafferm/SCNIC). Specifically, 620 

for each data type SCNIC was used to first identify pairwise correlations between all features. 621 

Pearson correlation was used for diet and SparCC (85), which takes into account 622 

compositionality, was used for microbiome data to. Modules were then selected with a shared 623 

minimum distance (SMD) algorithm. The SMD method defines modules by first applying complete 624 

linkage hierarchical clustering to correlation coefficients to make a tree of features. Modules are 625 

defined as subtrees where all pairwise correlations between all pairs of tips have an R value 626 

greater than defined minimum. The diet modules were defined using a Pearson r2 cutoff of 0.75. 627 

The microbiome modules were defined using a SparCC minimum r cutoff of 0.35. To summarize 628 

modules SCNIC uses a simple summation of count data from all features in a module. Application 629 

of SCNIC reduced the number of evaluated features from 6,913 to 6,818 for microbiome and 59 630 

to 29 for diet data. 631 

 632 

Statistical Analysis 633 

All statistics were performed in R. For non-parametric tests Spearman rank correlation and 634 

Kruskal-Wallis test were used. For parametric tests linear models and Student’s t-test were used.  635 

 636 

Data analysis tools 637 

Metabolic disease score was calculated using PCA in R with prcomp. Data was scaled using 638 

default method within the prcomp library. All random forest analysis tools were used in R. 639 

Standard random forest was performed using randomForest. Variable selection was performed 640 

in R using the tool VSURF (35). Interaction analysis was performed in R using the tool iRF (39). 641 
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 642 

Data Availability 643 

All data will be publicly available upon publishing. Microbiome data in QIITA 644 

(https://qiita.ucsd.edu) Study ID 13338 and available upon request and will be publicly available 645 

in EBI/ENA (https://www.ebi.ac.uk/ena) upon publishing. Immune and diet data are available 646 

along with the microbiome data as associated metadata. Metabolomics data will be available on 647 

Metabolomic Workbench (https://www.metabolomicsworkbench.org) upon publishing. Until 648 

publicly available it is available upon request. 649 

 650 
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Supplemental Table 2. Study measures by datatype 681 
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Supplemental Table 3. Diet survey data modules calculated by SCNIC 683 
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Supplemental Table 5. Edge table for VSURF-selected inter-variable correlations 687 
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Supplemental Table 6. Gnotobiotic mouse experiment set-up 689 
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Supplemental Figures 698 

 699 
Supplemental Figure 1. Metabolic Score Cutoff Calculations using regressions between 700 
metabolic disease score and the metrics used in the PCA analysis. Triglycerides, fasting 701 
glucose, HDL and LDL have well-define clinical cut-offs for high values and were used to calculate 702 
the healthy-unhealth cutoff. Linear model was calculated modeling metabolic disease score by 703 
each marker. The high value intercept of the regression line is marked with a dotted line and value 704 
annotated on the plot. The solid line is the defined healthy-unhealthy cutoff calculated as the 705 
mean of the four cutoff values. P values are from the linear model.   706 
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 707 
Supplemental Figure 2. Histogram of percent variation explained in permuted VSURF. 708 
Metabolic disease score was permuted 1,000 times and passed through VSURF. The resulting 709 
variables were run through a standard random forest and the percent variation explained was 710 
calculated. The blue line represents the percent variation explained for the true VSURF. P value 711 
was calculated using a one tailed test.  712 
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 713 
Supplemental Figure 3. Correlation network of VSURF-selected variables. Correlation 714 
network of A) all VSURF-selected variables and B) neighboring nodes of dietary fiber. All 715 
Spearman rank correlations with an FDR p < 0.25 are shown. See Supplemental Table 5 for the 716 
edge table and Supplemental Table 4 for the node table.  717 
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