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Summary  
The ‘Subgroup Identification’ (SGI) toolbox provides an algorithm to automatically detect clinical subgroups of 
samples in large-scale omics datasets. It is based on hierarchical clustering trees in combination with a 
specifically designed association testing and visualization framework that can process an arbitrary number of 
clinical parameters and outcomes in a systematic fashion. A multi-block extension allows for the simultaneous 
use of multiple omics datasets on the same samples. In this paper, we describe the functionality of the toolbox 
and demonstrate an application example on a blood metabolomics dataset with various clinical biochemistry 
readouts in a type 2 diabetes case-control study.  
 

 
Availability and implementation 
SGI is an open-source package implemented in R. Package source codes and hands-on tutorials are available 
at https://github.com/krumsieklab/sgi. The QMdiab metabolomics data is included in the package and can be 
downloaded from https://doi.org/10.6084/m9.figshare.5904022. 
 

1 Introduction 
The identification of patient subgroups from high-dimensional molecular profiles has become a central approach 
in biomedical research, driven by the wide availability of modern “multi-omics” datasets [1–3]. The central idea 
is that genomics, transcriptomics, proteomics, metabolomics, and other deep molecular phenotypes will 
inherently define groups of patients that are similar with respect to disease-relevant clinical outcomes. Note that 
“outcome” is here defined in a statistical sense, and also includes parameters such as sex, prevalent disease 
and current BMI. Recent examples of molecularly-defined subgroups include the identification of subtypes of 
lymphoma that severely impact survival [4], subtypes of various cancers identified in the ‘The Cancer Genome 
Atlas’ [5], and patient stratification in allergic diseases [6].  

However, the identification of such subgroups in complex omics datasets with variety of patient 
measurements and clinical outcomes requires automated computational approaches. Adding to this complexity, 
patient subgroups might occur nested inside other, higher-level subgroups; for example, a group of high-risk 
patients within the male subpopulation or within a certain age group. The ‘SGI’ (subgroup identification) package 
implements a novel method to automatically generate omics-based subgroups of any granularity for an arbitrary 
number clinical variables of interest. It moreover provides a comprehensive set of methods to visualize the 
associations for further interpretation.  
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2 Description 

2.1 SGI method 
The SGI algorithm generates a hierarchical clustering of samples and runs a two-group association test against 
the analyzed clinical outcomes at each branching point in the tree. An example output plot is shown in Figure 1, 
which will be further discussed in the application section below. The algorithm works as follows: (1) Clustering. 
A dendrogram of the samples is generated using standard hierarchical clustering on the input data matrix. The 
function accepts any hclust object, giving the user full control over the choice of distance and linkage functions. 
(2) Generate valid cluster pairs. To avoid low-powered calculations in small clusters, the method enumerates 
all branching points where both left and right subclusters are above a user-defined size threshold. This results 
in a list of “valid” cluster pairs. SGI runs with a default setting of 5% of the sample size. (3) Association analysis. 
Run statistical tests with all clinical outcomes for all valid cluster pairs. SGI has built-in implementations for 
categorical outcomes (Fisher’s exact tests), continuous outcomes (two-sample t-tests) and survival outcomes 
(log-rank tests). The appropriate test is automatically determined by the toolbox based on the data type of the 
clinical variable. Furthermore, the user can define arbitrary association functions for more complex data types. 
(4) Multiple testing correction. Since a dendrogram clusters the samples into cascaded, non-overlapping 
groups, all statistical tests are strictly independent. Thus, SGI performs Bonferroni multiple testing correction by 
adjusting each p-value by a factor of the number of valid cluster pairs.  

In addition to its core functionality, SGI provides support functions to extract, plot, print, and summarize 
all clustering and association results and test statistics, which allows the user to access all intermediate results 
to further analyze the subgroup results. 

2.2 Visualization 
Association results with multiple outcomes on a hierarchical tree are inherently complex to visualize. The SGI 
toolbox provides a variety of dedicated functions to visually inspect the statistical associations. This includes tree 
visualizations of all statistically significant outcome associations that are displayed at the respective branching 
points and heatmaps of the actual data (Figure 1). Moreover, the user can generate plots to inspect specific 
associations, e.g., boxplots of a quantitative clinical outcome between two clusters. 

This allows the user to obtain a quick overview of the correlation structure between the input omics 
dataset, the resulting patient groups, and the clinical features that are analyzed. The simultaneous visualization 
of all data also allows to dissect the relationship between confounding variables, avoiding the predefined choice 
of a list of confounder variables to correct for. 

2.3 Multi-omics datasets 
The SGI package provides clustering functionality for the analysis of multi-omics datasets, i.e., datasets where 
more than one omics technology has been measured for the same samples. To this end, SGI generates a joint 
samples X sample distance matrix from the individual distance matrices of each omics layer. Since different 
omics layers will have varying numbers of variables, the respective distance values are not at comparable scales. 
The toolbox thus normalizes each individual distance matrix by its maximum and defines 𝐷 = 𝐷!/𝑚𝑎𝑥	(𝐷!) +
	𝐷"/𝑚𝑎𝑥	(𝐷") + ⋯+ 𝐷#/𝑚𝑎𝑥	(𝐷#), with 𝐷 representing the final distance matrix, 𝐷! etc. the original distance 
matrices and 𝑙 the number of omics datasets. The approach was adapted from [7], where it was originally 
introduced to generate a Ward-like clustering. Notably, the method also works to normalize multi-omics 
contributions for other types of linkages, such as average linkage and complete linkage. Moreover, the method 
works with any distance metric.  

A detailed example of the multi-omics capabilities of SGI on combined plasma, urine, and saliva 
metabolomics data can be found in the example R codes of the github repository. 
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3 Application example  
We demonstrate the functionality of the SGI package on plasma metabolomics data set from the ‘QMdiab’ 
diabetes case/control study with 356 participants [8,9]. Outcome parameters were type 2 diabetes diagnosis and 
nine anthropometric and clinical biochemistry parameters: age, sex, BMI, HbA1c, albumin, hemoglobin, LDL 
cholesterol, total cholesterol and skin auto-fluorescence [10]. The goal was to determine clusters of study 
participants defined by their profiles of circulating metabolites, and how these metabolomic clusters correlate 
with the different clinical parameters. The resulting visualization is shown in Figure 1. The following lines of code 
directly generate that plot using the SGI package: 
 
# hierarchical clustering 
hc = hclust(dist(sgi::qmdiab_plasma), method = "ward.D2") 
# initialize SGI structure 
sg = sgi_init(hc, outcomes = sgi::qmdiab_clin) 
# run SGI 
as = sgi_run(sg) 
# generate tree plot, show results for adjusted p-values <=0.05 
(gg_tree = plot(as, p_th = 0.05)) 
# plot overview, including clinical data and metabolomics data matrix 
plot_overview(gg_tree = gg_tree, as = as,  
               outcomes = sgi::qmdiab_clin, xdata = sgi::qmdiab_plasma) 

 
In this R code, sgi::qmdiab_plasma and sgi::qmdiab_clin are data frames holding the metabolomics and 
clinical variables, respectively. These data frames are contained in the package. The tree shows how 
metabolomic profiles separate study participants into two major groups at the top level of the tree (clusters 2 vs. 
3), one with older individuals and a higher proportion of diabetes, and a younger group with lower prevalence of 
diabetes. Inside those two groups, further subgroups were identified, for example a male vs. female cluster which 
is also defined by significant differences of BMI inside the healthier group (clusters 6 vs. 7).  
 

4 Conclusion 
SGI provides an unbiased, data-driven way to automatically identify sample subgroups in omics profiles. It 
identifies and visualizes complex, hierarchical relationships for an arbitrary number of clinical outcomes in a 
visually intuitive way. The toolbox is easy to use, open source, and comes with a series of examples in the online 
repository. 
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Figure 1: Application example. Blood metabolomics-based clustering of n=356 participants of the QMdiab study. White circles in the tree 
indicate the left/right splitting points of the samples in the data (note that these are not centered if the subclusters are of unequal size). 
Markings on the tree indicate statistically significant associations of the parameter with the respective left and right subgroups at that split. 
Heatmap track below the tree shows individual values for selected parameters. Red circles between gaps indicate significant results for 
left vs. right at that split and are horizontally aligned with their respective white circles on the tree. Bottom panel shows metabolomics 
data matrix behind the clustering. DIAB=diabetes diagnosis yes/no.  
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