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ABSTRACT 

Psychiatry faces fundamental challenges with regard to mechanistically guided differential diagnosis, 

as well as prediction of clinical trajectories and treatment response of individual patients. This has 

motivated the genesis of two closely intertwined fields: (i) Translational Neuromodeling (TN), which 

develops “computational assays” for inferring patient-specific disease processes from neuroimaging, 

electrophysiological, and behavioral data; and (ii) Computational Psychiatry (CP), with the goal of 

incorporating computational assays into clinical decision making in everyday practice. In order to serve 

as objective and reliable tools for clinical routine, computational assays require end-to-end pipelines 

from raw data (input) to clinically useful information (output). While these are yet to be established in 

clinical practice, individual components of this general end-to-end pipeline are being developed and 

made openly available for community use. 

In this paper, we present the Translational Algorithms for Psychiatry-Advancing Science (TAPAS) 

software package, an open-source collection of building blocks for computational assays in psychiatry. 

Collectively, the tools in TAPAS presently cover several important aspects of the desired end-to-end 

pipeline, including: (i) tailored experimental designs and optimization of measurement strategy prior to 

data acquisition, (ii) quality control during data acquisition, and (iii) artifact correction, statistical 

inference, and clinical application after data acquisition. Here, we review the different tools within 

TAPAS and illustrate how these may help provide a deeper understanding of neural and cognitive 

mechanisms of disease, with the ultimate goal of establishing automatized pipelines for predictions 

about individual patients. We hope that the openly available tools in TAPAS will contribute to the 

further development of TN/CP and facilitate the translation of advances in computational neuroscience 

into clinically relevant computational assays.  
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1 INTRODUCTION 

Contemporary psychiatry uses disease classifications that are almost entirely based on syndromes (i.e., 

patterns of symptoms and signs) as defined by the Diagnostic and Statistical Manual of Mental Disorders 

(DSM; American Psychiatric Association, 2013) or the International Classification of Diseases (ICD; 

World Health Organization, 1990). While these schemes are valuable in that they provide a stratification 

of mental illness that relates to the subjective phenomenology of patients, they are inherently limited as 

they do not rest on pathophysiological or aetiological concepts of diseases. As a consequence, clinical 

labels proposed by DSM or ICD (e.g., schizophrenia or depression) typically have limited predictive 

validity with regard to clinical trajectories and do not inform the optimal treatment selection in 

individual patients (Cuthbert and Insel, 2010; Kapur et al., 2012). Furthermore, clinical and scientific 

evidence suggests that these labels do not describe distinct categorical entities, but rather spectrum 

disorders that are characterized by substantial heterogeneity and overlap (Krystal and State, 2014; Owen, 

2014; Stephan et al., 2016a). 

This has motivated novel approaches to advance our understanding of the pathophysiological and 

psychopathological processes underlying diseases, and to ultimately inform differential diagnosis and 

treatment prediction in individual patients (Stephan et al., 2016b). In addition to the rise of (epi)genetic 

approaches, advances in computational neuroscience have fueled hopes that it may become possible to 

establish quantitative diagnostic and prognostic computational tools that significantly improve clinical 

practice in psychiatry. In particular, mathematical models of neuroimaging data, as obtained using 

functional magnetic resonance imaging (fMRI) and electro/magnetoencephalography (EEG/MEG), 

hold great promise as they might offer readouts of the symptom-producing physiological processes 

underlying brain disorders (Adams et al., 2020; Deco and Kringelbach, 2014; Frässle et al., 2018b; 

Gilbert et al., 2016; Moran et al., 2011; Symmonds et al., 2018). Similarly, advances in computational 

models of human behavior may enable inference on psychopathological processes at the computational 

(information-processing) level (Cole et al., 2020; Iglesias et al., 2016; Lawson et al., 2017; Maia and 

Frank, 2011; Powers et al., 2017; Stephan and Mathys, 2014). 

Efforts to exploit these scientific advances can be grouped into two separate yet overlapping approaches. 

Primarily methodological efforts towards the development of “computational assays” for inferring brain 

disease processes from neuroimaging, electrophysiological, and behavioral data are referred to as 

Translational Neuromodeling (TN); by contrast, Computational Psychiatry (CP), Computational 

Neurology (CN), and Computational Psychosomatics (CPS) are concerned with concrete applications 

in the respective clinical domains, with the ultimate goal of incorporating computational assays into 

routine clinical decision-making (Figure 1). Although many of the tools in TAPAS are equally useful 

for CN and CPS, here we focus on CP as this is arguably the most developed of the computational 

clinical neurosciences (Adams et al., 2016; Browning et al., 2020; Friston et al., 2014; Huys et al., 2016; 
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Jirsa et al., 2016; Jirsa et al., 2010; Montague et al., 2012; Paulus et al., 2016; Stephan and Mathys, 

2014; Stephan et al., 2015; Stephan et al., 2017; Wang and Krystal, 2014). 

 

Figure 1. Taxonomy for different disciplines in the computational neurosciences and their relation to clinical 

questions. Translational Neuromodeling (TN) develops and validates mathematical models for addressing clinical 

problems, whereas Computational Psychiatry (CP), Neurology (CN), and Psychosomatics (CPS) then apply these 

methods to clinically relevant questions. Reprinted with permission from (Frässle et al., 2018b). Copyright 2018 

Wiley. 

Developments of computational assays are often based on generative models of neuroimaging or 

behavioral data. Generative models describe how measured data may have been caused by a particular 

(neuronal or cognitive) mechanism; their inversion allows computational assays to operate on inferred 

states of neural or cognitive systems (Browning et al., 2020; Stephan and Mathys, 2014). This 

mechanistic interpretability is crucial in many clinical contexts. Additionally, traditional machine 

learning (ML) plays a central role in TN/CP, for example by translating the inferences from 

computational assays into patient-specific predictions, an approach referred to as “generative 

embedding” (Brodersen et al., 2011).1 

While early TN/CP proposals date back over a decade (e.g., see Stephan et al., 2006), computational 

assays are yet to enter into routine clinical practice in psychiatry. In order to achieve translational 

success, computational assays will have to build on automatized and validated end-to-end pipelines and 

tools for optimal data acquisition. These pipelines need to support a complete analysis stream that takes 

raw data as input, and outputs clinically actionable results that are derived from inferred latent (hidden) 

computational quantities with pathophysiological or psychopathological relevance. Such an end-to-end 

pipeline will incorporate a series of fundamental steps (Figure 2): (i) Design, (ii) Conduct, (iii) Check 

& Correct, (iv) Preprocessing, (v) Inference, (vi) Clinical application. Each of these components poses 

significant challenges given the complex nature of the acquired data and of the computational tools. 

 
1 ML is also used “on its own” in CP and applied directly to measured data, e.g., for producing patient-specific 
predictions or discovering structure in heterogeneous populations (Durstewitz et al., 2019; Dwyer et al., 2018; 
Gillan et al., 2017; Mourão-Miranda et al., 2012; Portugal et al., 2019; Schmaal et al., 2015). In this paper, 
however, we focus on approaches where ML operates on estimates provided by generative models. 
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Here, we review the current state of development towards such an end-to-end pipeline, with a particular 

focus on our own work and software. 

 

Figure 2. TAPAS components in a proposed end-to-end pipeline of a clinically relevant computational assay. 

This end-to-end pipeline will need to incorporate all steps from the raw imaging or behavioral data to a final 

clinical recommendation. Such a computational assays will capture at least the following crucial steps: (i) Design, 

(ii) Conduct, (iii) Check & Correct, (iv) Preprocessing, (v) Inference, and (vi) Clinical application. Various 

components of TAPAS feature into one or several of these steps and aim to address important questions and 

limitations that have so far hampered translational success. 

Considerable efforts have recently been made to develop standardized and user-friendly software 

packages that could serve as individual components for computational assays. For instance, in the 

context of neuroimaging data, packages like Statistical Parametric Mapping (SPM; Friston et al., 2006), 

FMRIB Software Library (FSL; Smith et al., 2004), or Analysis of Functional NeuroImages (AFNI; 

Cox, 1996) are widespread tools and cover several aspects of the aforementioned end-to-end pipeline, 

including preprocessing of neuroimaging data and statistical inference (typically in the framework of 
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General Linear Models). Similarly, for behavioral data, software packages like the VBA Toolbox 

(Daunizeau et al., 2014), hBayesDM (Ahn et al., 2017), KFAS (Helske, 2017), COMPASS (Yousefi et 

al., 2018), or HDDM (Wiecki et al., 2013) allow inference on computational (information processing) 

quantities. This list is non-exhaustive and more software packages could be mentioned. While all of 

these packages have proven highly valuable to study behavior and brain function in humans, none of 

them has been designed with the specific goal of constructing a pipeline for clinically useful 

computational assays. 

In this paper, we focus on the Translational Algorithms for Psychiatry-Advancing Science (TAPAS) 

software package which represents a collection of toolboxes that, collectively, aim to advance 

computational modeling of neuroimaging and behavioral data. While applicable to study human 

behavior and brain function in health, TAPAS differs from the aforementioned software packages in 

that its designated purpose is to provide clinically useful tools at every stage of the aforementioned end-

to-end pipeline in order to advance translational success of computational approaches to psychiatry. 

TAPAS is primarily written in MATLAB (with some components in C and Python) and distributed as 

open-source code under the GNU General Public License 3.0 

(https://www.translationalneuromodeling.org/tapas). It does not represent a single uniform toolbox but 

rather a collection of toolboxes, each of which addresses a specific problem that arises in TN/CP 

approaches to neuroimaging and/or behavioral data analysis (Figure 2). In brief, TAPAS contains: (i) 

tailored experimental paradigms (tasks) that probe psychopathologically and/or pathophysiologically 

relevant processes, (ii) tools for optimization and monitoring of data quality in the specific context of 

fMRI, (iii) model-based physiological noise correction techniques for fMRI data, and (iv) generative 

models and associated statistical techniques that enable inference on latent (hidden) neurophysiological 

or cognitive quantities from neuroimaging or behavioral data. The latter range from network/circuit 

models that infer effective (directed) connectivity from fMRI and EEG/MEG data to behavioral models 

that extract computational quantities from observed actions (e.g., decisions or eye movements). To 

facilitate usability of our software, TAPAS is complemented with comprehensive documentation for 

each toolbox, as well as an active forum where users can seek help 

(https://github.com/translationalneuromodeling/tapas/issues). 

Here, we provide a general overview of the different software toolboxes included in TAPAS and 

highlight how these may support the development of clinically useful computational assays for 

psychiatry. The paper is not meant to provide a comprehensive description of each toolbox, but instead 

offers a high-level perspective on how the different tools relate to each other in order to jointly advance 

TN/CP. For readers interested in a more in-depth treatment of a particular toolbox, references will be 

provided in the respective sections.  
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2 DESIGN 

The development of carefully designed experimental manipulations and the acquisition of high-quality 

data is paramount for (clinical) modeling. This is because any conclusion – whether a scientific or 

clinical one – fundamentally rests on the underlying data. The goal of tailored experimental paradigms 

and optimized data acquisition is to increase both the sensitivity and specificity of clinical tests; this 

necessitates optimizations at different stages of data collection. 

(I) Prior to data collection: Tailored experimental paradigms have to be designed that capture relevant 

processes of interest. This may relate to physiological and cognitive aspects in health, or to 

pathophysiological and psychopathological mechanisms in disease. Furthermore, optimization of the 

data acquisition process is vital to ensure high quality measurements. This is particularly important in 

the context of fMRI data, where it is common that project-specific MR sequences have to be developed. 

These aspects will be covered in the current section. 

(II) During data collection: Measures have to be taken that allow maintaining a consistently high level 

of data quality across acquisitions; for instance, across different patients, scanners or sites. This is vital 

in order to ensure that comparable (clinical) conclusions can be drawn from the data. Tools that address 

this aspect of data quality control will be covered in section 0. 

(III) After data collection: Post-hoc assessment of data quality is important to identify datasets that need 

to be excluded or extra analysis steps to deal with artifacts. Poor data quality might be due to severe 

artifacts and/or high noise levels in the data, induced by both the MR system and the participant itself 

(motion, physiological noise). To identify such cases, tools are required that allow for quantitative 

assessment of data quality and that facilitate the decision process as to whether satisfactory data quality 

can be restored or not. Finally, user-friendly tools are needed that enable automatized corrections to 

clean-up data as best as possible. We will address these aspects in section 3. 

All these efforts ideally interact seamlessly with each other in order to maximize the sensitivity and 

specificity of diagnostic/prognostic tests that build on the acquired data. Suboptimal data acquisition 

and quality control can result in a high proportion of datasets that have to be excluded from further 

analyses or lead to false conclusions, which is particularly problematic in the context of clinical 

applications. 

 

2.1 Harmonization of experimental design 

For probing disease-relevant cognitive processes, a plethora of experimental tasks have been proposed 

that frequently only differ in small details. While some variations are valuable as they address somewhat 

different aspects of a cognitive process, this diversity complicates exact comparison of findings across 

studies and often gives rise to “approximate replications” where an initial finding is not replicated 

exactly but some (vaguely) related finding is linked to the original observation (Kapur et al., 2012; 
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Maxwell, 2004). A prominent example of this in the context of clinical neuroimaging is the frontal 

dysfunction hypothesis in schizophrenia. Since the original report (Carter et al., 1998), several studies 

have re-examined this question using somewhat different experimental approaches and have reported a 

variety of different outcomes, ranging from hyper- to hypoactivation, to no obvious alterations at all (cf. 

Kapur et al., 2012; Van Snellenberg et al., 2006). While it is possible that these differences could be of 

pathophysiological relevance, potentially referring to different subgroups in the schizophrenic spectrum, 

inconsistencies in the utilized experimental manipulations render any differences difficult to interpret. 

Hence, until such variations are properly explained or controlled for, approximate replications do not 

provide a solid basis for clinical tests. 

One way to address this challenge is by openly sharing established experimental tasks. Notably, while 

the call for open sharing of data has been very prominent in recent years (Poldrack and Gorgolewski, 

2014; Poline et al., 2012; Van Horn et al., 2001), this is less the case for sharing the experimental tasks 

themselves (but see, for instance, the task protocols utilized by the Human Connectome Project (Van 

Essen et al., 2013) which have been shared openly). 

To this end, TAPAS comprises the module “TAPAS Tasks” which represents a collection of 

experimental paradigms that have been designed and thoroughly tested (Figure 3, top left). TAPAS 

Tasks comprises several tasks that cover both the exteroceptive and interoceptive2 domains (for a 

complete list, see Table 1). For all paradigms, the stimulus code is provided as well as detailed 

documentation. This includes a comprehensive description of (i) the experimental task, (ii) software 

requirements, (iii) experimental set-up (including a list of necessary peripheral devices), and (iv) 

information on how to run the task. 

Table 1. List of tasks included in TAPAS Tasks. TAPAS Tasks includes a variety of different paradigms that 

probe exteroceptive and/or interoceptive processes. Note that some of the tasks listed here are not yet available in 

TAPAS, but will be included once the associated paper has been published. 

Task Description 

 Heartbeat Attention (HbAttention) The HbAttention task probes differences in neural responses to 
heartbeats due to changes in attentional focus. The paradigm 
consists of alternating conditions where participants focus 
attention either on their heart (interoceptive condition) or on an 
external sound stimulus (exteroceptive condition), while 
keeping the sensory stimulation identical (Petzschner et al., 
2019). The HbAttention task requires the acquisition of an ECG 
and can be run in the context of an EEG experiment, measuring 
a Heartbeat Evoked Potential (HEP), or an fMRI experiment. 

 
2 Exteroception refers to perception of sensations originating from the external world, whereas interoception refers 
to perception of sensations originating from the own body or “internal world”. 
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The task is programmed such that the stimulus timing can be 
easily adjusted to the experimental modality. 

 Heartbeat Feedback (HbFeedback) The HbFeedback task presents auditory-visual stimuli that are 
either locked to an individual’s online detected heartbeat 
(veridical feedback about the heartbeat) or presented at a rate 
that is faster or slower than the individual’s heartrate. The task 
assesses the effects of veridical versus false feedback on 
physiological and neural signals related to heartbeats. It 
requires the simultaneous recording of EEG and ECG signals. 

 Heartbeat Mismatch (HbMMN) The HbMMN task consists of an auditory omission paradigm 
where a ‘standard’ tone is presented shortly after each 
heartbeat, but occasionally omitted (‘deviant’). In different 
conditions, the delay between heartbeat and tone is varied.  This 
allows to measure changes in stimulus-evoked and heartbeat-
evoked potentials between standards and omissions. In a 
control condition, tone presentation times are unrelated to 
heartbeats. EEG and ECG signals are simultaneously recorded 
during the task. 

 Filter detection (FD) The FD task is a perceptual threshold breathing task where 
participants have to indicate on each trial whether a very small 
resistance (i.e., filter) or sham (i.e., empty filter) was applied to 
the breathing system (yes/no version) (Harrison et al., 2020a), 
or in which interval resistance was applied (two-interval forced 
choice version). The task is tailored to assessing respiratory 
interoceptive accuracy and metacognition in individual 
participants. Behavioral responses are recorded. 

 Breathing learning (BL) The BL task represents an associative learning task where 
participants learn the association between visual cues and the 
subsequent presence/absence of an inspiratory resistive load. 
Respiratory load is applied using a novel MRI-compatible 
breathing system that allows for remote administration and 
monitoring of resistive loads and whose construction plan has 
been published (Rieger et al., 2020). fMRI signals are recorded 
during the task. 

 Stimulus-reward learning (SRL) The SRL task requires participants to predict which of two 
simultaneously presented visual stimuli (i.e., fractals) would 
yield a monetary reward. The association strengths between the 
visual cues and monetary outcomes change over the course of 
the experiment, introducing volatility. fMRI or EEG data can 
be acquired during the task. 

 Auditory Mismatch Negativity (aMMN) The aMMN task is a variant of the auditory oddball paradigm 
in which the degree of volatility in the auditory stream varies 
over time. While engaging in a visual distraction task, 
participants passively listen to repeated presentations of a high 
and a low tone. During stable phases of the experiment, one 
stimulus reliably serves as the ‘standard’ (more frequent) tone 
and the other one as the ‘deviant’ tone. During volatile phases, 
the roles of standard and deviant switch more rapidly. Deviance 
processing can be compared between different levels of 
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stability/volatility (Weber et al., in preparation). Task versions 
are available for both EEG or fMRI recordings. 

 Visual Mismatch Negativity (vMMN) The vMMN task implements the identical probabilistic 
stimulus sequence as the aMMN task (Do et al., in 
preparation). However, instead of auditory stimuli, Gabor 
patches of different orientations are used to probe mismatch 
responses in the visual domain. Task versions are available for 
both EEG and fMRI recordings. 

 Antisaccades (AS) The AS task asks participants to perform antisaccades which 
are a type of voluntarily controlled eye movements. In TAPAS, 
code is available to run two different versions of the AS task 
(Aponte et al., 2019; 2018) using an EyeLink (SR Research, 
Ottawa, ON, Canada) eye tracking system. The versions of the 
task differ in the timing (with or without a delay before the eye 
movement) and position (at center or at peripheral target 
position) of the presentation of the task cue. 

 

Here, as an example, we describe the Heartbeat Attention (HbAttention) task in more detail (Figure 3, 

bottom left). The task implements a novel paradigm to probe purely attentional differences of the 

heartbeat evoked potential between exteroceptive and interoceptive conditions (Petzschner et al., 2019). 

The paradigm consists of alternating conditions where participants are asked to focus attention either on 

their heart or on a simultaneously presented auditory stimulus (white noise). Importantly, in both 

conditions the sensory stimulation is identical. Using this paradigm, Petzschner et al. (2019) found an 

increased heartbeat evoked potential during interoceptive compared with exteroceptive attention. A non-

invasive readout of the attentional modulation of interoceptive processes could potentially be of high 

clinical relevance, since alterations in interoceptive processing have been recognized as a major 

component of various psychiatric conditions, including mood and anxiety disorders, eating disorders, 

drug addiction, as well as depression (Khalsa et al., 2018). 

TAPAS Tasks represents work in progress, and newly devised experimental paradigms will be added to 

the module on a regular basis. We hope that by making these tasks openly available to the community, 

TAPAS Tasks may contribute to growing a collection of standardized experimental paradigms in 

TN/CP. 
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Figure 3. TAPAS components that aim to enhance data quality for scientific and clinical applications. This 

includes (left, top) TAPAS Tasks, a collection of experimental paradigms that have been devised and carefully 

tested, for instance, the Heartbeat Attention (HbAttention), stimulus-reward learning (SRL), and breathing 

learning (BL) task. For a complete list of tasks that are already included in TAPAS Tasks or will be included in 

one of the upcoming releases, see Table 1. (Left, bottom) Schematic overview of the experimental paradigm of the 

HbAttention task, as well as the placement of ECG electrodes and a typical ECG signal associated with a heartbeat 

(reprinted with permission from Petzschner et al., 2019). (Right) Furthermore, TAPAS comprises the unified 

neuroimaging quality control (UniQC) toolbox which is designed to facilitate the development and optimization 

of MR acquisition sequences. UniQC can assess (compute & visualize) different image quality metrics (IQMs) at 

different stages of an fMRI experiment (i.e., from raw data to statistical images). This facilitates the acquisition of 

high-quality data by implementing an iterative optimization process, including basic artifact checks, temporal 

stability analysis, functional sensitivity analyses in the whole brain or in particular regions of interest. UniQC 

enables this optimization in a highly flexible fashion, independent of the exact input data (e.g., sequence, 

dimensionality). 

 

2.2 Optimization of MRI protocols 

In the context of neuroimaging, data quality also depends heavily on the MR scanner settings and 

acquisition sequence. Carefully crafted sequences with optimized parameter choices can offer 

considerable gains in functional sensitivity and specificity for the targeted research question (Bollmann 
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and Barth, 2020; Poser and Setsompop, 2018; Weldon and Olman, 2021). However, due to the large 

variety of available parameters and their interdependency, optimization of MR protocols is challenging 

and suboptimal acquisition choices might reduce data quality, e.g., low signal-to-noise ratio or 

pronounced artifacts like ghosting, ringing, signal dropouts and distortions due to magnetic field 

inhomogeneities (for an overview, see Bellon et al., 1986; Bright and Murphy, 2017; Kirilina et al., 

2016; Volz et al., 2019). Hence, the development, optimization and validation of robust and powerful 

MR protocols prior to data acquisition is critical and tools are needed that ease this process. 

To this end, TAPAS includes the unified neuroimaging quality control (UniQC) toolbox (Kasper*, 

Bollmann* et al., in preparation), which provides a framework for flexible, interactive and user-friendly 

computation and visualization of various quality measures in neuroimaging data (Figure 3, right). 

UniQC facilitates fast prototyping and optimization of acquisition sequences by providing tools for 

artifact detection and sensitivity analyses across the entire image or tailored towards specific regions of 

interest. 

As sequence development constitutes an iterative process, feedback on image quality has to be 

immediate and specific to the protocol changes, so that the performed quality control (QC) query 

informs the operator on how to adjust parameters for the next scan (Figure 3, right). For example, if an 

unexpected bias field occurs in the mean image, both excitation and receiver channels could be 

compromised. In this case, fast display of individual coil images is critical, which would be omitted if 

the mean image were inconspicuous. Thus, QC during sequence development resembles a decision tree, 

where the outcome of one image quality metric (IQM) determines the selection of the next one, with 

varying display options. This necessitates an interactive, fast and flexible way to compute and visualize 

IQMs. Typically, such a decision tree starts from basic artifact checks over temporal stability all the way 

to functional sensitivity analyses in particular regions of interest, with the occasional return to the 

scanner, if a QC step fails (Figure 3, right). 

To achieve this functionality, UniQC exploits the object-oriented programming capabilities in 

MATLAB. Importantly, UniQC is not restricted to 4-dimensional neuroimaging data (i.e., space and 

time) like most other software packages, but generalizes operations to n-dimensional data. This 

generalization to arbitrary numbers of dimensions comes in useful when handling data from multiple 

receiver coils (Hesselmann et al., 2004), as well as multi-echo (Poser et al., 2006; Posse et al., 1999) or 

combined magnitude/phase fMRI data (Kundu et al., 2017; Menon, 2002; Rowe, 2005) in a single 

unified framework. Similarly, prominent non-BOLD fMRI contrasts rely on an additional tag/control 

dimension, for instance, Vascular Space Occupancy (VASO; Huber et al., 2017; Lu et al., 2013) or 

Arterial Spin Labeling (ASL; Alsop et al., 2015; Koretsky, 2012), with the former being particularly 

relevant for depth-dependent fMRI. Furthermore, UniQC allows seamless integration with SPM and 

other MATLAB toolboxes in order to benefit from image and fMRI processing algorithms that are 

already available in those packages.  
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In summary, UniQC provides a flexible, interactive and user-friendly toolbox for evaluating MR pulse 

sequence development and quality control of n-dimensional neuroimaging data. These efforts carry over 

from the design stage to the data collection, in that UniQC allows utilizing the processing and 

visualization pipeline established here directly as a quality control protocol – enabling unique QC 

towards the aims of each study. 
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3 CONDUCT, CHECK AND CORRECT 

Besides optimization steps prior to data acquisition, further steps are necessary during and after the 

measurement to ensure adequate data quality. Specifically, ongoing monitoring of data quality during 

image acquisition is critical, because both the MR system and the study participant constitute significant 

potential noise sources. On the system side, data quality across different time points and scanning sites 

may vary due to potential malfunctions or alterations in the scanner hardware, that must be detected in 

a timely manner. On the participant’s side, even under ideal circumstances, with tailored experimental 

designs, optimized acquisition sequences and thorough quality control measures, fMRI data is still 

subject to artifacts outside the experimenter’s control (e.g., motion, physiology; Glover et al., 2000; 

Kruger and Glover, 2001). Adequately correcting for these artifacts is essential to avoid bias in 

subsequent data analyses and to ensure that conclusions are not confounded (e.g., Power et al., 2012; 

Reuter et al., 2015; Yendiki et al., 2014). In what follows, we elaborate on these points and describe 

tools in TAPAS that address these challenges. 

 

3.1 Quality monitoring 

fMRI analyses rely on the content of brain (or spinal cord) images as information source. Thus, the 

visual inspection of raw images by one or multiple experts is still often considered a gold standard for 

quality control. However, visual assessment depends on individual rater experience and visualization 

choices (e.g., slice orientation, windowing) which may reduce the apparent information content of an 

image to detect artifacts or improper acquisition parameters (Gardner et al., 1995) and generally 

aggravates inter-rater reliability. Furthermore, limited time resources and fatigue make the naïve visual 

inspection of every raw image quickly unfeasible, as even a single fMRI dataset contains hundreds of 

volumes with dozens of slices each. This challenge is exacerbated for large-scale datasets, like the 

Human Connectome Project (HCP; Van Essen et al., 2013) or UK Biobank (Sudlow et al., 2015), where 

thousands of participants are measured. 

Automation of quality control is therefore required, and can in principle target both aspects of the manual 

image classification by raters. A first approach is to replace raters by a machine learning algorithm 

working on derived IQMs to reduce the high-dimensional feature space of image time series. A second 

option is that the expertise of the rater can be harnessed more efficiently by providing flexible tools for 

image manipulation and visualization with intuitive interfaces to derive and inspect relevant IQMs, 

thereby reducing operator fatigue and inconsistency. 

The first approach was explored early on for anatomical T1-weighted images (Woodard and Carley-

Spencer, 2006) and demonstrated good discriminability of undistorted, noisy, and distorted images 

based on a subset of 239 IQMs. Since then, various additional tools for automatic quality control have 

been proposed, introducing additional IQMs to assess image quality (Gedamu et al., 2008; Mortamet et 
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al., 2009; Pizarro et al., 2016). These methods have been refined and extended into scalable QC 

frameworks for large-scale fMRI studies, most notably in the form of the MRI Quality Control tool 

(MRIQC; Esteban et al., 2017) and within the UK biobank study (Alfaro-Almagro et al., 2018). Their 

key advancement lies in the ability to classify images in a binary fashion (“good” vs “problematic”) or 

even categorizing multiple artifact classes (Alfaro-Almagro et al., 2018). Standardized quality reports 

then provide guidance, as to whether data from a given participant should be included in subsequent 

analyses or not. In order to ensure accurate classification, these algorithms are typically trained on large 

curated datasets that include both patients and healthy controls (e.g., ABIDE (Di Martino et al., 2014) 

and DS030 (Poldrack et al., 2016) for MRIQC). 

While such fully automatized approaches with minimal visual output and manual assessment might be 

the only viable solution in studies with thousands of participants, the required high degree of 

standardization of the acquisition protocol as well as the need for large, representative training datasets 

poses limitations on its utility. In TN/CP, less well-studied clinical populations and novel technologies 

can pose challenges when trying to exploit established mappings between IQMs and image quality. In 

particular, this can occur when employing advanced imaging hardware or acquisition sequences to 

maximize sensitivity for individual subject measurements, IQMs may fall outside the standard range or 

become inapplicable. For example, higher magnetic field strengths and customized high-density or 

surface coils (Hendriks et al., 2020; Keil and Wald, 2013) induce atypical image intensity variations 

(bias fields). Similarly, Nyquist ghosts manifest differently for spiral readouts than in conventional 

Cartesian echo-planar imaging. Thus, fMRI data may require different IQMs or thresholds when 

deviating from standard acquisition choices. 

In these domains, the second option for QC automation is preferable. This approach empowers the rater 

to determine which IQMs to inspect, how to visualize them, and at which stage of the analysis stream 

to assess them. While parts of this approach have been implemented by providing standardized visual 

reports (e.g., MRIQC, fMRWhy) or interactive QC visualization tools (e.g., visualQC), a comprehensive 

framework that integrates all these functionalities has been missing. To address this, we designed the 

UniQC toolbox to meet these demands by offering flexible, interactive and user-friendly assessment of 

fMRI data (Figure 4, left). Importantly, the quality control pipeline derived during the sequence design 

stage (section 2) can be readily deployed to cover QC automation, and once quality issues are detected, 

UniQC also provides a framework to ‘interrogate’ the data efficiently and identify potential causes of 

the problem. 

In principle, this fast and precise identification can lead to quality improvements in three ways (Figure 

4, left). First, the information can be used to isolate and repair hardware malfunction (e.g., of certain 

coil elements) to swiftly restore quality levels for the next scan or participant. Second, the quality of the 

affected dataset can be increased by modeling the impact of distinct noise sources, as identified by the 

QC decision tree (e.g., electrostatic spike artifacts in the images or interactions between subject motion 
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and magnetic field; Dymerska et al., 2018; Jezzard and Balaban, 1995; Jezzard and Clare, 1999). Third, 

selectively discarding the low-quality data only, as isolated by the customized QC interrogation, 

salvages quality levels for the remainder of the data (Figure 4, left). 

 

Figure 4. TAPAS components that aim to monitor data quality and correct for physiological confounds. 

(Left) In addition to supporting the development and optimization of MR acquisition sequences (see Figure 3), 

UniQC also facilitates monitoring of data quality during data acquisition in order to quickly identify potential 

problems in the acquisition processes which might relate to malfunctions or alterations in the scanner hardware, 

as well as to artifacts related to the participant (e.g., motion, physiology). (Right) PhysIO implements model-based 

physiological noise correction based on peripheral recordings of cardiac (e.g., electrocardiogram (ECG), 

photoplethysmographic unit (PPU)) and respiratory (e.g., breathing belt) cycle. The toolbox uses RETROICOR as 

well as modeling of the impact of heart rate variability (HRV) and respiratory volume per time (RVT) on the 

BOLD signal (e.g., using Hilbert-based respiratory volume) to derive physiological nuisance regressors that can 

be utilized in subsequent statistical analyses to account for physiological confounds in fMRI signals. 

Furthermore, unlike generic QC pipelines, the customization afforded by UniQC facilitates testing 

whether any given dataset shows a functional response relevant for the research question. For example, 

due to the seamless integration with other MATLAB toolboxes such as SPM, UniQC can analyze 

statistical maps from study-specific GLMs, as well as provide region-of-interest (ROI) statistics. With 

this functionality, task-fMRI performance can be validated using robust expected activation patterns as 

a sanity check, for example, sensory-motor activation during a learning task, before proceeding to more 
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complex analyses. Thus, UniQC offers flexible, interactive and study-specific quality control of the 

image acquisition system and the imaged participant. Thanks to its modularity, UniQC can be further 

integrated to monitor quality throughout the preprocessing stage (section 4), independent of the concrete 

pipeline. 

 

3.2 Physiological noise modeling 

One of the main confounds in fMRI is physiological noise as it perturbs blood oxygen level dependent 

(BOLD) signals (Hutton et al., 2011; Kruger and Glover, 2001) – which can substantially hamper both 

classical fMRI analysis as well as computational modeling of the data. The two primary sources of 

physiological noise are the cardiac and respiratory cycles (Murphy et al., 2013). The respiratory cycle 

introduces confounds by distortions of the magnetic field due to the movement of the participant’s chest 

(Brosch et al., 2002) as well as bulk susceptibility variation in the lungs (Raj et al., 2001). Additionally, 

the respiratory cycle alters the pressure of blood CO2 (which is a vasodilator) over longer time periods, 

thereby inducing slow signal fluctuations (Birn et al., 2006). The cardiac cycle, on the other hand, 

modulates blood volume and vessel diameter during systole and diastole, leading to small deformations 

of brain tissue and brainstem displacement, causing periodic motion of the cerebrospinal fluid (Dagli et 

al., 1999). Furthermore, variability in heart rate induces alterations in the oxygen level in the blood 

(Huettel et al., 2009), and consequent low frequency signal fluctuations (Chang et al., 2009). Finally, 

interactions between the cardiac and respiratory cycles, such as in respiratory sinus arrhythmia (i.e., 

accelerated heartbeat during inhalation), induce additional non-trivial physiological fluctuations (Hirsch 

and Bishop, 1981). 

Various physiological noise correction methods for fMRI exist, either based solely on the fMRI time 

series and prior assumptions of spatiotemporal noise properties, or modeling the noise from independent 

physiological recordings (e.g., using electrocardiogram (ECG), photoplethysmographic unit (PPU), and 

breathing belts) (Kasper et al., 2017; Murphy et al., 2013). Arguably, for TN/CP applications with 

clinical populations and pharmacological interventions, methods based on independent recordings might 

be preferable: In clinical populations, physiological processes that impact on the BOLD signal may 

differ from priors that were defined based on the general population. 

Several freely available implementations for model-based physiological noise correction are available, 

including AFNI 3DRETROICOR (Glover et al., 2000), FSL Physiological Noise Modeling (Brooks et 

al., 2008), and PhLEM (Verstynen and Deshpande, 2011); however, relatively few studies have 

capitalized on these tools, in particular for task-based fMRI. One important practical challenge – that is 

exacerbated in clinical populations with less compliant subjects – is the variable data quality of the 

peripheral recordings which these models are based on. Reduced data quality may be due to subject 

motion or (partial) detachment/saturation of the peripheral devices. In most implementations, 

preprocessing of these recordings is minimal, and identification of the physiological cycles typically 
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relies on peak detection provided by the MR scanner vendor (Kasper et al., 2017). Alternatively, manual 

intervention to correct erroneous detection is offered, hampering the development of automatized 

pipelines and the translation of physiological noise modeling into routine application. 

The PhysIO toolbox (Kasper et al., 2017) in TAPAS offers methods for model-based physiological noise 

correction based on peripheral recordings of the cardiac (e.g., ECG, PPU) and respiratory cycles (e.g., 

breathing belt). PhysIO utilizes these peripheral measures to model the periodic effects of pulsatile 

motion and field fluctuations using RETROICOR (Glover et al., 2000). Furthermore, the toolbox 

accounts for end-tidal CO2 changes and heart rate-dependent blood oxygenation by convolving 

respiratory volume per time (RVT) and heart rate variability (HRV) with a respiratory and cardiac 

response function, respectively (Birn et al., 2006; Birn et al., 2008; Chang and Glover, 2009). For these 

methods, emphasis is placed on robust preprocessing of the input time series via reliable peak detection 

in low-SNR regimes, as well as a novel method for RVT estimation using the Hilbert transform 

(Harrison et al., 2020b). As a more data-driven alternative for noise correction, PhysIO also allows the 

extraction of signals from pre-defined regions of interest (“noise ROIs”) as additional confound 

regressors – for instance, signal related to white matter or cerebrospinal fluid (CSF). Finally, the toolbox 

also incorporates various strategies for correcting motion-related artifacts by implementing, for instance, 

the Volterra expansion confound set (Friston et al., 1996) or censoring strategies based on the framewise 

displacement (Power et al., 2012). A schematic illustration of the modeling process in PhysIO is 

provided in Figure 4, right. PhysIO provides both command-line operation for de-noising multiple 

subjects conveniently, as well as a user-friendly graphical interface within the SPM Batch Editor. 

Thereby, physiological noise correction can be integrated with complete fMRI preprocessing pipelines, 

minimizing the need for manual interventions or custom programming (Kasper et al., 2017). 

Additionally, PhysIO ensures robust preprocessing even for low-quality data and provides simple 

diagnostic tools to assess the correction efficacy in individual subjects. This renders PhysIO an 

accessible noise correction tool for preprocessing pipelines both in basic neuroscience studies as well 

as for clinical purposes.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.12.435091doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435091


19 

4 PREPROCESSING 

Data preprocessing is closely intertwined with quality control and artifact correction. Thorough 

preprocessing is particularly important for complex data acquired using neuroimaging techniques such 

as fMRI or EEG/MEG (Ashburner, 2016). To this purpose, researchers typically create ad hoc 

preprocessing workflows for each study individually (Carp, 2012), building upon a large inventory of 

available tools. Broadly speaking, preprocessing steps can be separated into two main categories: (i) 

preprocessed time series are derived from the original data after application of retrospective signal 

corrections, spatiotemporal filtering, and resampling in a target space (e.g., MNI standard space), and 

(ii) confound-related information in the data can be modeled or taken into account through nuisance 

regressors (i.e., regressors of no interest) in subsequent statistical analyses using the general linear model 

(GLM). These confounds may include motion parameters, framewise displacement, physiological 

(cardiac or respiratory) signals, or global signals (Murphy et al., 2013; Power et al., 2014).  

These and additional procedures for preprocessing neuroimaging data are available in various software 

packages including, SPM (Friston et al., 2006), FSL (Jenkinson et al., 2012), FreeSurfer (Fischl, 2012), 

AFNI (Cox, 1996), or Nilearn (Abraham et al., 2014). The plethora of different preprocessing tools and 

workflows manifests in the absence of a current gold standard for preprocessing neuroimaging data, 

despite several attempts to establish best-practice guidelines (Ashburner, 2016; Gorgolewski et al., 

2016; Power et al., 2017; Strother, 2006).  

In an attempt towards common preprocessing standards, large-scale consortia like the HCP or the UK 

Biobank provide access not only to the raw data, but also to already preprocessed versions of the data. 

For instance, in the HCP database, researchers have access to the version of the data which have been 

subjected to a common minimal preprocessing pipeline (Glasser et al., 2013). However, these workflows 

are usually tailored towards the particular dataset's idiosyncrasies and do not readily translate to other 

datasets. A first attempt towards such a universally applicable preprocessing workflow is fMRIPrep 

(Esteban et al., 2019), which represents a pipeline that combines tools from several of the above-

mentioned software packages. fMRIPrep autonomously adapts the workflow to the present data, 

rendering the approach robust to data idiosyncrasies and potentially applicable to any dataset without 

manual intervention. 

While no toolbox dedicated to data preprocessing is currently available in TAPAS, our tools from the 

previous step (i.e., “Conduct, Check and Correct”) integrate well with most of the third-party software 

packages highlighted above. For instance, PhysIO integrates seamlessly with the batch editor system of 

SPM to facilitate the derivation of nuisance regressors related to physiological confounds that can be 

utilized in GLM analyses. Similarly, UniQC is designed to integrate with SPM and other MATLAB 

toolboxes. Importantly, PhysIO and UniQC are also designed to integrate well with other neuroimaging 

software packages. For instance, PhysIO stores all physiological noise regressors in a dedicated text file 

which can be inputted into the first-level analyses in any software package (e.g., FSL, AFNI).  
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5 INFERENCE 

Once neuroimaging and/or behavioral data have been preprocessed and artifacts have been corrected, 

the question arises how best to interrogate the data in order to gain insights into the functioning of the 

human brain and alterations thereof in disease. Concerning clinically oriented studies, it has been 

pointed out (Kapur et al., 2012; Stephan et al., 2015) that focusing on differences in descriptive measures 

– such as BOLD activation, functional connectivity patterns or task performance – between patients and 

healthy controls is unlikely to result in improvements of clinical practice. This is because these analyses 

do not provide an understanding of the symptom-producing mechanisms and they do not easily inform 

the development of biologically grounded clinical tests. Consequently, these measures have not yet led 

to routine applications in clinical practice (Filiou and Turck, 2011; Kapur et al., 2012). 

To address this shortcoming, mathematical models of neuroimaging and behavioral data that capture 

putative physiological and cognitive disease mechanisms may represent a promising avenue. This line 

of thinking is at the core of clinically-oriented modeling disciplines like Computational Psychiatry 

(Friston et al., 2014; Huys et al., 2016; Maia and Frank, 2011; Montague et al., 2012; Stephan and 

Mathys, 2014; Wang and Krystal, 2014), Computational Neurology (Jirsa et al., 2016; Maia and Frank, 

2011), and Computational Psychosomatics (Petzschner et al., 2017). For example, in Computational 

Psychiatry, a major goal is to move from the current syndromatic nosology to disease classifications 

based on computational assays that may improve differential diagnosis and treatment prediction for 

individual patients (Friston et al., 2017; Stephan et al., 2016a). 

TAPAS contributes to this endeavor by providing a collection of computational tools that can be applied 

to neuroimaging (fMRI) or behavioral data (decisions, eye movements). All of these approaches are so-

called generative models (Bishop, 2006). Generative models specify the joint probability 𝑝(𝑦, 𝜃|𝑚) 

over measured data 𝑦 and model parameters 𝜃, which – according to probability theory – can be written 

as the product of the likelihood function 𝑝(𝑦|𝜃,𝑚), representing the probability of the data given a set 

of model parameters, and the prior distribution 𝑝(𝜃|𝑚), encoding the a priori plausible range of 

parameter values. Together, likelihood and prior yield a probabilistic forward mapping from latent 

(hidden) states of a system (e.g., neuronal dynamics) to observable measurements (e.g., BOLD signal). 

Model inversion enables inference on the parameters and latent states of the system from measured data, 

and can be accomplished using a variety of approximate Bayesian techniques (e.g., variational Bayes, 

Markov chain Monte Carlo or Gaussian process optimization). Their ability to reveal latent mechanisms 

underneath the visible data and their natural connection to hypothesis testing through model selection 

procedures (Penny et al., 2004) have established generative modeling as a cornerstone of TN/CP (Frässle 

et al., 2018b; Stephan et al., 2017). 

In brief, the generative models included in TAPAS comprise: (i) models of effective (directed) 

connectivity among neuronal populations, (ii) models of perception in the light of an uncertain and 

volatile environment, as well as (iii) models of inhibitory control. In what follows, we briefly describe 
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the different generative models in TAPAS and highlight how each of them might be useful for clinical 

(neuro)modeling.  

 

5.1 Generative models of neuroimaging data 

Models of effective connectivity describe the mechanisms by which neuronal populations interact and 

how these mechanisms give rise to measured data (e.g., fMRI or EEG/MEG). By inverting these 

generative models, it is possible, in principle, to infer on the directed (synaptic) influences neuronal 

population exert on one another (Friston et al., 2013; Friston, 2011). This differs from measures of 

functional connectivity (e.g., Pearson’s correlation) which are essentially descriptive and undirected 

statistical indices. Models of effective connectivity hold particular promise for TN/CP, since global 

dysconnectivity has been proposed as a hallmark of various mental disorders (Deco and Kringelbach, 

2014; Menon, 2011), including schizophrenia (Bullmore et al., 1997; Friston et al., 2016a; Friston and 

Frith, 1995; Stephan et al., 2006; Stephan et al., 2009), autism (Courchesne et al., 2007; Kennedy et al., 

2006; Muller, 2007), and depression (Greicius et al., 2007; Mayberg, 1997; Wang et al., 2012). 

A frequently used generative modeling framework for inferring effective connectivity from 

neuroimaging data is dynamic causal modeling (DCM; Friston et al., 2003). In brief, DCM describes 

changes in neuronal activity as a function of the directed interactions among neuronal populations and 

experimental manipulations that can perturb the system. DCM was initially introduced for fMRI (Friston 

et al., 2003) and later extended to electrophysiological data (David et al., 2006). Comprehensive reviews 

on DCM can be found elsewhere (e.g., Daunizeau et al., 2011; Friston et al., 2013; Moran et al., 2013; 

Stephan et al., 2010). DCM is freely available as part of SPM and has found widespread application. 

For example, with regard to clinical applications, DCM has been used to study schizophrenia (Brodersen 

et al., 2014; Deserno et al., 2012; Dima et al., 2009; Lefebvre et al., 2016; Li et al., 2017), autism (Grèzes 

et al., 2009; Radulescu et al., 2013), and depression (Almeida et al., 2009; Schlösser et al., 2008). 

Despite these promises, the classical DCM approach is also subject to several limitations – which may 

become particularly relevant in the context of TN/CP, where the goal is to develop computational assays 

that inform prediction of clinical trajectories and treatment responses in individual patients. In what 

follows, we highlight some of these limitations and outline how the methodological advances in DCM 

included in TAPAS aim to address these challenges. 

 

5.1.1 Global optimization 

When translating computational advances like DCM into computational assays, the robustness of the 

inference procedure and the reliability of the parameter estimates become paramount (Woolrich and 

Stephan, 2013). Standard model inversion in DCM rests on variational Bayes under the Laplace 

approximation (VBL; Friston et al., 2007) which is computationally efficient, yet subject to several 
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limitations (Daunizeau et al., 2011): First, VBL rests on maximizing the negative free energy (which 

serves as a lower bound approximation to the log model evidence) using gradient ascent and is thus 

inherently susceptible to local maxima if the objective function is multimodal. Second, even when the 

global maximum is found, the distributional assumptions (i.e., Laplace and mean-field approximations) 

might not be justified, potentially rendering the approximate posterior distribution a poor representation 

of the true posterior. Third, when the distributional assumptions of the Laplace approximation are 

violated, the negative free energy is no longer guaranteed to represent a lower bound on the log model 

evidence (Wipf and Nagarajan, 2009). 

Sampling-based model inversion schemes, typically based on Markov chain Monte Carlo (MCMC) 

methods, do not require any distributional assumptions about the posterior and are guaranteed to be 

asymptotically exact (i.e., converge to the global extremum in the limit of infinite samples). This renders 

sampling-based methods an appealing alternative to VBL. However, they come at the cost of other 

challenges: First, sampling-based routines are computationally expensive. Second, convergence is only 

guaranteed in the limit of infinite samples; detecting convergence in practice thus rests on heuristics. 

Third, unlike VBL, sampling-based methods do not readily provide an estimate of the (log) model 

evidence, but require additional strategies, which further aggravate the computational burden. For 

instance, the current gold standard for sampling-based estimates of the model evidence, thermodynamic 

integration (TI; Calderhead and Girolami, 2009; Kirkwood, 1935; Lartillot and Philippe, 2006), requires 

running multiple MCMC chains at different “temperatures” (i.e., at different positions along a path from 

prior to posterior). Until recently, these reasons have been prohibitive for the use of sampling-based 

model inversion for DCMs. 

The massively parallel dynamic causal modeling (mpdcm) toolbox (Aponte et al., 2016) implemented 

in TAPAS renders sampling-based model inversion in the context of DCM for fMRI computationally 

feasible (Figure 5, top). This is achieved by exploiting the power of graphics processing units (GPUs) 

for the evaluation of the likelihood function, which represents the computationally most expensive 

operation, as it requires integration of differential equations in the neuronal and hemodynamic models. 

Importantly, mpdcm even makes the evaluation of the model evidence via thermodynamic integration 

computationally feasible. In a recent preprint, Aponte et al. (2020b) demonstrated that TI provides more 

accurate and robust estimates of the model evidence than VBL, while computational demands are kept 

at a moderate level. 

Beyond the mpdcm toolbox, which is designed to support DCM for fMRI, other gradient-free and 

gradient-based MCMC sampling schemes have also been introduced to DCM for electrophysiological 

data (Sengupta et al., 2015, 2016). However, these tools have not yet been made publicly available. 
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Figure 5. TAPAS components that implement generative models of neuroimaging data (I). (Top) Massively 

parallel dynamic causal modeling (mpdcm) renders sampling-based model inversion computationally feasible by 

exploiting graphics processing units (GPUs). This allows one to obtain more faithful results in the presence of a 

multimodal optimization landscape. (Bottom) Hierarchical unsupervised generative embedding (HUGE) combines 

the inversion of single-subject DCMs and the clustering of participants into mechanistically homogenous 

subgroups within a single generative model. 

 

5.1.2 Empirical Bayes for DCM 

Another challenge concerns the specification of prior distributions in DCM, which have been found to 

profoundly impact the posterior estimates and their reliability (Frässle et al., 2015). Notably, in the 

context of hierarchical Bayesian models, there is a principled way of estimating priors by exploiting 

measurements from multiple subjects: empirical Bayes (EB; Banerjee et al., 2015; Efron and Morris, 

1973; Kass and Steffey, 1989). In brief, in EB, the posterior density at any given level is constrained by 

the level above. For instance, in a two-level hierarchical model, observed data 𝑦 = {𝑦!, 𝑦", … , 𝑦#} are 

assumed to be generated from a set of latent (hidden) parameters 𝜃 = {𝜃!, 𝜃", … , 𝜃#} according to the 

likelihood 𝑝(𝑦|𝜃,𝑚). In turn, the parameters 𝜃 are considered to represent samples from a population 

density 𝑝(𝜃|𝜂,𝑚), where 𝜂 refers to the hyperparameters (Bishop, 2006; Gelman et al., 2004). 

Consequently, under the hierarchical structure of a multi-subject or mixed-effects model, inference on 

the single-subject level is constrained by the group-level information. These constraints are then referred 

to as empirical priors since they are informed by the empirical data (of the entire group). A special case 
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of EB is referred to as parametric empirical Bayes (PEB), where the hyperparameters 𝜂 are 

approximated using the maximum likelihood estimate or a moment expansion, which allows one to 

express the hyperparameters in terms of the empirical mean and variance (Maritz and Lwin, 1989). One 

particular variant of PEB is the Gaussian-Gaussian model, where single-subject data are assumed to be 

generated by adding Gaussian noise to the group mean (Friston et al., 2016b). 

The hierarchical unsupervised generative embedding (HUGE) toolbox contained in TAPAS 

implements EB in the context of DCM for fMRI (Raman et al., 2016; Yao et al., 2018). HUGE combines 

the inversion of single-subject DCMs and the clustering of subjects into mechanistically homogenous 

subgroups into a single generative model (Figure 5, bottom). This is achieved by combining the 

nonlinear DCMs at the individual level with a mixture-of-Gaussians clustering model at the 

hierarchically higher level (Bishop, 2006; Gelman et al., 2004). In other words, HUGE assumes that 

each individual from a population of N subjects belongs to one of at most K subgroups or clusters. The 

DCM parameters 𝜃 for all subjects from one cluster k are then assumed to be normally distributed with 

distinct mean 𝜇$ and covariance matrix Σ$. This cluster-specific normal distribution effectively means 

that different prior distributions apply over subjects, depending on which subgroup they belong to, and 

that these priors are learned from the data (i.e., subgroup-specific EB). Hence, in principle, the 

framework is capable of stratifying heterogenous spectrum disorders, as defined by DSM/ICD, into 

subgroups that share common pathophysiological mechanisms (for more details, see below). 

Importantly, HUGE also implements “pure” EB by fixing the number of clusters to one and merely 

exploiting the hierarchical dependencies in the data. This effectively switches off the clustering model. 

The utility of this mode of operation has been demonstrated in simulations by Yao et al. (2018), 

highlighting the expected shrinkage effect (reduced variability) of the posterior parameter estimates 

towards the population mean observed in EB (Bishop, 2006). Parameter estimation in HUGE can be 

performed by employing either a sampling-based MCMC inversion scheme (Raman et al., 2016; Yao 

and Stephan, 2020), which is asymptotically exact yet (relatively) slow, or a VB implementation (Yao 

et al., 2018), which is computationally more efficient yet might be vulnerable to local extrema. Notably, 

at the moment, only the VB implementation of HUGE is available in TAPAS. The sampling-based 

variant will be published as part of an upcoming release of the toolbox. 

 

5.1.3 Whole-brain effective connectivity analysis 

Apart from the computational and statistical challenges mentioned above, a conceptual concern is that 

DCMs are typically restricted to relatively small networks in order to keep model inversion 

computationally feasible. While this may be advantageous in some cases by enforcing a theory-driven 

analysis of high-dimensional and noisy fMRI data, it can also represent a limiting factor. Specifically, 

many cognitive processes, as well as the “resting state” (i.e., unconstrained cognition in the absence of 

experimental manipulations), engage a widespread network that cannot be captured faithfully by a 
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handful of nodes. Furthermore, in the context of Computational Psychiatry, putative pathophysiological 

processes underlying various mental disorders have been linked to global (large-scale) alterations of 

functional integration in brain networks (e.g., Courchesne et al., 2007; Friston et al., 2016a; Friston and 

Frith, 1995; Greicius et al., 2007; Kennedy et al., 2006; Mayberg, 1997; Stephan et al., 2006; Stephan 

et al., 2009). This calls for the development of computational models that are capable of inferring 

effective (directed) connectivity in whole-brain networks (Menon, 2011). 

Regression dynamic causal modeling (rDCM; Frässle et al., 2018a, 2017) represents a recent variant of 

DCM that renders model inversion extremely efficient. This is achieved by converting the numerically 

costly estimation of coupling parameters in differential equations of a linear DCM in the time domain 

into a Bayesian linear regression model in the frequency domain (Figure 6, top). Under a suitably chosen 

mean-field approximation, analytically solvable VB update equations can be derived for this model. The 

ensuing computational efficiency allows rDCM to scale gracefully to large-scale networks that comprise 

hundreds of regions. Furthermore, rDCM has recently been augmented with sparsity constraints to 

automatically prune fully connected networks to an optimal (in terms of maximal model evidence) 

degree of sparsity (Frässle et al., 2018a). This is achieved by introducing binary indicator variables into 

the likelihood function, which essentially serve as feature selectors. For this generative model, 

comprehensive simulation studies demonstrated the face validity of rDCM with regard to model 

parameter and model architecture recovery. Furthermore, we have provided initial demonstrations of 

the construct validity of the approach in applications to empirical data. For instance, using ultra-high 

field (7T) fMRI data from a simple hand movement paradigm with the known relevant connections, we 

demonstrated that rDCM inferred plausible effective connectivity patterns in whole-brain networks with 

more than 200 regions (Frässle et al., 2021). Furthermore, we have recently demonstrated that rDCM 

can not only be applied to task-based, but also to resting-state fMRI data (Frässle et al., 2020a). Notably, 

inversion of whole-brain models with rDCM is computationally highly efficient on standard hardware: 

even for whole-brain networks with more than 200 regions, it takes only a couple of minutes for fixed 

network architectures, and a few hours when pruning fully connected networks. 

 

5.1.4 Future developments 

Besides the toolboxes mentioned above, which are already part of TAPAS, additional variants of DCM 

for fMRI will be released soon. Specifically, this includes: (i) layered dynamic causal modeling (layered 

DCM; Heinzle et al., 2016b), and (ii) pDCM, a Python-based DCM implementation focused on 

amortized inference of stochastic DCMs using novel probabilistic-programming techniques (Harrison 

et al., in preparation). Here, we briefly outline these two advances. 
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Figure 6. TAPAS components that implement generative models of neuroimaging data (II). (Top) Regression 

dynamic causal modeling (rDCM) is a novel variant of DCM for fMRI that scales gracefully with the number of 

nodes and thus makes whole-brain effective connectivity analyses feasible. (Bottom) Layered DCM (l-DCM) and 

pDCM as future developments of DCM, representing tools that will be included in TAPAS in one of the next 

upcoming releases. Parts of figure reproduced with permission from (Heinzle et al., 2016b), Copyright 2016 

Elsevier, and (Frässle et al., 2021), Copyright 2020 Elsevier. 

First, layered DCM addresses challenges in effective connectivity analyses that become relevant when 

moving towards high-resolution fMRI measurements at the sub-millimeter scale (Figure 6, bottom left). 

This allows differentiating BOLD signals from different cortical layers, an important aspect for testing 

desiderata of modern theories of brain structure and function. Specifically, prominent “Bayesian brain” 

theories like predictive coding (Friston, 2005a; Rao and Ballard, 1999) postulate that supragranular and 

infragranular cortical layers convey different signals via their efferent cortico-cortical connections. 

Testing these theories might not only further our understanding of the functioning of the human brain 

in health, but also has important implications for delineating pathophysiological processes in disease.  

However, for layered fMRI data, the spatial layout of cortical blood supply – in particular, the venous 

blood draining back from lower layers to the cortical surface – confounds responses in different layers 

and thus renders interpretations non-trivial. Accounting for such draining effects is thus important, yet 

not readily possible within contemporary hemodynamic models, such as the Balloon model currently 

implemented in DCM (Buxton et al., 1998; Friston et al., 2000; Stephan et al., 2007) or more recent 

hemodynamic models that strive for increased biological plausibility (Havlicek et al., 2015). Layered 
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DCM addresses this limitation by extending the classical Balloon model with a phenomenological 

description of blood draining effects. This rests on including a delayed coupling of the relative blood 

volume and deoxyhemoglobin concentration across layers. For this framework, Heinzle et al. (2016b) 

demonstrated the face validity using simulation studies, as well as the practical utility in an application 

to empirical fMRI data from a simple visual paradigm. While a detailed dynamic model of layered blood 

flow effects was published recently (Havlicek and Uludag, 2020), this model requires far more 

parameters and does render inversion on empirical data more difficult. 

Second, a novel inversion scheme for stochastic DCMs will be included in TAPAS, leveraging recent 

breakthroughs in black-box variational inference (Harrison et al., in preparation). In brief, the approach 

makes use of optimization algorithms from deep learning software packages to allow inference of 

general probabilistic models (Figure 6, bottom right). For inference, one directly infers the neuronal and 

hemodynamic parameters, but temporal convolutional neuronal networks are used to amortize the 

inference of the neuronal states themselves. This allows inferring the hidden (neuronal) states for any 

length of input data while keeping the number of parameters fixed (instead of growing linearly with the 

number of time points). The advantage of using black-box variational inference algorithms is that the 

framework is highly flexible, allowing for easy modifications and extensions of the underlying 

generative model without any changes to the inference machinery. This renders the model very 

promising for clinical applications where generative models might need to be tailored towards specific 

diseases. 

 

5.2 Generative models of behavioral data 

Neuroimaging provides functional readouts from disease-relevant neural circuits and thus delivers data 

for models of pathophysiology. However, these data and models are usually not suitable for drawing 

direct conclusions about cognition and its disturbances. By contrast, behavioral data can be used for 

inference on an agent’s internal processes at the algorithmic (information processing) level. Importantly, 

acquisition of behavioral data is often easier, cheaper and more patient-friendly than neuroimaging data, 

and computational models of behavior thus hold great promise for establishing clinically useful 

computational assays – on their own or in combination with neuroimaging data (Browning et al., 2020; 

Stephan and Mathys, 2014). At present, TAPAS contains two different generative models of behavioral 

data which will be discussed next: (i) the Hierarchical Gaussian Filter (HGF; Mathys et al., 2011), and 

(ii) the Stochastic Early Reaction, Inhibition and late Action model (SERIA; Aponte et al., 2017). 

 

5.2.1 Hierarchical Gaussian Filter (HGF) 

The Hierarchical Gaussian Filter (HGF; Mathys et al., 2011) is a hierarchical Bayesian framework for 

individual learning under the various kinds of uncertainty which arise in realistic nonlinear dynamic 
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systems (e.g., perceptual uncertainty, environmental volatility). Importantly, the hierarchy implemented 

in the HGF is not to be confused with the hierarchy that was discussed in the context of empirical Bayes 

and, more specifically, HUGE. While in empirical Bayes, the hierarchy (typically) refers to a multi-

subject or mixed-effects structure where the levels represent single-subject and group-level information, 

the HGF implements a hierarchy in which the levels represent the temporal evolution of latent states. 

More specifically, it consists of two parts: a generative model, the HGF-GM, which describes the 

stochastic evolution of the nonlinearly coupled hidden states of a dynamic system; and the HGF proper, 

a set of deterministic update equations resulting from the variational inversion of the HGF-GM. The 

HGF proper contains the Kalman filter as a special case, but is also suited for filtering inputs generated 

by nonlinear environments. Combined with an observation model, the HGF proper represents a 

particular implementation of the “observing the observer” framework developed by Daunizeau et al. 

(2010a; 2010b). This framework is based on the separation of two model components: (i) a perceptual 

model which describes an agent’s inference on the environment (in this case the HGF proper), and (ii) 

a response model which describes how inferred latent states of the agent translate into the agent’s 

observed actions, such as, decisions or responses (Mathys et al., 2014). 

In the HGF, the perceptual model takes the form of a hierarchical Bayesian model where the temporal 

evolution of states at any level (except the first) are represented as Gaussian random walks or first-order 

autoregressive processes (Figure 7, top). Importantly, the step size of each walk (i.e., the variance of the 

Gaussian distribution) depends on the state at the next higher level. This coupling between levels is 

controlled by subject-specific parameters that shape the influence of uncertainty on learning. Under a 

VB approximation, one can derive efficient trial-by-trial update equations for this model that describe 

the agent's belief updating. Importantly, these update equations rest on precision-weighted prediction 

errors (PE) at different levels of the hierarchy. In other words, the HGF tracks an agent’s expression of 

(approximate) Bayesian learning in the presence of uncertainty under the assumption that the brain 

continuously updates a hierarchical generative model of sensory inputs, with PEs serving as the teaching 

signal. This perceptual model is then combined with a response model (e.g., unit-square sigmoid or 

softmax function; although a wide range of different response models is available) that links the agent’s 

current estimates of the latent states to observed actions, such as motor or physiological responses 

(Mathys et al., 2014). In combination with priors on the model parameters, this specifies a full generative 

model of observed responses that is inverted using maximum-a-posteriori (MAP) estimation. In 

summary, the HGF provides a generic approximation to subject-specific forms of hierarchical Bayesian 

learning3. For applications in computational psychiatry, parameter estimates can be used to characterize 

perceptual inference and decision-making in specific disorders (e.g., Lawson et al., 2017; Powers et al., 

2017); alternatively, and perhaps even more frequently, the estimated trajectories of precision-weighted 

 
3 Besides different variants of the HGF, the toolbox also implements various other behavioral models of learning, 
including the Rescorla-Wagner model (Rescorla and Wagner, 1972), Sutton model (Sutton, 1992), and a Hidden 
Markov model (Baum and Petrie, 1966). 
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PEs are used in trial-by-trial analyses of fMRI and EEG data (e.g., Cole et al., 2020; Iglesias et al., 2013; 

Weber et al., 2020). The HGF can also be applied to other time series than behavioral ones. In an 

example from TN/CP, Brazil et al. (2017) applied an HGF directly to BOLD signal time series from an 

fMRI experiment. 

 

Figure 7. TAPAS components that implement generative models of behavioral data. (Top) The Hierarchical 

Gaussian Filter (HGF) is a hierarchical Bayesian model for individual learning under different forms of uncertainty 

(e.g., perceptual uncertainty, environmental volatility). (Bottom) The Stochastic Early Reaction, Inhibition, and 

late Action (SERIA) model represents a computational model of an agent’s behavior during the antisaccade task 

by modeling early reflexive and late intentional eye movement via two interacting race-to-threshold processes. 

 

5.2.2 Stochastic Early Reaction, Inhibition and late Action (SERIA) model 

Eye movements represent a potentially very interesting functional readout for TN/CP. In addition to the 

experimental ease with which many data points can be measured, eye movements are disturbed in 

numerous psychiatric conditions (Heinzle et al., 2016a; Hutton and Ettinger, 2006; Rommelse et al., 

2008). An experimental paradigm that has been used frequently in this context is the antisaccade task 

(Hallett, 1978) where participants are asked to suppress a reactive eye movement towards a visual cue 

and concurrently perform a saccade in the opposite direction (antisaccade). This task is of relevance for 

clinical applications since it has been widely used to study psychiatric and neurological diseases (Hutton 

and Ettinger, 2006). Most prominently, the antisaccade task is hampered in schizophrenia (Curtis et al., 
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2001; Fukushima et al., 1988) where an elevated error rate has been proposed as an intermediate 

phenotype or endophenotype of the disease (Reilly et al., 2014). 

TAPAS comprises a computational model of an agent’s behavior during the antisaccade task – the 

Stochastic Early Reaction, Inhibition and late Action (SERIA) model (Aponte et al., 2017). Specifically, 

in order to model error rates and reaction times during the task, SERIA postulates two interacting 

processes (Figure 7, bottom): (i) a fast GO/NO-GO race between a prepotent response (prosaccade) 

towards the visual cue and a signal to cancel this erroneous action, and (ii) a slow GO/GO race between 

two units encoding the cue-action mapping, accounting for slow voluntary saccades. The parameters of 

this model, which are estimated using a sampling-based hierarchical Bayesian scheme, are sensitive to 

dopaminergic and cholinergic manipulations and were found to allow for out-of-sample predictions 

about the drug administered to an individual with 70% accuracy (Aponte et al., 2020a). 

 

5.2.3 Future developments 

As for the generative models of neuroimaging data, extensions to the behavioral models will also be 

released as part of TAPAS in the future. In particular, an extension of the HGF is currently under 

development which aims to embed the classical HGF within an empirical Bayesian (EB) scheme 

(Mathys et al., in preparation). This hierarchical (in the sense of an EB scheme) version of the HGF 

combines HGFs at the individual level with a layer that represents group effects. Similar to HUGE, this 

formulation affords a principled way of estimating (empirical) priors from the data, effectively 

constraining single-subject estimates by group-level information. Inference in the H2GF rests on 

sampling-based MCMC methods that provide not only an estimate of individual model parameters, but 

also an approximation to the model evidence via thermodynamic integration (or other suitable 

techniques).  
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6 CLINICAL APPLICATION 

Computational assays are developed with the goal to solve concrete clinical problems. Here, we briefly 

consider 3 types of problems: (i) differential diagnosis, (ii) stratification of spectrum disorders (i.e., 

identification of subgroups), and (iii) prediction of clinical trajectories or treatment responses (Stephan 

et al., 2015). Different computational strategies are available to address each of these challenges. 

First, differential diagnosis can be formalized as hypothesis testing, which – in a Bayesian framework – 

is equivalent to Bayesian model selection (BMS; Bishop, 2006; Gelman et al., 2004) where different 

hypotheses (models) are compared in the light of observed neuroimaging and/or behavioral data. 

Specifically, by formalizing competing pathophysiological and/or psychopathological theories in terms 

of distinct models, differential diagnosis boils down to assessing the relative plausibility of these models 

(Stephan et al., 2017). This rests on comparing the model evidence which represents a principled metric 

of model goodness that trades off accuracy and complexity. Importantly, all generative models included 

in TAPAS provide an approximation to the model evidence and thus lend themselves, in principle, to 

the idea of hypothesis testing as a formal way to compare the plausibility of alternative disease 

mechanisms. 

Second, prediction of clinical trajectories and treatment outcome as well as stratification of spectrum 

disorders can be achieved by means of supervised and unsupervised generative embedding (GE; Shawe-

Taylor and Cristianini, 2004), respectively. In brief, the key idea of GE is to perform (un)supervised 

learning in a feature space that is spanned by the posterior estimates obtained from a generative model 

fitted to the data. In other words, the generative model serves as a theory-driven dimensionality 

reduction device which projects the high-dimensional and noisy data onto neurobiologically meaningful 

parameters that span a low-dimensional and interpretable space for (un)supervised learning. GE 

frequently yields more accurate results than conventional ML (Brodersen et al., 2014; Brodersen et al., 

2011; Frässle et al., 2020b), likely because the generative model separates signal (reflecting the process 

of interest) from (measurement) noise more efficiently than other methods. In what follows, we outline 

toolboxes included in TAPAS that can be used for supervised and unsupervised GE. 

 

6.1 Classification and prediction 

Typically, GE is implemented in terms of a two-step procedure: (i) generative models of measured data 

are inverted for each subject individually, and (ii) the summary statistics of the posterior estimates (e.g., 

the maximum-a-posteriori estimates) are used for supervised (classification, regression) or unsupervised 

(e.g., clustering) learning. 

Here, we first focus on supervised GE as a formal way of performing differential diagnosis (via 

classification) or outcome prediction. To this end, TAPAS comprises the Generative Embedding (GE) 

toolbox, Python-based software that facilitates the generative embedding framework and allows for 
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exploration and visualization of classification performance. The toolbox is a wrapper around scikit-learn 

(Pedregosa et al., 2011), with the goal of providing a set of convenient functions and sensible defaults 

that form a suitable starting point for generative embedding analyses. The GE toolbox can use posterior 

parameter estimates from any of the generative models mentioned above as input features, and perform 

binary or multi-class classification. The toolbox utilizes logistic regression as its default classifier 

because it represents a simple linear model that protects against overfitting, is (relatively) simple to 

interpret, and the ensuing class probabilities are useful for interpreting classifier outputs. Furthermore, 

the toolbox implements a repeated k-fold cross-validation as the default procedure for both model 

selection (i.e., hyperparameter tuning) and model validation (i.e., estimating out-of-sample 

performance), including allowing for within-fold confound correction (Snoek et al., 2019). This choice 

is motivated by the fact that, in comparison to leave-one-out cross-validation, k-fold cross-validation 

has a lower variance and is therefore less prone to overfitting (Varoquaux et al., 2017). Finally, 

significance testing of classification performance is done by default using permutation tests as they 

provide an unbiased estimate of error variance. This is in contrast to parametric tests (e.g., binomial 

confidence intervals, McNemar’s test) which typically underestimate variance and are therefore 

overconfident (Varoquaux, 2018). 

 

6.2 Stratification of heterogenous psychiatric disorders 

The goal of stratifying heterogenous disorders is to identify subgroups that share common 

pathophysiological or psychopathological mechanisms. The increased homogeneity in terms of 

underlying disease mechanisms increases the power of clinical trials and enhances predictions of 

clinically relevant outcomes (Stephan et al., 2015). One way to achieve this goal is by using posterior 

parameters from a generative model for unsupervised learning (e.g., clustering); see Brodersen et al. 

(2014) for an example. An alternative to this two-step procedure is implemented in HUGE, a toolbox 

we already discussed in the context of generative models of neuroimaging data (Raman et al., 2016; Yao 

et al., 2018). Specifically, HUGE casts unsupervised GE as a single hierarchical generative model that 

simultaneously describes individual data generation and assigns participants to clusters (Figure 5, 

bottom). Unifying these two steps has a couple of conceptual advantages: (i) the hierarchical nature of 

the model allows learning prior distributions from the data (i.e., empirical Bayes), (ii) model inversion 

at the single-subject level is regularized by (cluster-specific) group results, and (iii) clustering takes the 

uncertainty about individual connectivity parameter estimates into account. 
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7 TAPAS IN ACTION 

Finally, we briefly discuss a few selected examples from previous work that made use of different 

toolboxes from TAPAS. In particular, here we focus on studies that investigate 

pathophysiological/pathocomputational mechanisms and/or explore the role of neuromodulatory 

transmitter systems in these processes. The latter are a particularly prominent topic for clinical 

applications of generative models because the majority of available pharmacotherapeutic approaches in 

psychiatry targets synthesis, metabolism or receptors of neuromodulatory transmitters. 

In order to non-invasively infer upon the status of neuromodulatory systems (e.g., dopamine, 

acetylcholine, serotonin, noradrenaline), various studies have combined experimental manipulations of 

different neuromodulatory systems with generative modeling of neuroimaging or behavioral data. In a 

first step, Iglesias et al. (2013) have provided evidence for hierarchical belief updating during a sensory 

associative learning task under volatility and without rewards. Hierarchical belief updating via PEs plays 

a central role in “Bayesian brain” theories, such as predictive coding (Friston, 2009; Rao and Ballard, 

1999). Iglesias et al. (2013) utilized the HGF to infer upon subject-specific trajectories of precision-

weighted PEs at different levels of the hierarchy which were then used in a GLM of fMRI data. They 

found that low-level PEs, encoding the mismatch between prediction and actual visual stimulus 

outcome, were reflected by widespread BOLD activity in visual and supramodal areas, but also in the 

midbrain. Conversely, high-level PEs, encoding the mismatch between prediction and actual stimulus 

probabilities, were reflected by BOLD activity in the basal forebrain. Midbrain and basal forebrain 

contain dopaminergic and cholinergic neurons, respectively, suggesting that (i) dopaminergic midbrain 

neurons might signal PEs unrelated to reward and (ii) cholinergic neuron activity in the basal forebrain 

might reflect PEs about probabilities and may thus relate to “expected uncertainty” (Yu and Dayan, 

2005). Although a subsequent pharmacological study in human volunteers using the same paradigm did 

not support this notion (Iglesias et al., 2020), the finding that midbrain activity may reflect reward-

unrelated prediction errors has since been replicated in several animal (Stalnaker et al., 2019; Takahashi 

et al., 2017) and human studies (Suarez et al., 2019). 

Importantly, neural correlates of computational quantities can not only be detected in fMRI data, but 

can also be found in EEG signals, where the superior temporal resolution allows for characterizing their 

precise temporal dynamics. For instance, Weber et al. (2020) related HGF estimates to single-trial EEG 

data from participants who received ketamine in a placebo-controlled, double-blind, within-subject 

fashion. The authors demonstrated that PE-related activity was found in a temporal order consistent with 

hierarchical Bayesian theory. Additionally, they observed a significant impact of ketamine on the high-

level PE about transition probabilities. Focusing on behavior only, further evidence has been provided 

for associations between computational quantities and the status of neuromodulatory systems. For 

instance, Vossel et al. (2014) perturbed the cholinergic system using pharmacological interventions, and 

utilized the HGF to demonstrate that this led to an increase in the rate of belief updating about cue 
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validity during a modified Posner’s task. Similarly, Marshall et al. (2016) utilized pharmacological 

interventions in combination with the HGF to characterize the influence of noradrenergic, cholinergic 

and dopaminergic antagonists on individual estimates of uncertainty during a probabilistic serial 

reaction time task. The authors identified different roles for the different neuromodulatory systems, 

linking noradrenaline to unexpected uncertainty, acetylcholine to environmental uncertainty, and 

dopamine to uncertainty representations for fast, adaptive responses. Finally, Aponte et al. (2020a) 

demonstrated that computational quantities sensitive to neuromodulatory processes can also be derived 

from generative models of reflexive eye movements. Specifically, the authors conducted a double-blind 

placebo-controlled pharmacological study and found that computational quantities derived from an 

antisaccade task using the SERIA model can distinguish between dopaminergic and cholinergic effects 

on action selection and inhibitory control, allowing for out-of-sample predictions about the drug 

administered with 70% accuracy. In summary, both the HGF and SERIA comprise computational 

quantities that are sensitive to the functional status of different neuromodulatory systems. 

Beyond questions of pathophysiology and pharmacology, tools from TAPAS have also been used to 

characterize clinical populations. For instance, Powers et al. (2017) studied conditioned auditory 

hallucinations in four groups of people who differed both in their voice-hearing and treatment-seeking 

statuses. Utilizing the HGF to infer upon the participants' individual beliefs, the authors demonstrated 

that the weighting of prior beliefs was significantly larger in people with hallucinations than their non-

hallucinating counterparts. This is consistent with the hypothesis that, in the context of a Bayesian brain, 

hallucinations may be explained by overly strong priors (Friston, 2005b). Focusing on patients with 

autism spectrum disorder (ASD), Lawson et al. (2017) utilized the HGF to provide evidence that ASD 

patients tend to overestimate volatility in the face of environmental changes. This leads to reduced 

learning about unexpected (surprising) events, which might serve as an explanation for the typical 

insistence on sameness and intolerance of change in ASD patients (Pellicano and Burr, 2012). Finally, 

Cole et al. (2020) applied HGF estimates from an associative learning task to characterize brain 

responses to precision-weighted PEs in individuals at clinical high risk (CHR) for psychosis. Compared 

to a healthy control group, CHR individuals showed enhanced PE responses in several (particularly 

prefrontal) regions, consistent with the prediction from the dysconnection hypothesis of schizophrenia 

(Friston et al., 2016a; Stephan et al., 2009) that (proneness to) psychosis is characterized by abnormal 

precision-weighted PE signaling in cortex. Furthermore, prefrontal PE activity was correlated with 

clinical status. 

TAPAS tools that implement generative models of neuroimaging data have also been applied to clinical 

populations – although this is still rare. For instance, Yao et al. (2018) applied HUGE to an fMRI dataset 

comprising aphasic patients (with a lesion in the left frontal and/or temporal cortex) and healthy controls 

(Schofield et al., 2012) for an initial demonstration of the potential clinical utility of the model for patient 

stratification. In brief, the authors demonstrated that HUGE correctly identifies two clusters in the 

dataset, which mapped almost perfectly onto aphasic patients and healthy controls, yielding a balanced 
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purity of 95.5%. While it is important to emphasize that diagnosing patients with aphasia does not yet 

represent a truly meaningful clinical problem, it demonstrates the practical utility of HUGE for 

stratification in a scenario where ground truth is known. Furthermore, regression DCM has been used 

to study alterations in whole-brain effective (directed) connectivity between psychotic patients, their 

first-degree relatives, as well as matched healthy controls (Frässle et al., in preparation). The authors 

demonstrate that patients showed distinctly different whole-brain connectivity patterns from healthy 

controls and first-degree relatives, and that the connectivity patterns allow for significant discrimination 

at the individual level. 

Overall, the above studies illustrate the potential of generative models of behavioral and neuroimaging 

data for clinical applications. However, these studies do not yet implement the kind of end-to-end 

analysis pipeline that we outlined, at the beginning of the article, as a basis for future computational 

assays. Instead, the above studies simply used selected components from TAPAS at a time. Having said 

this, recent work by Harrison and colleagues comes close to the kind of end-to-end pipeline highlighted 

above, combining multiple components from TAPAS (Harrison et al., in preparation). In brief, the 

authors aimed to investigate interoception and how anxiety relates to the perception of internal bodily 

states. To this end, Harrison and colleagues employed two paradigms available in TAPAS Tasks, namely 

the Filter Detection (FD) and Breathing Learning (BL) task. The FD task revealed differences in 

sensitivity to breathing perception and altered interoceptive metacognitive bias between low-anxiety 

and moderate-anxiety healthy controls. Furthermore, for the BL task, the authors acquired fMRI data 

using a high-field 7T MR scanner. PhysIO was employed for physiological noise correction based on 

measurements of cardiac and respiratory cycles. fMRI then underwent thorough preprocessing and 

artefact removal by combining tools from various software packages, including FSL and SPM. Brain 

activity coupled with dynamic changes in bodily states was then modelled using subject-specific 

trajectories of predictions and PE which have been inferred utilizing the HGF toolbox. This revealed the 

anterior insula to be associated with both interoceptive predictions and PEs, where the former was also 

differentially expressed in the low and moderate anxiety groups. 

While this moves towards the kind of end-to-end analysis pipeline that we outline, it is important to note 

that the two groups tested by Harrison and colleagues do not represent clinical groups (but were recruited 

from the healthy population) and the study thus lacks the final module of the aforementioned pipeline 

(i.e., Clinical Application; see Figure 2). Furthermore, it is important to keep in mind that none of the 

studies mentioned above is yet of any direct clinical utility, in the sense that they do not address a 

practical clinical question, such as differential diagnosis or predicting outcomes/clinical trajectories. The 

latter in particular requires data from prospective studies that include information about future clinical 

outcomes – a critical condition for validating computational assays (Stephan and Mathys, 2014). 

Unfortunately, so far, these datasets are rare. 
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8 CONCLUSION 

In this article, we have described the Translational Algorithms for Psychiatry-Advancing Science 

(TAPAS) software package, an open-source collection of toolboxes (primarily written in MATLAB; 

with some components in C and Python) that aim to facilitate the acquisition and (computational) 

analysis of neuroimaging and behavioral data. Specifically, we reviewed the different toolboxes in 

TAPAS and highlighted how these might support the construction of end-to-end analysis pipelines – 

from raw data to clinical applications. 

 

9 SOFTWARE NOTE 

The Translational Algorithms for Psychiatry-Advancing Science (TAPAS) software package, 

comprising all toolboxes described in this paper, is freely available as open-source code 

(https://www.translationalneuromodeling.org/tapas). 
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