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ABSTRACT 
 
During gastrulation, the coordinated activity of BMP, WNT and NODAL signaling pathways 
guide the differentiation of the pluripotent epiblast into the three germinal layers. Recent studies 
underline the role of the Hippo-effector YAP1 regulating WNT and NODAL signaling pathways 
and repressing mesoendodermal differentiation in human embryonic stem cells (hESCs). 
However, the contribution of YAP1 to the cell-fate patterning decisions that transform the epiblast 
in a three-germ layer gastrula remains unknown. We address this question by analyzing 
micropatterned 2D-gastruloids derived from hESCs, in the presence and absence of YAP1.  Our 
findings show that YAP1 is necessary for gastrulation. YAP1 KO-gastruloids display reduced 
ectoderm layer and enlarged mesoderm and endoderm layers, compared to WT. Furthermore, 
YAP1 regulates the self-organized patterning of the hESCs, as the discrete position of the three 
germ layers is altered in the YAP1 KO-gastruloids. Our epigenome (single-nuclei ATACseq) and 
transcriptome (RNA-seq)  analysis revealed that YAP1 directly represses the chromatin 
accessibility and transcription of key genes in the NODAL pathway, including the NODAL and 
FOXH1 genes. In WT gastruloids, a gradient of NODAL: SMAD2.3 signaling from the periphery 
to the center of the colony regulates the exit of pluripotency toward endoderm, mesoderm and 
ectoderm, respectively.  Hence, in the absence of YAP1, a hyperactive NODAL signaling retains 
SMAD2.3 in the nuclei impeding the self-organized differentiation of hESCs. Accordingly, the 
partial inhibition of NODAL signaling is sufficient to rescue the differentiation and pattern -
defective phenotypes of the YAP1 KO gastruloids. Our work revealed that YAP1 is a master 
regulator of NODAL signaling, essential to instruct germ layer fate patterning in human 
gastruloids. 
 
 
INTRODUCTION 
 
Gastrulation is a crucial developmental stage when the pluripotent epithelial epiblast subsequently 
converts into the three embryonic germ layers: mesoderm, ectoderm, and endoderm1. The success 
of the gastrulation largely relies on the correct spatial and temporal regulation of the NODAL 
pathway2-4. NODAL:SMAD2.3 signaling is essential for maintaining pluripotency in pre-
gastrulating epiblast cells5-8. However, as development proceeds, NODAL  cooperates with BMP 
and WNT pathways in the posterior epiblast to initiate Primitive Streak (PS) formation, the 
precursor of mesoderm and endoderm layers1. Convergently, inhibitory signals of NODAL and 
BMP in the anterior epiblast facilitate the acquisition of a neuroectodermal potential1, 9.  Thus, 
epiblast cells interpret a high-medium-low level of NODAL signal as a “sign” to either integrate 
into the PS, remain pluripotent, or differentiate into a neuroectodermal cell, respectively. Yet, the 
underlying mechanisms that control NODAL signaling are not entirely understood. 
NODAL pathway ligands are members of the transforming growth factor-beta (TGFβ) superfamily 
that bind to type I and type II serine-threonine kinase receptors. Activated type I receptors 
phosphorylate cytoplasmic SMAD2 and SMAD3, leading to their interaction with Smad4 and the 
subsequent formation of transcriptional complexes in the nucleus2. The antero-posterior gradient 
of NODAL:SMAD2.3 signaling during gastrulation is partially shaped by inhibitory 
extraembryonic signals from the anterior visceral endoderm (AVE), including Lefty1 and Cer110, 

11. However, epiblast-like cells (hESCs and mESC) in vitro organize in absence of extraembryonic 
tissues12-14; in 2D-gastruloids, the germ layers organize in a defined concentric pattern in confined 
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hESC colonies12, and hESC-derived 3D-gastruloids break symmetry and display anteroposterior 
organization13, 14. These observations emphasize the relevance of intrinsic mechanisms in epiblast 
cells regulating the spatial distribution of NODAL cues, independent of polarized extraembryonic 
signals. 
The Hippo pathway regulates organ size, regeneration, and cell growth by controlling the stability 
of the transcription factors YAP1 and TAZ.  Hippo/MST kinase cascades phosphorylate 
YAP1/TAZ, leading to their ubiquitin-mediated degradation.  When the Hippo kinases are 
inactive, YAP1/TAZ translocate into the nucleus where they associate with TEAD1–4 DNA-
binding proteins and regulate transcription15-17. Unlike TAZ, YAP1 is essential for development, 
and YAP1 KO mice die around E8.518. The YAP1 KO mouse showed defects in extraembryonic 
and embryonic tissues, including axis elongation18.  Lineage-specific YAP1 KO mutants have 
revealed specific roles of YAP1 in the cell-fate decisions of the zygote19 and specification of the 
trophectoderm and epiblast-cells20-22. Similarly, we and others have described important roles of 
YAP1 during differentiation of epiblast-like cells (hESCs and mESCs)23-28. For instance, YAP1 
represses mesoendodermal (ME) differentiation in hESCs24, 25, 29 by regulating the activity of the 
NODAL and WNT3 pathways24, 26.  However, whether YAP1 regulates gastrulation signaling 
during the formation and spatial organization of the three-germ layers has not been addressed. 
Here, we used a robust model of human gastrulation30, 31 to examine the YAP1- dependent 
regulatory mechanisms.  In this model, hESCs are confined to circular micropatterns and 
differentiated following exposure to BMP4 cytokine. Our findings indicate that YAP1 is required 
for normal BMP4-induced gastruloid formation. YAP1 KO-derived gastruloids exhibit expansion 
of mesoderm and endoderm layers and substantial reduction of ectoderm-specified cells. 
Moreover, our data show that YAP1 controls the patterning of the gastruloids, as the YAP1 KO-
gastruloids display abnormal location of the three-germinal layers, compared to WT. Our genome-
wide analysis reveals that the predominant role of YAP1 in human gastrulation is to repress the 
expression of regulatory genes of the NODAL:SMAD2.3 pathway. Accordingly, the gastrulation-
defective patterning in YAP1 KO hESCs can be partially rescued by inhibiting NODAL signaling. 
Overall, our data highlights YAP1's essential role in controlling embryonic spatial patterning and 
underlying cell-intrinsic regulatory mechanisms in hESCs. 
 
 
RESULTS 
 
YAP1 is required for cell-fate patterning of hESC-derived 2D gastruloids 
To examine the role of YAP1 in human gastrulation, we analyzed the differentiation pattern of the 
three-germinal layers in 2D- gastruloids derived from hESCs12. For this, the hESCs were grown 
in  geometrically confined discs (circular CYTOO chips) until they reached ~80-90% confluency. 
Then, micropatterned colonies were treated with BMP4 cytokine to differentiate them into self-
organized concentric rings of embryonic germ layers; with ectoderm in the center, extra-embryonic 
tissue at the edge, and mesoderm and endoderm in between12 (Figure 1A, WT). We compared the 
patterned structures derived from WT and YAP1 KO hESCs. We found that the number of 
ectoderm positive cells, expressing the SOX2 marker32, is significantly reduced in the YAP1 KO 
gastruloids, compared to WT. However, the percentage of cells positive for mesoderm 
(Brachyury/T+) and endoderm (SOX17+) markers was higher in the YAP1-deleted micropatterns 
(Figure 1A, 1B and Supplemental Figure1).  Consequently, YAP1 KO gastruloids display 
expanded mesoderm and endoderm rings, and reduced ectodermal ring, compared to WT (Figure 
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1A, 1D and Supplemental Figure1). Furthermore, the distribution of the concentric rings is 
inverted in the YAP1 KO gastruloids, and the ectoderm cells are located in the periphery, 
surrounding the mesoderm cells, that now occupy the center of the 2D-gastruloid (Figure 1A, 1C, 
1E and Supplemental Figure 1).  Altogether, these findings reveal that YAP1 regulates the fate 
and allocation of the three germinal layers in hESCs. 
 
YAP1 KO hESCs fail to differentiate into ectoderm 
The analysis of the 2D-gastruloids suggest that the acquisition of an ectodermal cell-fate is 
compromised in the YAP1-depleted cells.  To better examine the contribution of YAP1 to the 
formation of each of the germinal layers, we used a directed differentiation protocol (StemCell 
Technologies #05230) to induce differentiation towards ectoderm, mesoderm, and endoderm 
lineages in WT and YAP1 KO hESCs (Figure 2A). After culturing the cells for 5 days (mesoderm 
and endoderm) or 7 days (ectoderm) with the lineage specific medium, we examined the 
transcriptome of the differentiated cells using RNA-seq approaches. The heatmap in Figure 2B 
shows the expected germ-layer markers following the induction of the three lineages in WT 
hESCs. However, the YAP1 KO cells failed to express ectoderm lineage genes (Figure 2B). 
Instead, after 7 days of exposure to ectodermal-induction media, the YAP1 KO cells expressed 
high levels of pluripotency markers, such as POU5F1 and NANOG, and low levels of key 
ectodermal genes, including SOX1 and PAX6 (Figure 2B, 2C). Importantly, similar to what we 
and others have previously shown, the induction of endoderm genes was enhanced in the YAP1-
KO cells compared to WT24-26, 29 (Figure 2B, 2C).  Previous reports have shown that NANOG 
represses ectoderm differentiation but has little effect on other lineages33. Accordingly, in the WT 
hESCs, NANOG expression decreases in the first 24h of ectoderm differentiation, preceding the 
induction of the ectoderm gene, OTX2 (Figure 2D). However, the YAP1 KO hESCs display 
standing  levels of NANOG following 72h of ectoderm induction, which correlates with the 
absence of ectoderm genes (Figure 2B, 2D). We restored the levels of YAP1 in the YAP1 KO 
hESCs using a Doxycycline-inducible PiggyBac system24. Our data show that the reintroduction 
of YAP1 is sufficient to reduce the levels of NANOG and induce OTX2 expression in ectoderm 
induced-YAP1 KO hESCs (Figure 2E-F). Altogether, these findings show that YAP1 is necessary 
to repress NANOG during hESC-directed differentiation toward an ectodermal fate. 
 
Cytoplasmic retention of SMAD2.3 during ectoderm induction it depends on YAP1  
TGFb/NODAL:SMAD2.3 signaling maintain the expression of pluripotency genes, including 
NANOG5. Accordingly, dual inhibition of TGFb/NODAL:SMAD2.3 and BMP:SMAD1.5 signals 
is sufficient to turn off the pluripotency program and promote the acquisition of an ectodermal fate 
in hESCs, similar to the in vivo situation9, 34. We interrogated whether YAP1 regulates SMADs 
during ectoderm induction in hESCs. For this purpose, we examined the cellular localization of 
the SMAD2.3 and SMAD1.5 in WT and YAP1 KO cells. The subcellular fractionation 
experiments in Figure 3A show that global SMAD2.3 levels are higher in the YAP1-KO cells than 
in the WT cells. More importantly, the SMAD2.3 failed to  translocate into the cytoplasm in 
response to ectoderm induction media in the YAP1 KO cells (Figure 3A and Supplemental 
Figure 2A, 2B). Interestingly, we did not detect differences in the cytoplasmic accumulation of 
SMAD1.5 in the YAP1-KO cells (Supplemental Figure 2A, 2B). Then, we examined SMAD2.3 
activity in an in vitro model of 2D-neurulation in WT and YAP1 KO hESCs. We seeded the hESCs 
in geometrically confined colonies and treated them with “homemade” neurulation media, which 
contains the TGFb/NODAL and BMP inhibitors: SB431542 and Noggin, as previously 
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described35. After 4 days of neurulation induction,  SMAD2.3 was vastly located in the cytoplasm 
of the WT cells. However, the SMAD2.3  remained predominantly nuclear in the YAP1 KO 
colonies (Figure 3B), consistent with the lack of expression of the ectoderm marker SOX2 (Figure 
3B). Overall, these findings show that YAP1 is necessary to inhibit the nuclear activity of 
SMAD2.3 during the commitment toward neuroectodermal fates. 
 
YAP1 represses NODAL pathway genes during ectoderm differentiation 
We hypothesized that the nuclear retention of SMAD2.3 was due to an abnormal NODAL 
signaling in the YAP1 KO gastruloids. To test this idea, we examined the expression levels of 
regulatory components of the NODAL signaling pathway in ectoderm-induced WT and YAP1 KO 
cells. For that, we applied a Signaling Pathway Analysis to the RNA-seq datasets derived from the 
WT and YAP1 KO cells after ectoderm induction (Figure 2A). The AmiGO database36 classified 
18 genes in the NODAL pathway (GO0038092). We identified 12 of the genes differentially 
regulated (DR) in the YAP1 KO cells compared to WT (Figure 3C, DR genes are highlighted in 
red, overlapping p-value < 0.001, Fisher’s Exact Test), suggesting that the NODAL pathway is 
strongly affected by YAP1 deletion. The list of DR genes contains important NODAL signaling 
regulators, such as the transcription factor FOXH1 (Log2 Fold Change 4.69, p-value < 0.001), an 
essential partner of SMAD2.3 in gastrulation37. We also identified upstream signaling components 
strongly upregulated in the YAP1 KO cells, such as the Activin receptor ACVR1C (log2 fold-
change 1.92, adjusted p-value < 0.001) and the NODAL gene (log2 fold-change 13.42, adjusted 
p-value < 0.001) (Figure 3C, D). Furthermore,  restoring YAP1 levels using the Doxycycline- 
inducible PiggyBac system24 in the YAP1 KO cells was sufficient to reduce the NODAL gene 
expression during ectodermal induction (Figure 3E). These results suggest that YAP1 represses 
the transcription of NODAL signaling genes during ectodermal differentiation.   
 
YAP1 regulates the chromatin accessibility of FOXH1 and NODAL developmental genes 
To better understand the transcriptional regulatory mechanisms of YAP1 in gastrulation, we 
applied the cutting-edge single-nuclei ATAC-seq (snATAC-seq) technology to examine the 
genome-wide chromatin accessibility profile in WT and YAP1-KO hESCs. The t-distributed 
stochastic neighbor embedding (t-SNE) analysis in Figure 3F revealed that WT and YAP1 KO 
hESCs clustered together in a homogenous cell population. These findings indicate that the overall 
chromatin profiling of YAP1 KO hESCs resembles normal pluripotent cells. However, we 
identified 10,683 differentially regulated (DR) regions in the YAP1 KO cells compared to WT 
(Figure 3G). We classified the 10,683 DR peaks into proximal (+/-10Kb from TSS) and distal 
(>10Kb from TSS) genic regions. This analysis revealed that 8,767 out of 10,683 DR regions lie 
in the distal regions, and most of them lost accessibility in the YAP1 KO hESCs (83%). This result 
suggests that YAP1 facilitates enhancer accessibility, in agreement with the previous reports38. 
However, this analysis also revealed that up to 49.8% of the  proximal regions (promoters) gained 
accessibility in the YAP1 KO cells (954 out of 1917 DR promoters) (Supplemental Figure 2C). 
Thus, YAP1 has important roles in restricting accessibility on promoters. As expected, the DNA 
motif most represented in the regions that lost accessibility in the absence of YAP1 was TEAD4, 
followed by SOX15 and JUN-AP1 motifs (Figure 3H).  Convergently, the DNA motifs recognized 
by  BORIS, ERG, and FOXH1 transcription factors gained access in the YAP1 KO cells. 
Importantly, among the regions that gained accessibility in the YAP1 KO hESCs, we identified 
the promoter of NODAL and FOXH1 genes (Figure 3I), which correlates with an increase in the 
mRNA levels of these genes (Figure 3C-3E and 3I). Furthermore, our ChIP-seq analysis of YAP1 
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in WT and YAP1 KO hESCs24 revealed  two bona-fide YAP1-binding sites upstream of the 
NODAL and FOXH1 genes (Figure 3I), suggesting a direct role of YAP1 repressing these genes. 
The dynamic regulation of the NODAL gene during embryogenesis is orchestrated by the activity 
of cell-type specific enhancers11 (Supplemental Figure 2D). We identified that the YAP1-bound 
region near the NODAL locus corresponds to the well-characterized Proximal Epiblast Enhancer 
(PEE). The PEE drives NODAL expression in the epiblast and Primitive Streak in vivo, but it is 
inactive in the anterior epiblast11, 39. Our data suggest that YAP1 represses the PEE to inactivate 
the NODAL gene during ectoderm induction. These observations are in agreement with previous 
reports describing a transcriptional repressor role of YAP1 on developmental genes24, 26, 40, 41. 
Finally, our genome comparison analysis revealed that YAP1:TEAD binding site in the PEE is 
conserved in mouse (Supplemental Figure 2D), suggesting a preserved role of YAP1 regulating 
the NODAL enhancer. Overall, we conclude that YAP1 restricts the chromatin accessibility of the 
NODAL and FOXH1 genes by regulating key developmental enhancers. 
 
Partial inhibition of the NODAL pathway rescues the phenotype of YAP1 KO gastruloids 
Our data show that YAP1 represses the NODAL and FOXH1 genes to restrain the SMAD2.3 
nuclear activity during ectoderm induction. Thus, we hypothesized that the defective gastrulation 
phenotypes of YAP1 KO hESCs are due to the persistent activity of NODAL:SMAD2.3 signaling 
throughout the gastruloid.  To test this idea, we examined the effect of blocking NODAL signaling 
in the YAP1 KO-gastruloids. Hence, we replicated the 2D-gastrulation experiments in the YAP1 
KO cells, in the presence and absence of the NODAL receptor inhibitor A83-015942. Figure 4 
shows that the co-treatment of BMP4 and the NODAL inhibitor (Figure 4A) rescues the 
expression and patterning of the ectoderm layer (SOX2+) in the YAP1 KO 2D-gastruloids, 
compared to BMP4 treatment alone (Figure 4A-D). Accordingly, an outer layer of Brachyury+ 
cells is visualized around the SOX2+ cells in the YAP1 KO gastruloids exposed to BMP4+A83-
0159, partially resembling the original structure of WT gastruloids (Figure 4A-D). We noticed 
that longer exposures to  A83-0159 (48h) completely blocks the activity of SMADs, and even 
compromised the formation of the mesoderm and endoderm layers (Supplemental Figure 3A, 
3B).  Finally, we tested whether the A83-0159 was sufficient to rescue the YAP1 KO phenotypes 
during  ectoderm directed differentiation (Figure 2A). For this,  WT and YAP1-KO hESCs were 
exposed to commercial ectoderm induction media for 3 days in the presence and absence of A83-
0159. As shown in Supplemental Figure 3C and 3D, blocking NODAL signaling was sufficient 
to downregulate NANOG and induce the expression of the ectoderm lineage gene OTX2 in the 
YAP1 KO cells. Altogether, these findings highlight the importance of YAP1 regulating NODAL 
signaling to coordinate cell-fate decisions during human gastrulation. 
 
CONCLUSIONS 
 
Directed differentiation strategies in hESCs have previously shown that YAP1 regulates the 
expression of lineage genes during the specification of the mesoderm and endoderm fates24-26, 29. 
However, the process of gastrulation requires additional coordinated actions of epiblast cells to 
self-organize and choose the correct differentiation path toward one of the three germ-layers. Thus, 
we interrogated the role of YAP1 in the process of gastrulation in hESCs. Our studies revealed 
three main findings: 1) YAP1 regulates the correct specification and allocation of the three-germ 
layers in the 2D-gastruloids, 2) YAP1 is needed for the induction of an ectodermal fate in hESCs, 
and 3) a predominant role of YAP1 repressing the activity of NODAL signaling.  Importantly, 
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mutations in NODAL signaling 43-46 or YAP147-50 have been identified in Holoprosencephaly and 
Colobomas. Holoprosencephaly and Colobomas belong to the same spectrum of developmental 
diseases51-53 and are suspected to originate during gastrulation51, 54, by abnormal patterning of 
anterior neuroectoderm51. Our findings established a novel connection between NODAL and 
YAP1 pathways in gastrulation, opening the door to future studies on investigating the 
NODAL:YAP1 regulatory axis in the context of abnormal development and birth defects. 
 
 
MATERIAL AND METHODS 
 
hESC culture and cell lines 
Control, YAP1 KO and the doxycycline-inducible YAP1 (YAP1 KO:FlagYAP1-PiggyBac) H1 
hESCs were previously described24.  hESCs were cultured in mTeSR1 medium on Matrigel-coated 
tissue culture plates. For expansion, hESC colonies were fragmented and split in a 1:20 ratio 
following ReLeSR treatment (StemCell Technologies). For directed differentiation experiments, 
colonies were disaggregated into single cells using Accutase and plated in the presence of Rock 
Inhibitor (StemCell Technologies Y-27632) on matrigel-coated plates. The YAP1 KO:FlagYAP1-
PiggyBAC cells were treated with 20 ng/ml of Doxycycline to restore the YAP1 expression. For 
2D-gastrulation experiments see Methods in Micropatterns Cell Culture section. 
 
Directed differentiation 
hESCs were single-cell seeded onto 6-well Matrigel-coated plates at 2*106 cells/well for ectoderm 
and endoderm conditions and 5*105 cells/well for mesoderm condition and treated with the 
appropriate differentiation medium using the STEMdiff Trilineage Differentiation Kit (StemCell 
Technologies #05230) according to manufacturer instructions. Differentiated cells were then 
collected for RNA isolation, fixed with 4% paraformaldehyde for immunostaining or harvested 
for western blotting analysis. 
 
Micropattern cell culture and Gastrulation induction 
Micropatterned glass chips from CYTOO (CYTOOCHIP Arena 1000, France) were used, 
following Deglincerti et al. protocol32. Briefly, the chips were coated with 10 mg/mL of Cell-
Adhere Laminin-521 (StemCell Technologies) diluted in PBS with calcium and magnesium 
(PBS++) (Sigma) for 2h, at 37°C. Before seeding the cells, chips were washed with PBS++.  
hESCs were dissociated with Accutase, pelleted in DMEM/F12 (Gibco) and resuspended in 
growth media. 1*106 cells in 2.5 mL were seeded on the chips with Rock Inhibitor. After 4h, Rock 
Inhibitor was removed and replaced with standard mTeSR1 media for 12-16 hrs. Cells were then 
washed with PBS and treated with 50 ng/mL of BMP4 supplemented with PenStrep (Sigma) for 
48hrs.  
 
Neurulation induction 
For neurulation experiments cells were seeded in mTeSR1 for 12-16h then washed twice with PBS 
before adding neurulation media (DMEM-F12, 15% KnockOut Serum Replacement media 
(Gibco), 0.2% NEAA (Sigma), 500 ng/mL Noggin (R&D #6057-NG/CF), 10 mM SB431542 
(Stemgent #04-0010-10)) supplemented with PenStrep (Sigma). This media was freshly prepared 
and replaced daily until collection on day 4. 
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Treatments with the Activin/NODAL/TGF-β pathway inhibitor 
Cells were grown on TeSR1 or ectoderm medium and treated with the Activin/NODAL/TGF-β 
pathway inhibitor 2mM A83-0159 (StemCell Technologies #72022) for 72h. In 2D-gastrulation 
experiments the chips were stimulated with BMP4 for 48h and 1mM of A83-0159 was added to 
the media with BMP4 (48h treatment) or after 12 hrs (36h treatment). 
 
Immunostaining, imaging, and quantification 
For direct differentiation experiments, hESCs were plated in Lab-Tek II Chambered Coverglass 
slides previously coated with Matrigel. Cells were fixed with formaldehyde 4% for 10 minutes. 
After permeabilization with Triton 0.1% for 10 minutes, cells were washed with PBS, and 
incubated with blocking solution (PBS Tween 0.1%, BSA 0.1%, FBS 10%) for 30 minutes at room 
temperature. Fluorophore-conjugated primary antibodies (See Supplemental Table 1) diluted in 
blocking solution were added and incubated overnight at 4°C. After washes, cells were incubated 
with 1µg/ml DAPI for 10 minutes. Finally, cells were washed three times with PBS. Images were 
captured by a Nikon Eclipse Ti confocal microscope using Nikon NIS-Element AR software. 
For immunostaining of micropatterned gastruloids, CYTOO chips were washed twice with PBS 
before fixing with freshly prepared 4 % formaldehyde (Life Technologies) for 20 minutes at room 
temperature. The chips were then washed twice with PBS, and the cells were permeabilized with 
blocking solution (PBS 0.1% Tryton-X, 3% of Donkey Serum (Jackson Immunoresearch Cat#017-
000-121)) for 45 minutes at RT. Primary antibodies (listen in Supplemental Table 1 ) were added 
overnight at 4°C diluted to the appropriate concentration in blocking solution. The following day, 
the chips were washed three times in PBS 0.1% Tween-20 (PBS-T) for 15 minutes, followed by 
incubation with secondary antibodies in the presence of 1 mg/mL of  DAPI (Invitrogen) in 
blocking solution for 1h, at RT. Finally, chips were washed three times in PBS-T for 15 minutes 
at room temperature and one final wash in PBS. The chips were mounted on glass slides with 
mounting media (DAKO, Cat#S3023). Micropatterned gastruloids were imaged using Zeiss 
Airyscan Confocal LSM900; tile Z-stack images of 5-6 colonies were collected using 20x 
objective. Each channel was saved as a separate tiff file and analyzed with Fiji software. All 
analysis was carried out in Fiji, homogenously subtracting the background from tile images. Each 
colony was then analyzed using single-channel images. Cell nuclei were quantified using the 
analyze particle plugin in Fiji and expressed in a graph as a percentage of positive cells compared 
to the DAPI staining. The distance from colony center and ring thickness were manually 
quantified, averaging 4 repeated measurements for each colony. Otherwise stated, an average of 
10-15 colonies were quantified for each experiment. 
 
RNA extraction and qPCR 
RNA was extracted using Quick RNA Zymo kit following manufacturer indications. 0.5 µg of 
total RNA was reverse transcribed using Transcriptor First Strand Synthesis kit (Roche). The 
cDNA was amplified using SYBR green master mix (Life Technologies) on a CFX96 Touch Real-
Time PCR detection system. All results were normalized to RPS23, GAPDH and Actin genes. The 
ΔΔCt method was used to calculate relative transcript abundance against the indicated references. 
Unless otherwise stated, error bars denote standard deviation among three to five independent 
experiments. 
 
 
RNA-sequencing and bioinformatic analysis 
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WT and YAP1 KO hESCs were differentiated into ectoderm, mesoderm, or ectoderm layers, 
following directed differentiation strategies (see directed differentiation section in Methods). RNA 
was extracted using Zymo columns and sent for library preparation and quality control to the Salk 
Institute Genomics Analysis Laboratory (SIGnAL). High-throughput sequencing was carried out 
in the Illumina HiSeq 4000 device.  Raw reads were mapped to the human hg19 reference by 
STAR aligner (v2.5.3a)55 using default parameters. Then reads uniquely mapped across exons of 
RefSeq genes were summed by HOMER (v4.9.1)56 to be used as gene expression counts.  
Differential regulated (DR) genes were identified using DESeq2 (v1.18.1)57 with adjusted p-val < 
0.01 and absolute log2 fold-change (log2FC) > 1. Fragments per kilobase per million mapped 
reads (FPKM) values were log2-transformed and z-scaled for heatmap visualization. A pseudo-
value of 5 was added before log2-transformation. Heatmap was generated using R package 
“gplots” [ref: https://cran.r-project.org/web/packages/gplots/index.html].  
 
Single-nuclei ATAC-sequencing (snATAC-seq) and bioinformatic analysis 
Sample preparation, library generation and single-cell sequencing snATAC-seq was carried out at 
the Center for Epigenomics at UCSD. The procedure followed the protocol described in 
Cusanovich et al58. Briefly, DMSO-frozen hESCs were thawed in 37°C water bath until liquid (~2-
3 minutes) and immediately placed on ice. Nuclei were isolated and permeabilized using OMNI 
buffer (0.1% NP40, 0.1% Tween-20, 0.01% Digitonin) as described59.  Nuclei were counted and 
2k nuclei were dispensed per well; 96 wells per sample for tagmentation. After tagmentation (and 
addition of the first barcode), nuclei from individual samples were pooled. 20 nuclei from each 
sample were sorted per well (768 wells total). Following nuclear lysis the second barcode was 
added, and DNA molecules were pooled and purified. Before sequencing, the quality of the library 
was certified by analyzing fragment size distribution and DNA concentration. Sequencing was 
performed in a HiSeq 4000 device.  
SnapTools (v1.4.7) and SnapATAC (v1.0.0) developed at Ren’s Lab, UCSD were used for the 
scATAC-seq analysis60. In brief, reads were mapped to hg19 reference using bwa mem (v0.7.12)61 
and sorted by samtools (v1.9)62. Then reads were pre-processed by SnapTools using default 
parameters and chromosome bin size of 5000. Cells with less than 500 unique molecular identifier 
(UMI) reads were removed from downstream analysis. The distribution of counts in promoter ratio 
was inspected and cells with the ratio < 0.1 or > 0.6 were removed. MACS2 (v2.1.2)63 was used 
for peak calling from pooled reads (parameters: -g hs --nomodel --shift 37 --ext 73 --qval 1e-2 -B 
--SPMR --call-summits).  Chromosomal bins overlapped with the ENCODE hg19 blacklist 
regions, random genomic contigs, or mitochondrial chromosomes were removed from analysis. 
Top 5% most expressed bins were also removed. Dimension reduction by Latent semantic analysis 
(LSA) was performed on binary chromosomal bins and visualized by t-distributed stochastic 
neighbor embedding (tSNE) using the top 30 principle components and a random seed of 10.  
Differential regulated (DR) regions were called by SnapATAC command “findDAR” using 
parameters “bcv=0.1, fdr=0.05, pvalue=0.01, test.method=exactTest, seed.use=10”. DR regions 
with false discovery rate (FDR) < 0.05 and absolute log2 fold-change > 1 were considered as 
significantly different. Motifs enrichment analysis was performed by HOMER (v4.9.1)( 
http://homer.ucsd.edu/homer/), with parameters “-size 200 -mask”. 
 
Western Blotting 
Cells were harvested and total cell extracts were prepared in cold lysis buffer (50 mM Tris pH 8.0, 
150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1 mM PMSF, 10 mM NaF, 1 mM Na3VO4, 2 
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µg/mL aprotinin, 1 µg/mL leupeptin, 1 µg/mL pepstatin), sonicated, and cleared by centrifugation 
for 10 minutes at 10,000 g at 4C. Protein concentration was determined by Bradford protein assay 
(Bio-Rad), sample buffer was added (50 mM Tris pH 6.8, 2% SDS, 0.01% bromophenol blue, 
2.5% beta-mercaptoethanol and 10% glycerol), and extracts were incubated for 5 minutes at 100C. 
Samples were separated in 10% SDS-PAGE gels (Invitrogen) and transferred onto PVDF 
membranes using iBlot2 gel transfer device (ThermoFisher). Membranes were blocked for 1 hour 
at room temperature in Super BlockTM (ThermoFisher) blocking buffer, incubated overnight at 4C 
with primary antibody (See table X) in blocking buffer, and then incubated for 1 hour at room 
temperature with secondary antibody in blocking buffer. The protein bands were visualized using 
the Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln, NE, USA). 
 
Cytosolic/nuclear fractions 
hESCs were subjected to subcellular fractionation after directed differentiation using the Cell 
Fraction Kit (Cell signaling Technology #9038S). The cytosolic and nuclear extracts were 
prepared following manufacturer instructions to be analyzed by western blotting as described 
above. 
 
Accession numbers 
Full data sets of scATACseq (from WT and YAP1 KO H1 hESCs) and RNAseq (ectoderm, 
mesoderm and endoderm cells derived WT and YAP1 KO hESC) have been submitted to the NCBI 
Gene Expression Omnibus database in a MIAME-compliant format under superseries accession 
number GSE168377. The ChIP-seq of YAP1 and TEAD4 in hESCs can be found in GSE99202.  
 
 
FIGURE LEGENDS  
 
Figure 1. YAP1 regulates the formation of the three germinal layers in hESC-derived 2D-
gastruloids. 
A) Immunostaining for the germinal layer markers SOX2 (Ectoderm), SOX17 (Endoderm) and 
Brachyury (Mesoderm) in WT and YAP1 KO micropatterned cell cultures stimulated with BMP4 
(50 ng/mL) for 48 hrs.  
B) Percentage of cells positive for SOX2, SOX17, and Brachyury markers in WT and YAP1 KO 
2D-gastruloids, versus the total number of cells in the pattern.  
C) Cross-section showing the distribution profile of the germ-layer markers.  
D-E) Graphs show quantification of ring thickness (D) and distance from colony center (E) of WT 
and YAP1 KO-derived gastruloids. Experiments were replicated three times with consistent 
results. 10-15 colonies were analyzed. Scale bar 100 µm. Statistical significance was quantified 
by applying unpaired two-tailed t-test. P values ****≤0.001. 
 
Figure 2. YAP1 is essential for the ectoderm fate commitment after directed differentiation. 
A) Schematic diagram of the directed differentiation methodology.  
B) Heat map from RNA-seq analysis showing expression levels of pluripotency and lineage 
specific genes following directed differentiation using the conditions shown in 2A. (n=3, Z scaled 
log2 FPKM). The cell lines and treatments are indicated above the map.  
C) Immunostaining of WT and YAP1 KO cells following the directed differentiation methodology 
shown in 2A. The cells are stained against specific lineage markers; Ectoderm: SOX1 (Green) and  
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Otx2 (Red); Mesoderm: Brachyury (Red) and HAND1 (purple); Endoderm: GATA4 (Green) and 
SOX17 (Purple). Nuclei are stained in DAPI. Scale bar 50 µm, (n=3). 
D) Representative immunoblot of the indicated proteins in WT and YAP1 KO cells grown on 
mTeSR1 (undifferentiated, Und) or ectoderm medium for 24 or 72 hours, as shown. GAPDH was 
used as a loading control, (n=3). 
E) Representative immunoblot of the indicated proteins. The YAP1 KO:YAP1PiggyBac stable 
cell line was generated by transfection of the transposon-based vector PiggyBac containing an 
intact Flag-YAP1-Venus cDNA under a Doxycycline promoter. Cells were grown on mTeSR1 or 
ectoderm medium for 72 hours and treated with 20 ng/ml doxycycline, as indicated, (n=3). 
F) Immunostaining of YAP1 KO:YAP1PiggyBac cells after the same treatment described above. 
The immunostaining shows the levels of an ectoderm specific marker Otx2 (red) and the 
expression of the doxycycline-regulated Flag-YAP1-Venus (green). Nuclei are stained in DAPI. 
Scale bar 25 mm, (n=3). 
 
Figure 3. YAP1 inhibits NODAL:SMAD2.3 signaling during ectodermal differentiation 
induction. 
A) Cells were grown on mTeSR1 or ectoderm medium for 72 hours. Representative immunoblot 
of the indicated proteins in WT and YAP1 KO cells after Cyto/nuclear sub-fractioning followed 
by Western Blotting analysis (n=3).  
B) Immunostaining of indicated markers in WT and YAP1 KO-derived neuruloids differentiated 
on 500 µm diameter CYTOO chips following 4 days in neurulation induction media. Note the 
nuclear retention of SMAD2.3 (green) and the reduced expression of the ectodermal SOX2 
(purple) in YAP1 KO, compared to WT. Scale bar 50 µm.  
C) Heatmap from RNA-seq experiment in Figure 2 depicts NODAL pathway regulatory genes 
(AmiGo database) in WT and YAP1 KO hESCs differentiated to the ectoderm. For comparison, 
self-renewing hESCs are also shown (mTeSR1, WT). The genes differentially regulated in WT 
and YAP1 KO cells are highlighted in red. Colors represent z-scaled log2-transformed FPKM 
values. 
D-E) Graphs show qPCR analysis of NODAL mRNA levels in the WT and YAP1 KO cells (D) 
or YAP1 KO:YAP1PiggyBac cells in the presence or absence of doxycycline (E).Note that 
restoring YAP1 levels (+doxy) is sufficient to reduce the mRNA levels of NODAL. 
F-I) Analysis of snATAC-seq experiments in WT and YAP1 KO hESCs. 
F) t-distributed stochastic neighbor embedding (t-SNE) showing unbiased clustering results for all 
the sequenced cells. The plots are colored by sample identity (WT hESCs:grey, YAP1 KO hESCs: 
red) 
G) Volcano plot shows differentially regulated (DR) regions in YAP1 KO hESCs (2,462 peaks 
upregulated and 8,221 downregulated at false discovery rate < 0.05 log2 fold-change > 1). The 
plots are colored by significance (red = significant, grey = not significant). 
H) sc-ATACseq analysis of DNA motifs differentially enriched in the YAP1 KO versus WT 
hESCs  
I) Genome browser captures of snATAC-seq (UCSC), RNA-seq and ChIP-seq of the indicated 
proteins, in WT and YAP1 KO hESCs. Note that there is a correlation between increase chromatin 
accessibility and mRNA levels for NODAL and FOXH1 genes, in the YAP1 KO versus WT cells. 
ChIP-seq identified a YAP1 binding site in enhancers near NODAL and FOXH1 genes.   
 
Figure 4. Nodal inhibition rescues the 2D-gastrulation defects in YAP1 KO cells  
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A) Immunostaining for the germinal layer markers SOX2 (Ectoderm), SOX17 (Endoderm) and 
Brachyury (Mesoderm) in the YAP1 KO micropatterned cell cultures stimulated with BMP4 (50 
ng/mL) or  combined BMP4+ Nodal Inhibitor (A8301 1mM). WT hESC-derived gastruloids are 
shown for comparison. 
(B) Graph shows percentage of SOX2+, SOX17+ and Brachyury+ cells of WT and YAP1 KO in 
the presence or absence of Nodal Inhibitor.  
C-D) Graphs show quantification of ring thickness (C) and distance from colony center (D). 10-
15 colonies were analyzed. Scale bar 100 µm. p value **≤0.01, **** ≤0.001, unpaired two-tailed 
t-test. 
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