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ABSTRACT 13 

Statistical methods for detecting differences in individual gene expression are indispensable for 14 

understanding cell types. However, conventional statistical methods have faced difficulties 15 

associated with the inflation of P-values because of both the large sample size and selection bias 16 

introduced by exploratory data analysis such as single-cell transcriptomics. Here, we propose the 17 

concept of discriminative feature of cells (DFC), an alternative to using differentially expressed 18 

gene-based approaches. We implemented DFC using logistic regression with an adaptive LASSO 19 

penalty to perform binary classification for the discrimination of a population of interest and variable 20 

selection to obtain a small subset of defining genes. We demonstrated that DFC prioritized gene 21 

pairs with non-independent expression using artificial data, and that DFC enabled to characterize the 22 

muscle satellite cell population. The results revealed that DFC well captured cell-type-specific 23 

markers, specific gene expression patterns, and subcategories of this cell population. DFC may 24 

complement differentially expressed gene-based methods for interpreting large data sets. 25 
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INTRODUCTION 26 

Organisms are composed of various cell types with specific functions. The cell types also include 27 

undifferentiated cells, such as stem cells and progenitor cells, or cells in transition during 28 

differentiation. Understanding cell types as the functional or structural units of an organism can 29 

confer a comprehensive understanding of the functions of organs and tissues, as well as their origins. 30 

The classification and definition of cell types has been based on the identification of specific marker 31 

genes that define the cell type. Marker genes have been identified by comprehensive analysis of 32 

gene expression. Statistical tests are particularly important in the identification of marker genes, for 33 

which evaluation of differences in the mean expression levels of genes is often used. 34 

Cell-type-specific genes/proteins are responsible for cell-type-specific functions. Therefore, to 35 

identify marker genes, comparisons have been performed between the cell types of interest and 36 

control groups to extract specifically expressed genes. The use of differentially expressed genes 37 

(DEGs) is a widely accepted way of defining marker gene candidates, the validity of which has been 38 

confirmed by biological experiments. However, the risk of false positives is increased by the tens of 39 

thousands of statistical tests associated with comprehensive analysis. Therefore, correction methods 40 

for multiple testing, such as Benjamini–Hochberg’s false discovery rate (FDR)1, Storey’s q-value2,3, 41 

and Efron’s local FDR4 have been widely employed. Along with the increasing demand for multiple 42 

testing and correction methods, DEG detection methods in the field of biostatistics for 43 

high-dimensional data have also been developed. In particular, limma5, using Bayesian statistics, 44 

edgeR6, and DESeq1-27,8 have been developed to improve the statistical power (sensitivity) of DEGs 45 

while suppressing false positives. These methods have often been applied to cases in which only a 46 

small number of samples can be obtained because of the experimental scale and cost limitations9. 47 
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Nevertheless, with the development of comprehensive gene expression analysis, especially 48 

single-cell analysis10, new challenges have arisen as a result of the rapid increase in the number of 49 

samples11 and the involvement of exploratory analysis schemes. The presence of a large sample size 50 

along with the application of exploratory analysis inducing selection bias can lead to an overly small 51 

P-value, impeding the application of conventional methods to call differentially expressed genes 52 

(DEGs) for bulk RNA-seq12. In particular, because in principle the P-value decreases with increasing 53 

sample size, even minor variations are considered statistically significant with large sample sizes, 54 

resulting in the unnecessary expansion of candidate genes (e.g., the definition of the t-statistic is 55 

proportional to √n). Therefore, efforts to improve the ability to detect DEGs are still being made to 56 

adapt to scRNA-seq data with the characteristics of low coverage and large sample size. That is, one 57 

of the major problems to be solved in this field is gene prioritization, namely, the selection of a small 58 

list of genes that should be validated and interpreted as a priority. 59 

Here, we propose discriminative feature of cells (DFC), an alternative approach to the use of DEGs 60 

for characterizing cell populations by discrimination and variable selection. We demonstrated that 61 

DFC succeeded in selecting a small set of genes that characterize a group of cells of interest, while 62 

avoiding the problem of a large candidate gene list due to the large sample size of scRNA-seq. DFC 63 

is also shown to have the potential to provide biological insights that are difficult to find using DEGs, 64 

such as detecting genes that characterize small subpopulations and specific compositions of genes 65 

that are functionally linked to each other.  66 
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RESULTS 67 

We focused on the discriminative method to characterize a population of interest (POI) in cells (e.g., 68 

stem cell population), using scRNA-seq data from samples that contain a large number of cell types, 69 

such as tissues. In the discriminative method, each cell is considered as a data point in the gene 70 

expression space, and the boundary surface that separates the two groups is determined. The 71 

boundary surface is confined to a small dimension of the space by variable selection, which suggests 72 

the idea of characterizing cell populations by a selected subset of gene expression patterns, as DFC. 73 

(Fig. 1a). While the conventional concept of using a DEG-based approach involves the comparison 74 

of group means of individual gene expression levels in two cell populations, the POI and a control 75 

group, DFC obtains a group of genes that are useful to discriminate POI from the control group. 76 

Thus, DFC is supposed to provide a highly selective gene list of only the number of genes needed 77 

for discrimination, while simultaneously using information from all genes. In this study, we 78 

implemented the method for determining DFC using binary classification by logistic regression and 79 

variable selection by adaptive LASSO13. Specifically, we performed adaptive LASSO–logistic 80 

regression with the objective variable of belonging to the POI (1 or 0) and the explanatory variable 81 

of gene expression level; the genes whose weights were not 0 were considered as DFC. 82 

First, we explored which characteristics of the POI are considered important by DFC. Because 83 

DFC could be related to multiple variables, it could potentially distinguish correlated gene pairs or 84 

mixed subpopulations. Therefore, we generated artificial scRNA-seq data assuming the above two 85 

scenarios of gene expression pattern that may be prioritized in DFC. We applied variable selection 86 

using adaptive LASSO–logistic regression on these artificial data to examine the characteristics of 87 

gene expression patterns of cell populations that tend to be DFC. 88 

 89 
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DFC calls a pair of genes with dependences in their expression 90 

In the first case, we tested the possibility that adaptive LASSO would prioritize correlated gene 91 

pairs. As the gene expression pattern of a simulated cell population, the expression levels of four 92 

genes were generated from a normal distribution with equal differences in group means and identical 93 

variances (Fig. 1b). Therefore, all genes are equivalent as DEGs (i.e., they have the same P-value in 94 

the two-tailed t-test). However, only the gene pair X3–X4 is correlated (r=0.7) within the two groups, 95 

while all other pairs are uncorrelated (r=0). The expression of these hypothetical genes is shown in 96 

Figure 1c as a scatter plot. The process of variable selection (LASSO solution path) is shown in 97 

Figure 1d, indicating that, in the process of increasing the parameter λ, which adjusts the sparsity 98 

(the strength of variable selection), the correlated X3–X4 pair is finally selected (Fig. 1d). The 99 

correlated pair has the clearest boundary between the groups (Fig. 1c, bold box), and it can be 100 

intuited that the two selected variables are a useful variable pair for differentiating groups A and B. 101 

In addition, the accuracy of the discrimination using all four variables is 0.999, while the accuracy 102 

using only the two selected variables is 0.995, indicating that the model maintains adequate 103 

performance. These results indicate that gene pairs that are correlated within a group are likely to be 104 

selected as DFC. This suggests that DFC can select a set of genes that have direct or indirect 105 

dependences as useful features for discriminating groups. 106 

Next, we examined the ability of DFC to detect mixed subpopulations. Here, we assume a situation 107 

that includes multiple subpopulations with different expression patterns in one group (Fig. 1e). As in 108 

the previous scenario, all genes are equivalent as DEGs, that is, they have the same variance, and the 109 

group means are the same for all variables (see Methods for details). Here, genes X1 and X2 are 110 

strongly expressed in only one-third of the cells in group B. Furthermore, the expression of X1 and 111 

that of X2 are mutually exclusive. Therefore, X1 and X2 are not statistically independent. In addition, 112 
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because group B is composed of multiple subpopulations, the distributions of gene expression of 113 

both X1 and X2 are multimodal (Fig. 1f). In this example, adaptive LASSO also prioritized the 114 

non-independent variable pair X1 and X2 (Fig. 1g). This suggests that DFC is generally prone to 115 

selecting non-independent pairs of genes. In this scenario, the condition for being in cell group A is 116 

the expression of both X1 and X2 at the same time, that is, the logical AND (&) relation, which 117 

cannot be realized by expressing X1 or X2 alone. 118 

These results suggest that DFC may provide useful insights when considering cellular functions, 119 

not simply as a candidate list of differentially expressed genes, but as a set of genes that well defines 120 

characteristics of a cell population, including dependences such as correlations among multiple 121 

genes and mixtures of different populations.  122 
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 123 

Fig. 1: The dependent pairs of gene expression selected as the DFC 124 
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(a) Different concepts for gene selection of DFC and DEG. The common goal is to extract a set of 125 

genes that characterizes the population of interest. A DEG-based approach involves a list of genes 126 

with statistically significant differences between the studied groups. In contrast, DFC-based 127 

approach involves a subset of genes that distinguish between two populations. DFC is expected to 128 

feature a small set of genes selected by taking into account the relationships among genes. (b–d) 129 

Artificially generated data set in which DFC has priority over DEG; case 1: correlation. (b) 130 

Schematic of the synthesized data design. Only the pair X3 and X4 has intra-group correlation; the 131 

other pairs are independent. All variables have the same variance, and the differences in means are 132 

the same for all pairs (see Methods for details). (c) Pairs that are easier to classify are given priority 133 

to become DFCs. The lower triangle shows the plot of each pair of variables; the diagonal elements 134 

show the distribution of each variable and the upper triangle shows the correlation coefficient within 135 

the cluster of each two variables. The separating boundary of the selected variable pair X3 and X4 is 136 

shown as solid line. (d) The process of selecting discriminative variables; solution path. This 137 

indicates transition of the weights (partial regression coefficients) of each variable when 138 

regularization parameter λ (sparsity) is varied. (e–g) Synthesized data set in which DFC has priority 139 

over DEG; case 2: exclusive. (e) Schematic of the synthesized data design. In one-third of the group 140 

A cells, the expression of X1 and that of X2 are mutually exclusive. The variances and the means of 141 

variables are designed as in case 1. In other words, this simulates a logical product relationship such 142 

that cells that express X1 and X2 simultaneously are equivalent to the population of group A. (f) An 143 

example of logical relationships of case 2, shown in a scatter plot as in (c). (g) The solution path in 144 

case 2 as shown in (d).  145 
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Small gene set of DFC determined by a unique criterion that differs from DEG 146 

Next, to demonstrate the practical applicability of DFC, we performed scRNA-seq data analysis 147 

and compared the yielded gene lists of DEG and DFC. The data were obtained from scRNA-seq data 148 

of mouse tibialis anterior (TA) muscle tissue injured by notexin at days 0, 2, 5, and 7 during the 149 

regeneration of skeletal muscle14. Skeletal muscle satellite cells (MuSCs) are known to be an 150 

essential cell population for muscle regeneration, and are activated upon muscle injury and undergo 151 

multiple progenitor cell stages until differentiating into myofibers. In this process of muscle 152 

regeneration, there is also a self-renewing state in which MuSCs again transition to a quiescent state 153 

and refill the MuSC pool15,16. Therefore, we attempted to characterize heterogeneous cell 154 

populations of MuSCs with multiple transient states by DFC, which has been difficult to capture by 155 

a DEG-based approach. 156 

Figure 2a shows the procedure for defining the POI and the determination of DFC. First, public 157 

data of scRNA-seq (GSE143437)14 were obtained. Then, the genes expressed in very few cells 158 

(fewer than 10 cells) were filtered (see Methods for details). Next, UMAP was used to visualize the 159 

data in two dimensions. The 12th cluster obtained by Louvain clustering (Fig. 2b) was designated as 160 

the POI for this analysis, and all other clusters were designated as the control group (Fig. 2c). 161 

Cluster 12 was selected according to the expression levels of Pax7, a marker gene for MuSCs, and 162 

Myod1, a transcription factor that functions in progenitor cells and activated satellite cells. The 163 

specific expression of the genes indicated that cluster 12 is the satellite/progenitor cell cluster (Fig. 164 

2d, e). 165 

Next, to elucidate the differences in the criteria for selecting genes in DFC and DEG in the data, we 166 

compared their gene lists. For DEGs, the criterion of FDR < 0.01 in DESeq2 was used. As a result of 167 

applying this criterion, the number of DEGs was 7,495, which was nearly half of the total (42%) of 168 
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17,730 mouse genes. Among the DFCs, most of the genes (96/108) overlapped with the DEGs, but 169 

there were also 12 DFC-specific genes (Fig. 2f). Next, we examined whether genes in DFC could be 170 

obtained by adjusting the gene selection criteria such as the P-value and log2 fold change in DEGs. 171 

Figure 2g shows the position of genes selected as DFC among all DEGs by a volcano plot. The large 172 

sample size of scRNA-seq and the statistical test on the clusters, which were also determined using 173 

the same scRNA-seq data, resulted in the overly small FDRs. In addition, the genes selected as DFC 174 

among the DEGs were scattered irregularly. The results suggested that genes in DFC were selected 175 

independently of the DEG criteria. Similarly, in the MA plot (Fig. 2h), genes in DFCs were found to 176 

be scattered among the DEGs, indicating that the DFC selection was also independent of the gene 177 

expression levels. These results indicate that DFC selects genes according to its own criteria and also 178 

selects genes that are more useful for discrimination of the POI among the DEG candidates. 179 
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 180 

Fig. 2: Smaller gene set of DFC was selected by a unique selection criterion 181 

(a) Procedure of extracting DEG and DFC from scRNA-seq data. (b–e) The determined POI is 182 

compared with all other cell clusters in the muscle tissue. Embedding the scRNA-seq data into 183 

two-dimensional space with UMAP. (b) The clusters determined by the Louvain algorithm. The 12th 184 

cluster corresponds to the cluster of muscle stem cells and progenitors. (c) The 12th cluster is set as 185 

the POI, and the other clusters are assigned as the control group, “Others.” (d, e) Single-cell 186 
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expression levels for Pax7 and Myod1. (f) A part of the DEGs are selected as DFC. Venn plot 187 

indicating the overlap of DEGs and DFC. (g) Genes in DFC not selected by the DEGs’ criteria. 188 

Volcano plot of DEGs and (h) MA plot of DEGs.  189 
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DFC is useful to identify the combinatorial patterns of gene expression and minor 190 

subpopulations 191 

Next, we investigated whether DFC can extract the biological function of the POI. To evaluate this, 192 

we interpreted how genes in DFC help to discriminate the POI by referring to known marker genes 193 

of MuSC or muscle progenitors. First, we classified the DFC genes into three groups according to 194 

the specificity of expression in each cluster: The “Strong” feature refers to the genes expressed in 195 

25% or more of the cells in one or two clusters. The “Weak” feature refers to the genes expressed in 196 

three or more clusters, as depicted in Figure 3a. The “Niche” feature is defined as genes with minor 197 

expression in less than 25% of the cells in all clusters (Fig. 3b for the annotation of clusters, Fig. S1 198 

for the original annotation by the authors of scRNA-seq data and S2-3 for highlighted expression of 199 

all genes in DFC on the UMAP visualization). 200 

Genes belonging to the Strong feature included many of the genes known as markers of MuSCs 201 

and activated satellite cells (Fig. 3c, Fig. S3a). M-cadherin (Cdh15)17 was expressed almost 202 

universally in the POI. The results of GO enrichment analysis using only the Strong feature showed 203 

that many genes are related to skeletal muscle cells in muscle tissue (Fig. 3d). In addition, Myf5 is a 204 

representative feature of the group of cells that are not represented by Myog and Myod1 in the POI 205 

(Fig. S3a). Thus, it can be interpreted that Myf5 plays a different role from other myogenic 206 

regulatory factors18. These results indicate that DFC can select genes that correspond to single 207 

biomarkers, similar to DEG. 208 

The Weak feature (Fig. 3e, Fig. S2) included Kai (Cd82)19–21 and a group of genes used as 209 

quiescent satellite cell markers such as syndecan-4 (Sdc4). In contrast, the negative LASSO weight 210 

of Col6a2, which is selectively expressed in fibro/adipogenic progenitors (FAPs), helps to 211 

characterize the POI as non-FAPs (Fig. 3e). Furthermore, a notable property of the Weak feature 212 
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involved the combined expression pattern using multiple genes. For example, Des is expressed in 213 

both a part of the POI and the mature SKM population, which is a part of Others. This means that 214 

Des itself cannot characterize the POI (Fig. 3g, Fig. S2). Therefore, to exclude the character of 215 

mature SKM from the POI, the condition of Sepw1(−), which is significantly expressed in mature 216 

SKM, is additionally imposed (Fig. 3f). Thus, DFC can be used as a molecular marker to identify 217 

specific cell types for immunostaining and cell sorting, for example, Des(+)Sepw1(−)Col6a2(−). 218 

The Niche feature detects minor subpopulations scattered within the POI (Fig. 3h). These genes in 219 

DFC are difficult to prioritize in the list of DEG (i.e., they tend to have larger P-values). In fact, 220 

Calcr, which is ranked lower than 5,000th in the order of P-values in the DEGs, is known to be 221 

expressed transiently in a quiescent state. We also detected Edn322, which has a prominent 222 

localization on day 7 after injury in the POI, and Gm12603 (Wincr1; WNT-induced noncoding RNA), 223 

a gene expressed in a different cell group from Calcr and Edn3. 224 

These binary combinations (+/−) of multiple genes and minor cell groups would appear as the 225 

representative cases demonstrated in Figure 1f. Therefore, DFC can characterize the best 226 

combinations of genes for determining cell type and even small subpopulations caused by transient 227 

expression or state changes, even using a small list of genes, and even upon comparison with the 228 

heterogeneous control group of cells in tissue.  229 
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Fig. 3: Biological significance of genes in DFC revealed by the discriminative ability 231 

(a) According to the specificity of the expression, the genes in DFC are classified into three groups. 232 

The three groups are named Strong (specific to 1–2), Weak (>2), and Niche features (none of them). 233 

(b) The data are from samples collected at 0, 2, 5, and 7 days after skeletal muscle injury. In addition, 234 

the clusters of fibro/adipogenic progenitor (FAP), mature skeletal muscle (SKM), and lymphocytes 235 

(LYM) are shown. (c) Genes specifically expressed in the POI are assigned to the Strong features. 236 

For the Strong feature Cdh15, its expression level for each cluster shown in Fig. 2b is plotted. The 237 

medians, 25/75th percentiles, and 1.5 IQR (inter-quartile range) are employed to draw the box plots. 238 

(d) The Strong features contain many genes that act as markers of skeletal muscle. The results of GO 239 

enrichment analysis for the Strong features. GOs are ordered by the proportion of their inclusion in 240 

the Strong features. (e) Genes expressed in some clusters are assigned to the Weak features. For the 241 

Weak feature Col6a2, its expression level is plotted in the upper panel, and the single-cell expression 242 

level on UMAP visualization is plotted in the lower panel. (f, g) The expression levels of Sepw1 and 243 

Des, two of the Weak features, are plotted as (e). (h) Genes with low expression levels that are 244 

expressed in a minor subpopulation of the POI are assigned to the Niche feature. For the Niche 245 

feature Calcr, its expression level is plotted as (c). (i) Cells expressing Niche features (Calcr, Edn3, 246 

and Gm12603) are highlighted. (j) DFCs have the property of capturing interrelated genes. STRING 247 

is used to connect related DFCs. (k) Ribosomal proteins are a notable example of Weak features in 248 

DFC that are difficult to interpret in the context of binary combinations. Eighteen ribosomal protein 249 

genes in DFC are averaged in each cluster as a heat map.  250 
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DFC extracts genes harboring functional associations 251 

Finally, we attempted to elucidate more complex functional associations between genes from the 252 

obtained DFC. The artificial data in Figure 1 show that DFC selects the pair of genes with 253 

dependences among DEG-equivalent genes. This suggests that DFCs may tend to contain the 254 

network of many-to-many gene relations that forms the unique characteristics of each cell type. 255 

First, we examined the correlation matrix of expression levels for the genes in DFCs, and found that 256 

the POI showed a more distinct hierarchical structure than the Others group (Fig. S4). We further 257 

evaluated the functional associations of 108 genes by STRING23 (see Fig. 3j, Fig. S5–6 for details). 258 

The 104 genes in DFC were contained in the STRING database and had 257 association edges, 259 

which is a larger number than would occur by chance (87 edges), indicating that these are a set of 260 

genes that are strongly related to each other (PPI enrichment p-value < 10−6). 261 

Next, we attempted to interpret the network by referring to the characteristics of the adaptive 262 

LASSO–logistic regression. First, we examined the correspondence with the weights of adaptive 263 

LASSO. We found that the two clusters of genes related to the function of FAPs with negative 264 

weights and the clusters of genes related to the activation of MuSCs with positive weights, such as 265 

MyoD and Myog, were linked via the proteoglycan Sdc4 (Fig. 3j). Among them, the most remarkable 266 

result was obtained for the ribosomal protein-coding genes, which formed a dense cluster of 267 

ribosome subunit components. All of these genes are included in the Weak feature. The expression 268 

patterns of these genes are not clearly segregated into clusters and are difficult to interpret by binary 269 

combinations (Fig. S2), suggesting that they reflect a certain composition of ribosomal 270 

protein-coding genes that may have a critical function in MuSCs and progenitors. To confirm the 271 

discriminative ability of the genes, we extracted only the ribosomal protein-coding genes in the DFC, 272 

and visualized them by PCA. The results confirmed that the subset of DFC was sufficient to 273 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.12.435089doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435089
http://creativecommons.org/licenses/by/4.0/


 19 

discriminate the POI from the Others (Fig. S7a, b). In more detail, the composition of these genes 274 

was characterized by higher overall expression levels compared with the Others, with Rpl31 and 275 

Rps37 being particularly highly expressed (Fig. 3k). In contrast, the POI has a ribosomal protein 276 

profile closest to that of lymphocytes (LYM), but the negative weight of Rpl34 appears to act to 277 

differentiate the POI from the lymphocyte population. Furthermore, these ribosomal protein-coding 278 

genes clearly captured the temporal changes after muscle injury in the POI (Fig. S7c, d). This 279 

suggests that a certain composition of ribosomal protein-coding genes is the critical factor in stem 280 

cell functions, such as self-renewal24–26, and supports their role in muscle regeneration27. In 281 

conclusion, DFC can extract a small set of genes that characterize the POI, including functional 282 

associations between genes.  283 
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DISCUSSION 284 

In this paper, we have proposed a new concept of characterizing a cell population of interest, which 285 

is an alternative to the DEG-based approach that uses lists of genes with differences in expression 286 

between groups. Our method, can be termed a discriminative approach, has potential applications in 287 

the task of cell characterization. In particular, given the recent developments of high-throughput 288 

biological measurements, the statistical models based on discrimination can be effective for the 289 

increased sample size of scRNA-seq (capable cell number). 290 

To select a small number of genes to characterize a cell, as in a DEG-based approach, rather than to 291 

determine the cell type itself, a variable selection procedure was employed to select a small set of 292 

genes that are effective for discrimination. Variable selection is a methodology that selects a small 293 

number of M < N optimal combinations of variables from N input variables, while preserving the 294 

predictive performance of the statistical model. Several methods of variable selection with 295 

discriminative models have been developed, such as SVM28, and logistic regression with LASSO 296 

penalty. Among them, LASSO–logistic regression is a method that can construct an interpretable 297 

linear model and perform variable selection in one step. However, the gene clusters obtained by 298 

these discriminative methods have been mostly used as gene signatures in cell-type classification 299 

(e.g., a cell is normal or malignant29), and no attempt has been made to interpret these gene 300 

signatures themselves biologically.  301 

In this study, we compared two different population groups: the POI, which is specified after 302 

nonlinear dimensionality reduction and clustering, and the rest of the population. In this paper, this 303 

comparison was assumed to be the most frequently used procedure for profiling unknown cell 304 

populations using scRNA-seq data. However, DE analysis after clustering has been criticized for 305 

introducing selection bias, which results in excessively low P-values12. This exploratory data 306 
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analysis of scRNA-seq makes the proper use of P-values more difficult, while our method bypasses 307 

the use of P-values. In addition, it can be assumed that a control group including heterogeneous 308 

populations will increase the variance in the group and lead to large P-values. For this reason, DE 309 

may miss subtle changes of state or fail to discover minor subpopulations within the cell groups of 310 

interest. In other words, calling DEGs may not be the best strategy for exploratory discovery in a 311 

mixed cell population represented by tissue. Furthermore, a simple two-group comparison of one vs. 312 

others is practical enough and thus is one of the major advantages of our method. The reason why 313 

this easy comparison works well is that DFC combines multiple Weak/Niche features in order to 314 

improve discriminative performance and pick up even small populations. The advantage comes from 315 

the linearity of the model adapted in DFC; that is, the results can be interpreted as a superposition of 316 

features, as described above. 317 

As an implementation of the concept of DFC, we employed the framework of binary classification 318 

with logistic regression and variable selection with adaptive LASSO. In addition to its several 319 

beneficial statistical properties (e.g., consistency in variable selection), adaptive LASSO has been 320 

shown to have superior practical performance among the improved versions of original LASSO30. 321 

Although there are many methods for variable selection, such as best subset selection (L0)31, random 322 

forest32, and SVM28, in this study, we did not provide the benchmark tests of each method. However, 323 

we believe that how the mathematical properties of each method are utilized in the various scenarios 324 

of scRNA-seq data analysis is an important topic. In this paper, we have discussed the usefulness of 325 

the discriminative method when the dependence among all genes is included. Indeed, Ntranos et al. 326 

shed light on a discriminative approach that uses logistic regression to detect isoform-level gene 327 

expression changes from scRNA-seq data33. We also found the usefulness of the discriminative 328 

approach, especially in the analysis of tissue scRNA-seq data where gene expression correlations 329 
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and subpopulations within the same population are expected to be mixed. The further development 330 

of methods that focus on the interpretation of large-scale data is anticipated. 331 

 332 

MATERIALS & METHODS 333 

Setting POI of scRNA-seq data 334 

Normalized count matrix and the annotations of cells of scRNA-seq data were downloaded 335 

from GEO (GSE143437). We filtered out genes that were expressed (> 0) in fewer than 10 cells. 336 

The UMAP visualization was performed using the uwot R package (version 0.1.10)34. In the 337 

embedded two-dimensional space, the clusters were determined by the Louvain method35 338 

implemented in the igraph R package36 (version 1.2.6). In our analysis of scRNA-seq data from 339 

muscle tissue, the POI was set as the cluster in which the majority of cells expressed both Pax7 340 

(53.3%) and Myod1 (42.6%). 341 

 342 

Adaptive LASSO–logistic regression 343 

The adaptive LASSO–logistic regression was performed using the glmnet37 (version 4.1) R 344 

package. To perform the adaptive LASSO, we followed the two steps of parameter estimation: 345 

fit ridge and then fit LASSO regression with the penalty factor. The penalty factor was set to be 346 

1/|βridge|, where βridge is estimated by ridge regression in the first step. The sparsity parameter λ 347 

was determined by 10-fold cross-validation (cv.glmnet) of binomial deviance. To reduce the 348 

computational cost in real scRNA-seq data, we obtained 30% subsamples of cells from each 349 

cluster in the estimation of βridge. 350 
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 351 

Differential expression analysis 352 

 A raw count matrix was downloaded from GEO (GSE143437). The Wald test was performed 353 

using the DESeq2 38 (version 1.28.1) R package to identify genes that were differentially 354 

expressed (DEGs) between the POI and the Others. The parameters were used as the default 355 

settings. Genes with FDR < 1% were considered significantly differentially expressed. 356 

 357 

Synthetic data generation 358 

The artificial data set consists of randomly generated data points (cells) with four variables 359 

(genes). We set the variables as the equivalent genes in terms of DE. Because the statistical 360 

significance of a DEG that is estimated by the z- or t-statistic is uniquely determined by 361 

variances and the difference of means between groups, we only modified the relationships of the 362 

genes, while maintaining the variance and difference of means. Specifically, the two cases of 363 

DE-equivalent genes were generated as follows. Case I: Correlated expression. All four 364 

variables follow the Gaussian distribution with constant variance σ2 = 1 and difference of means 365 

| µA − µB | = 2, where A and B indicate groups of cells (each of 1,000 cells). All pairs of variables 366 

are independent (r=0), except for the pair (X3, X4) having a strong correlation r=0.7 in both 367 

groups. Case II: Heterogenous population. All four variables have the same variance σ2 and the 368 

same group means µA, µB. We set X1 and X2 of group B as having an exclusive relationship. We 369 

divided group B into three subgroups (B1–3: each of 333 cells). Group B1 expresses X1, group 370 

B2 expresses X2, and group B3 expresses none of them. The others are independent Gaussian 371 
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variables. To equalize the variance and means in group B to those in the others, we used the 372 

mixture distribution as the marginal distribution of X1 and X2 in B: 373 

� � ����� , ��
�	 
 �1 � �	����, ��

�	, 374 

where g is the Gaussian probability density function and p is the proportion of subgroup relative 375 

to the size of group B. In general, the mean and variance of f are calculated as follows: 376 

�  � ��� 
 �1 � �	��
σ� � ���

� 
 �1 � �	��
� 
 ��1 � �	��� � ��	�.

 

We used the parameters: σ1
2 = σ2

2 = 1, µ1= 0, µ2 = 5, p = 2/3, and hence µB = 5/3 and σ2 = 59/9 377 

for all variables. We set µA = 5. 378 

 379 

Code Availability 380 

The codes used for the DFC extraction and analysis are available at: 381 

https://github.com/tfwis/DFC 382 
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