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ABSTRACT 

Human DNA methylation profiles have been used successfully to develop highly accurate 

biomarkers of aging ("epigenetic clocks"). Here, we describe epigenetic clocks for horses, 

based on methylation profiles of CpGs with flanking DNA sequences that are highly 

conserved between multiple mammalian species. Methylation levels of these CpGs were 

measured using a custom-designed Infinium array (HorvathMammalMethylChip40). We 

generated 336 DNA methylation profiles from 42 different horse tissues and body parts, 

which we used to develop five epigenetic clocks for horses: a multi-tissue clock, a blood 

clock, a liver clock and two dual-species clocks that apply to both horses and humans. 

Epigenetic age measured by these clocks show that while castration affects the basal 

methylation levels of individual cytosines, it does not exert a significant impact on the 

epigenetic aging rate of the horse. We observed that most age-related CpGs are adjacent 

to developmental genes. Consistently, these CpGs reside in bivalent chromatin domains 

and polycomb repressive targets, which are elements that control expression of 

developmental genes. The availability of an RNA expression atlas of these tissues 

allowed us to correlate CpG methylation, their corresponding contextual chromatin 

features and gene expression. This analysis revealed that while increased methylation of 

CpGs in enhancers is likely to repress gene expression, methylation of CpGs in bivalent 

chromatin domains on the other hand is likely to stimulate expression of the 

corresponding downstream loci, which are often developmental genes. This supports the 

notion that aging may be accompanied by increased expression of developmental genes. 

It is expected that the epigenetic clocks will be useful for identifying and validating anti-

aging interventions for horses. 
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INTRODUCTION 

While there is a rich literature on human epigenetic clocks for individual and 

multiple tissues 1-4, we are not aware of any existing epigenetic clocks identified for 

horses. The human epigenetic clocks have already found many biomedical applications, 

including the measure of biological age in human anti-aging clinical trials 1,5. This has 

instigated the development of similar clocks for other mammals such as mice and dogs 

as biomarkers for age related disease 6-12. Here, we aimed to develop and evaluate 

epigenetic clocks for horses and to specifically investigate changes in DNA methylation 

that accompany equine aging. The availability of corresponding RNA-seq data allowed 

for the correlation between e methylation changes and gene expression levels, which is 

an advancement over previous studies in other species. 

 

It has long been known that the level of cellular DNA methylation changes with age 
13-15. With the technical development of methylation arrays that profile large numbers of 

individual CpG positions in the genome, an opportunity arose to develop a highly accurate 

age-estimator for all human tissues 1,2,4. For example, the human pan-tissue clock 

combines the weighted average of methylation levels of 353 CpGs into an age estimate 

that is referred to as DNAm age or epigenetic age 16. While the human pan-tissue clock 

applies to chimpanzees, 16 it does not apply to more distantly related mammals as a result 

of evolutionary genome sequence divergence. Recently, others have constructed 

epigenetic clocks for mice 6-11. Overall, these publications indicate that the underlying 

biological principle of epigenetic clocks is shared between members of different 

mammalian species. In humans, the discrepancy between DNA methylation age and 

chronological age (which is termed “epigenetic age acceleration”) is predictive of multiple 

health conditions, even after adjusting for a variety of known risk factors 17-22. Specifically, 

epigenetic age acceleration is associated with, but not limited to, cognitive and physical 

functioning 23, Alzheimer's disease 24, centenarian status 21,25, Down syndrome 26, 

progeria 27,28, HIV infection 29, Huntington's disease 30, obesity 31, cancer 32, and 

menopause 33. Epigenetic age is also predictive of mortality, even after adjusting for 

known risk factors such as chronological age, sex, smoking status, and other risk factors 
17-22. Collectively, the evidence is compelling that epigenetic age is an indicator of 

biological age 34-36.  

 

To enhance our understanding of the mechanistic causes and consequences of 

epigenetic aging effects, it is useful to correlate age-related DNA methylation changes to 

gene expression in different tissues. To address this challenge, we generated DNA 

methylation profiles from across 42 horse tissues for which transcription profiles were 

available. We report here, the development of a DNA-methylation-based estimator of 

chronological age across the entire lifespan of horses and humans (dual species clocks). 

Next, we characterize age-related changes in methylation levels in horses. Finally, we 
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correlate age-related cytosines to gene expression levels from neighboring genes across 

different horse tissues. 

 

Results 

We generated DNA methylation profiles from various tissue samples from horses 

(Table 1). Tissues other than blood and liver were collected from two mares used in the 

equine Functional Annotation of Animal Genomes (FAANG) initiative 37. Unsupervised 

hierarchical clustering analysis of these profiles led to distinct tissue-based clusters (color 

band in Supplementary Figure 1). A subsequent random forest analysis of sex and 

tissue type led to an error rate of 0 and 10%, according to the out-of-bag (OOB) estimates. 

 

Epigenetic clocks  

We developed five epigenetic clocks for horses that vary with regards to three 

properties: species, tissue type, and measure of age. The multi-tissue horse clock was 

trained on horse blood and liver DNA methylation profiles, while the dual-species (human-

horse) epigenetic clocks were trained using horse and human DNA methylation data. The 

resulting two human-horse clocks mutually differ by way of age measurement. One 

estimates chronological ages of horses and humans (in units of years), while the other 

estimates relative age, which is the ratio of chronological age of an animal to the 

maximum lifespan of its species (122.5 for humans and 57 for horses, Methods). The 

relative age ratio (with resulting values between 0 and 1) allows alignment and biologically 

meaningful comparison between species with different lifespans, which cannot otherwise 

be afforded by direct comparison of their chronological ages. 

 

To arrive at unbiased estimates of the epigenetic clocks, we carried out cross-

validation analysis of the training data. To develop the horse clocks, the training data 

employed consisted of horse blood and/or liver DNA methylation profiles, while human 

and horse DNA methylation profiles constituted the training data for both the human-horse 

clocks. The cross-validation study reports unbiased estimates of the age correlation R 

(defined as Pearson correlation between chronological age and its estimate, DNAm age), 

as well as the median absolute error. As indicated by its name, the horse multi-tissue 

clock is highly accurate in age estimation of blood and liver (R=0.96 and median absolute 

error 1.0 years, Figure 1A). The horse clocks for blood and liver samples lead to similar 

level of high accuracy (Figure 1B,C). 

 

The human-horse clock for chronological age is highly accurate when DNA 

methylation profiles of both species are analyzed together (R=0.98, Figure 1D), and 

remains remarkably accurate when restricted to horse blood and liver samples (R=0.95, 

Figure 1E). Similarly, the human-horse clock for relative age exhibits high correlation 

regardless of whether the analysis is applied to samples from both species (R=0.98, 
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Figure 1F) or only to horse samples (R=0.94, Figure 1G). This demonstrates that relative 

age circumvents the skewing that is inherent when chronological age of species with 

different lifespans is measured using a single formula.  

 

Horse clocks applied to plains zebras 

Next, we applied the five horse clocks to blood and biopsy (skin) samples from 

plains zebras. According to the five different horse clocks, the DNAmAge estimates from 

zebra blood correlate highly with the age of the zebra (Figure 2). The results are less 

impressive for skin samples from zebras where horse clocks either over- or underestimate 

the chronological ages of zebras. Overall, these results show that the horse clocks can 

be applied to blood samples but not to skin samples from zebras. 

 

EWAS of age in horse tissues 

The mammalian methylation array contains 31,836 probes that could be aligned 

to specific loci adjacent to 5093 unique genes in horse (Equus caballus.EquCab3.0.100) 

genome. Our epigenome-wide association studies (EWAS) correlated each of these 

CpGs with chronological age in horse blood (n=188) and liver (n=48) samples. In total, at 

a nominal p-value < 10-5, 12,705 and 1,813 probes were found to be related to age in 

blood and liver, respectively. The top DNA methylation changes in each tissue are as 

follows: blood, HOXC4 intron (z=20), and NFIA intron (z= -19); and liver, IKZF4 exon 

(z=11), and upstream of HMX3 (z= -10) (Figure 3A; Table S1). Tissue level meta-

analysis identified 10,501 CpGs with strong age-related methylation changes in both 

blood and liver. Some of these include hypermethylation of cytosines close to 

TMEM121B, LHFPL4 and FOXD3 exons and TBX18 promoter regions. In general, the 

genes proximal to age-related CpGs in horse are involved in developmental processes 

and includes polycomb repressor complex 2 (e.g. EED, SUZ12) targets that are marked 

with H3K27ME3 modification (Figure S3; Table S5). This is a general and conserved 

DNAm aging pattern in all mammalian species 38.  

 

Age-related CpGs were found to be located in all genic and intergenic regions that 

can be defined relative to transcriptional start sites (Figure 3B). As expected, CpGs in 

regulatory regions, including promoters and 5’UTR, were mainly hypermethylated with 

age. This result paralleled a higher positive association of CpG islands with age than non-

island CpGs in horse tissues (Figure 3C). The analysis also showed a partial overlap of 

DNAm aging between blood and liver (Figure 3D). These two horse tissues had a 

correlation of 0.5 for age-related CpG (Figure 3E). Although a large number of CpGs 

were changed by age in both liver and blood, there were several that were unique to each 

tissue. A subset of 26 CpGs were identified that had a divergent aging pattern between 

these two tissues. For example, while GPC5 exon-1 is hypomethylated with age in blood, 

it is hypermethylated in horse liver. These divergent genes could be relevant in 
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understanding developmental differences between blood and liver. Some of the shared 

and tissue specific DNAm changes are presented in Figure S2.  

 

Effect of castration 

Castration is a common practice to modulate aggression of stallions. This presents 

an opportunity to test whether hormones, such as testosterone, the level of which is 

severely reduced in geldings, affects the rate of epigenetic aging. This has important 

implications to cancer risk in horses, as castrated males were previously shown to be at 

a higher risk for ocular SCC than females or stallions 39-42.We employed the horse clocks 

we developed to analyse the following subsets of the data: a) all male samples, b) males 

older than 5 years, and c) males younger than 15 years. We evaluated the effect of 

castration on the epigenetic age of blood and liver. Multivariate regression models that 

regressed leave-one-out estimates did not show a significant association between 

castration and aging, irrespective of the age stratum. Our multivariate analysis based on 

leave-one-sample out estimates has an obvious limitation: both castrated and intact 

animals were used in the training set which may condition out the effect of castration. 

Therefore, we repeated the analysis by developing a clock in female samples (training 

data) and applying it to male samples (test data). Again, we did not find a significant 

association of castration on epigenetic aging in blood. 

 

Aging effects on CpG methylation in geldings correlated highly with those of 

stallions (r=0.78) (Figure 4B, C). There were nevertheless a few loci with methylation 

levels that changed with age only in geldings. For example, a CpG in the exon of FOXP2 

is hypomethylated with age in geldings, while a CpG in the 3’UTR of ABCA1 is 

hypomethylated only in stallions (Figure 4D, E; Table S3). In general, there was a 

moderate difference between geldings and stallions with regards to the baseline mean 

methylation of CpGs in blood (independent of age). Some of the top methylation 

signatures of geldings included hypermethylation in RABAC1 intron, PRPH exon, and 

hypomethylation in TRPS1 intron, and AKAP6 intron (Figure 4A; Table S2). While this 

study indicates a modest castration effect on baseline DNA methylation level and age-

related CpG methylation changes, the validation of this relationship requires a much 

larger sample size from all age ranges and also consideration for potential confounding 

effect of horse breeds. Castration-related genes, both with baseline or age differences, 

were related to development of nervous system, cartilage, connective tissue, and muscle 

physiology (Figure S4; Table S6).  

 

DNAm relate to gene expression differences in horse tissues 

Meaningful interpretation of epigenetic findings requires the coupling of DNA 

methylation changes with those of gene expression. This challenge is further 

compounded by comparisons between tissues and species. Our study provides a rare 
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opportunity to address this question by studying CpGs that are located in genomic regions 

that are conserved across mammalian species. Here, we integrated DNAm and RNAseq 

data from 57 samples (originating from 29 different tissues of two horses 37) to uncover 

the relationship between methylation changes of promoter CpGs with the expression of 

adjacent genes. Our analysis revealed that this relationship is dependent on the distance 

between the methylation site to the transcriptional start site (TSS) (Figure 5A). In general, 

methylation of CpGs that are closer to TSSs (from 10,000 nucleotides downstream to 

1000 upstream of TSS) have a stronger repressive effect on mRNA levels (r= -0.2, 

p<2x10-16). This negative relationship was independent of CpG island status of the loci 

(Figure S5).  

 

Regulation of gene expression however, is a multi-faceted process, of which 

methylation of the promoter is just one of the determinants. The chromatin context within 

which the CpGs are located is another feature that may exert a strong influence. As such, 

we first sought to ascertain the chromatin features within which the above CpGs are 

positioned, and then incorporate this information into the analysis of the impact of 

methylation of these CpGs on gene expression. Since chromatin states that are specific 

to the horse genome are presently unavailable, we used the “stacked chromatin states 

(stackHMM)” that identified chromatin features based on the consensus of over 100 

human cell types 43. Despite the species difference, this approach can nevertheless prove 

highly informative because the design of the mammalian methylation array was based on 

DNA loci that are conserved across mammals 44, allowing chromatin features identified 

by stackHMM to be applied not only to the horse but other mammalian species as well. 

Interestingly, this analysis led to the observation that the contextual chromatin feature of 

CpGs was an even better indicator of the DNA methylation-gene expression relationship. 

In general, methylation of CpGs within enhancers appear to correlate with reduced gene 

expression (e.g. EnhWk2,3,6; EnhA3,6,7:9; and TxEnh1,3,7,8) (Figure 5B, C). In 

contrast, increased gene expression is correlated with methylation of CpGs within 

polycomb repressed targets (e.g. ReprPC1,2,3,4,5), bivalent promoters (e.g. BivProm1-

4), promoter flanks (e.g. PromF4,5), and transcriptional start sites (e.g. TSS1,2) (Figure 

5B, C). Correlations of individual CpG methylation to mRNA expression are reported in 

Table S4. Importantly, this interesting observation can soon be directly validated, as a 

horse-specific chromatin state annotation will become available as part of the on-going 

FAANG initiative 45. 

 

Discussion 

We have previously developed several human epigenetic clocks from DNA 

methylation profiles that were derived from various versions of human Illumina DNA 

methylation arrays. As these arrays are specific to the human genome, their utility could 

not be extended to other species. A critical step toward crossing the species barrier was 
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the design, development and use of a mammalian DNA methylation array that profiles 

36,000 CpGs with flanking DNA sequences that are highly conserved across numerous 

mammalian species44. The employment of this array led to the acquisition of the most 

comprehensive epigenetic dataset of horses thus far. Using these data, we constructed 

highly accurate DNA methylation-based age estimators for horses that are applicable to 

their entire life course (from birth to old age). The successful derivation of a horse 

epigenetic clock using CpGs that are embedded within evolutionarily conserved DNA 

sequences across the mammalian class further confirms the conservation of the 

biological mechanisms that underpin aging.  

 

The potential the horse clock could contribute to equine health is illustrated by the 

fact that human epigenetic age acceleration, as measured by the human clock, is 

associated with a wide array of age-related conditions. To accurately translate age-

related findings from humans to horses (and vice-versa) requires a suitable measure of 

age-equivalence. We fulfilled this need through a two-step process. First, we combined 

DNA methylation profiles of horses and humans to generate a dual-species clock (human-

horse), which is as accurate in estimating horse age as it is for human age, in the 

chronological unit of years. Second, we expressed the ages of every horse and human in 

ratios of the maximum recorded ages of their respective species (species lifespan). The 

mathematical operation of generating a ratio eliminates chronological unit of time and 

produces a value that indicates the age of the organism in respect to the maximum age 

of its own species. This allows a meaningful and realistic cross-species comparison of 

biological age. Collectively, the ability to use a single mathematical formula to measure 

epigenetic age of different species and the replacement of the chronological unit of time 

with proportion of lifespan, are two significant innovations that will propel cross-species 

research.  

 

Beyond utilizing these methylation data sets to develop epigenetic clocks, we also 

investigated the characteristics of age-related CpGs and noted that the methylation of the 

majority of them were similar in direction in blood and liver, and that the genes that are 

proximal to them are largely developmental genes. This echoes the age-related 

CpG/genes identified across different tissues in other mammalian species. The 

connection between development and aging, albeit not immediately intuitive, is difficult to 

ignore. The enrichment of age-related CpGs to promoters, especially those with bivalent 

chromatin domains, and PRC2 targets suggest that changes of their methylation levels 

are likely to affect expression of downstream genes. It would indeed be very informative 

if such methylation changes could be correlated to gene expression changes. This has 

remained one of the challenging and limiting features of understanding DNA methylation 

changes because data for gene expression is often unavailable. Fortuitously, such data 

for these tissues are available in the horse. Here, we integrated DNAm and transcriptional 
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data in a large horse tissue atlas. Our analysis suggests that cytosine methylation alone 

has a modest correlation with gene expression outcome. However, incorporation of 

contextual chromatin elements (enhancers, promoters etc.) to the analysis, increased the 

magnitude of correlation between CpG methylation and gene expression. Specifically, 

methylation of CpGs within enhancers are more likely to correlate with reduced gene 

expression, while methylation of CpGs in polycomb repressed targets, bivalent promoter, 

promoter flanks, and transcriptional start sites results in largely increased gene 

expression. This may at first appear counter-intuitive, as methylation of promoters is often 

associated with repression of transcription. It is to be noted however, that this notion is 

largely true for promoters with adjacent CpG islands. In the specific case of PRC targets 

and bivalent chromatin domains, our analysis is consistent with the recent observation 

that hypermethylation of bivalent chromatin domain results in reduced presence of the 

repressive histone H3K27me3, causing the balance of histone ratio towards the 

transcription-promoting H3K4me3 46. This is consistent with the finding that DNA 

methylated regions of the genome are largely low in or devoid of H3K27me3, possibly 

due to the unfavorable binding of PRC2, which is required for methylation of H3K27 

histone. Interestingly, methylation of bivalent chromatin domains was reported to 

correlate with increased expression of developmental genes 47, which incidentally are the 

predominant genes proximal to age related CpGs. 

 

In addition to these valuable insights, this association between CpG methylation 

level, genomic elements and gene expression is a valuable tool to interpret methylation 

array findings from all mammalian species. For example, our analyses of age-related 

methylation changes in horse tissues reveals that CpGs that became increasingly 

methylated with age are located largely within promoters and CpG islands. Two of the top 

CpGs that were hypermethylated with age in horses included TBX18 and FOXD3 

promoters. However, while the TBX18 promoter had a strong negative correlation with 

DNAm-mRNA (z= -2.8), the FOXD3 promoter showed a positive DNAm-mRNA 

correlation in horse tissues (z=1.5). Thus, we can deduce that TBX18 expression 

decreases with age, but FOXD3 mRNA levels will increase with age. Cross-species 

expansion of this finding is only possible due to the design of the mammalian methylation 

array for highly conserved genomic regions 44. Thus, this novel multi-omics analysis of 

horse tissues is a tool to link DNAm with transcription in other studies based on the 

mammalian methylation array. Such a link is essential for functional interpretation of the 

findings and also for the experimental design of gene-perturbation studies.  

 

 

Materials and Methods 

 

Study samples 
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Horses 

We generated DNA methylation data from n=42 different horse tissues collected 

at necropsy (Table 1). The tissue atlas was generated from two Thoroughbred mares as 

part of the FAANG initiative 37, with the following tissues profiled: adipose (gluteal), 

adrenal cortex, blood (PBMCs; only n=1 mare), cartilage (only n=1 mare), cecum, 

cerebellum (2 samples each from lateral hemisphere and vermis), frontal cortex, 

duodenum, fibroblast, heart (2 samples each from the right atrium, left atrium, right 

ventricle, left ventricle), hypothalamus, ileum, jejunum, keratinocyte, kidney (kidney 

cortex and medulla), lamina, larynx (i.e. cricoarytenoideus dorsalis muscle), liver, lung, 

mammary gland, mitral valve of the heart, skeletal muscle (gluteal muscle and 

longissimus muscle), occipital cortex, ovary, parietal cortex, pituitary, sacrocaudalis 

dorsalis muscle, skin, spinal cord (C1 and T8), spleen, suspensory ligament, temporal 

cortex, tendon (deep digital flexor tendon and superficial digital flexor tendon), uterus 37. 

These tissues were also used for RNAseq analyses. This collection protocol was 

approved by the UC Davis Institutional Animal Care and Use Committee 

(Protocol#19037) 

 

Blood samples were collected via venipuncture into EDTA tubes from across 24 

different horse breeds (buffy coat). Most of the samples were from the Thoroughbred (TB) 

(n=79) and American Quarter Horse breeds (QH, n=62). For the following breeds, we had 

between one and six blood samples: Andalusian, Appaloosa, Arabian, Dutch Warmblood, 

Hanoverian, Holsteiner, Irish Sport Horse, Lipizzaner, Lusitano, mixed breed, Oldenburg, 

Paint or Paint cross, Percheron, Shire, Standardbred, Warmblood and Welsh Pony. The 

n=49 liver samples originated from necropsy collections of horses across 19 different 

breeds, with most of the liver samples from QHs (n=20). All collection protocols were 

approved by the UC Davis Institutional Animal Care and Use Committee (Protocols 

#20751 and 21455, respectively). 

 

Plains zebras 

The data from plains zebras (Equus quagga) are described in a companion paper 

(Larison et al 2021). Briefly, both blood (n=96) and biopsy (skin) (n=24) samples were 

obtained from a captive population of zebras maintained in a semi-wild state by the 

Quagga Project 48 in the Western Cape of South Africa. The population was founded in 

1989 from 19 individuals (9 from Etosha National Park in Namibia, 10 from the Kwazulu-

Natal in South Africa). Skin samples were taken by remote biopsy dart (1 mm wide by 20-

25 mm deep plug) and preserved in RNAlater (Qiagen). Blood samples were taken 

opportunistically during veterinarian visits and preserved in EDTA tubes. Most samples 

were collected from different individuals, except for two animals that were sampled twice 

some years apart. All samples were stored at -20 °C. Samples were collected under a 

protocol approved by the Research Safety and Animal Welfare Administration, University 
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of California Los Angeles: ARC # 2009-090-31, originally approved in 2009. After 

eliminating samples with low confidence for individual identity and age, we retained 76 

blood samples, and 20 skin samples. We retained the founder, however, in an effort to 

extend the age range represented in the skin clock. 

 

Human tissue samples 

To construct the human-horse clock, we analyzed the generated methylation data 

from n=1,207 human tissue samples (adipose, blood, bone marrow, dermis, epidermis, 

heart, keratinocytes, fibroblasts, kidney, liver, lung, lymph node, muscle, pituitary, skin, 

spleen) from individuals whose ages ranged from 0 to 93. The tissue samples came from 

three sources: tissue and organ samples from the National NeuroAIDS Tissue 

Consortium 49, blood samples from the Cape Town Adolescent Antiretroviral Cohort study 
50, and blood, skin and other primary cells provided by Kenneth Raj 51. Ethics approval 

was provided for all studies (IRB#15-001454, IRB#16-000471, IRB#18-000315, IRB#16-

002028). 

 

DNA methylation data 

The mammalian DNA methylation arrays were profiled using a custom Infinium 

methylation array (HorvathMammalMethylChip40) based on 37492 CpG sites. Out of 

these sites, 1951 were selected based on their utility for human biomarker studies. These 

CpGs, which were previously implemented in human Illumina Infinium arrays (EPIC, 

450K), were selected due to their relevance for estimating age, blood cell counts or the 

proportion of neurons in brain tissue. The remaining 35541 probes were chosen to assess 

cytosine DNA methylation levels in mammalian species 44. The particular subset of 

species for each probe is provided in the chip manifest file can be found at Gene 

Expression Omnibus (GEO) at NCBI as platform GPL28271. The SeSaMe normalization 

method was used to define beta values for each probe 52. This study focused on 31,836 

CpGs that could be mapped to the horse genome.  

 

RNA seq data 

Strand-specific RNA libraries were created following poly-A selection. Libraries 

were sequenced at 2x150bp on Illumina HiSeq2500, with a targeted depth of 30 million 

reads. RNAseq data were used to quantify transcripts annotated in Ensemble annotation 

(GCA_002863925.1, release 103) using Salmon mapping-based mode 53. 

 

Penalized Regression models 

Penalized regression models were created with glmnet 54. We investigated models 

produced by “elastic net” regression (alpha=0.5). The optimal penalty parameters in all 

cases were determined automatically by using a 10 fold internal cross-validation 

(cv.glmnet) on the training set.  
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We performed a cross-validation scheme for arriving at unbiased estimates of the 

accuracy of the different DNAm based age estimators. One type consisted of leaving out 

a single sample (LOOCV) from the regression, predicting an age for that sample, and 

iterating over all samples. A critical step is the transformation of chronological age (the 

dependent variable). While no transformation was used for the blood clock for horses, we 

did use a log linear transformation for the dual species clock of chronological age 

(Supplement). Details on the clocks (CpGs, genome coordinates) and R software code 

are provided in the Supplement 

 

 

Relative age estimation 

Relative age estimation was performed to introduce biological meaning into the 

age estimates of horses and humans, which have very different lifespans. Additionally, 

this estimation serves to overcome the inevitable skewing due to unequal distribution of 

data points from horses and humans across age range. Relative age estimations were 

calculated using the formula: Relative age= Age/maxLifespan where the maximum 

lifespan for the two species was chosen from the "anAge" database (57 for horses and 

122.5 for humans 55). The maximum for horses (57 years) will sound too high for many 

experts but miniature horses appear to live longer. The anAge data base 55,56 record for 

horse states the following. Quote "One Icelandic miniature horse named … is reported to 

have lived 57 years (Richard Miller, pers. comm.). Anecdotal evidence tells of a 

horse…that lived for 62 years in England, but that record is unverified." The oldest regular 

sized horse appears to have reached an age of 53 according to the Official Guide for 

Determining the Age of the Horse from American Association of Equine Practitioners (B. 

Wright 1999 URL). 

 

Epigenome wide association studies of age 

EWAS was performed in each tissue separately using the R function 

"standardScreeningNumericTrait" from the "WGCNA" R package57. Next the results were 

combined across tissues using Stouffer's meta-analysis method. 

 

DNAm-mRNA integration 

The mammalian methylation array carefully characterized the location of all target 

CpGs relative to the adjacent transcriptional start site in horse genome 44. Thus, we could 

link each CpG with mRNA level of the adjacent gene in horse tissue atlas. The 

associations were analyzed by the R function "standardScreeningNumericTrait" from the 

"WGCNA" R package 57. 

 

URL 
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B. Wright (1999) Official Guide for Determining the Age of the Horse, American 

Association of Equine Practitioners. 

http://www.omafra.gov.on.ca/english/livestock/horses/facts/info_age.htm 

 

Data availability 

The RNA-seq data can be downloaded from 

https://www.ebi.ac.uk/ena/data/view/ERA1487553 

The methylation data will be made publicly available as part of the data release from the 

Mammalian Methylation Array Consortium. Genome annotations of these CpGs can be 

found on Github https://github.com/shorvath/MammalianMethylationConsortium 
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Tables 

 

Tissue N No. Female Mean age Min. Age Max. Age 

Adipose 2 2 4.5 4 5 

AdrenalCortex 2 2 4.5 4 5 

Blood 188 129 11.2 0.005 28 

Cartilage 2 2 4.5 4 5 

Cecum 4 4 4.5 4 5 

Cerebellum 4 4 4.5 4 5 

Cortex 2 2 4.5 4 5 

Duodenum 2 2 4.5 4 5 

Fibroblast 2 2 4.5 4 5 

Heart 8 8 4.5 4 5 

Hypothalamus 4 4 4.5 4 5 

Ileum 2 2 4.5 4 5 

Jejunum 2 2 4.5 4 5 

Keratinocyte 2 2 4.5 4 5 

Kidney 6 6 4.5 4 5 

Lamina 2 2 4.5 4 5 

Larynx 2 2 4.5 4 5 

Liver 48 24 4.42 0.042 29 

Lung 2 2 4.5 4 5 

Mammary 4 4 4.5 4 5 

MitralValve 2 2 4.5 4 5 

Muscle 6 6 4.5 4 5 

OccipitalCortex 2 2 4.5 4 5 

Ovary 2 2 4.5 4 5 

ParietalCortex 4 4 4.5 4 5 

Pituitary 4 4 4.5 4 5 

Sacrocaudalis 2 2 4.5 4 5 

Skin 2 2 4.5 4 5 

SpinalCord 4 4 4.5 4 5 

Spleen 2 2 4.5 4 5 

Suspensory 2 2 4.5 4 5 

TemporalCortex 2 2 4.5 4 5 

Tendon 4 4 4.5 4 5 

Uterus 2 2 4.5 4 5 

 

Table 1. Description of blood methylation data. N=Total number of samples per 

species. Number of females. Age: mean, minimum and maximum. 
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Figure legends 

 
Figure 1: Cross-validation study of epigenetic clocks for horses and humans. 

Chronological age (x-axis) versus leave-one-sample-out (LOSO) estimate of DNA 

methylation age (y-axis, in units of years) for A) the multi-tissue clock for horse blood and 

liver, B) horse blood clock, C) horse liver clock. D) Ten-fold cross validation (LOFO10) 

analysis of the human-horse clock for chronological age. Dots are colored by species 

(black=human) and horse tissue type (green=liver, orange=blood). E) Same as panel D) 

but restricted to horses. F) Ten-fold cross validation analysis of the human-horse clock 

for relative age, which is the ratio of chronological age to the maximum recorded lifespan 

of the respective species. G) Same as panel D) but restricted to horses. Each panel 

reports sample size, correlation coefficient, median absolute error (MAE). 
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Figure 2. Horse clocks applied to blood and skin samples from plains zebra. Each 

panel corresponds to a different horse clock: A) Multi-tissue clock, B) blood clock, C) liver 

clock, D) human-horse clock for chronological age, E) human-horse clock for relative age 

F) Multi-tissue horse clock applied to skin samples from zebras. The solid line 

corresponds to linear least squares regression and the diagonal line to y=x.  
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Figure 3. Epigenome-wide association (EWAS) of chronological age in horse. 
EWAS of age in blood (n=188), and liver (n=48) of horse. The meta-analysis results were 
calculated by Stouffer method. A) Manhattan plots of the EWAS of chronological age. The 
coordinates are estimated based on the alignment of Mammalian array probes to 
Equus_caballus.EquCab3.0.100 genome assembly. The direction of associations with p 
< 10-5 (red dotted line) is highlighted by red (hypermethylated) and blue (hypomethylated) 
colors. Top 15 CpGs was labeled by the neighboring genes. B) Location of top CpGs in 
each tissue relative to adjacent transcriptional start sites. The grey color in the last panel 
represents the genomic location of 31836 mammalian methylation array probes mapped 
to the horse genome. C) Box plot analysis of position of age-associated CpGs in reference to 

CpG islands. The top age-related CpGs in each tissue are labeled by adjacent genes. **** 
p<10-4. D) Venn diagram of the overlap of the top 1000 (500 in each direction) significant 
CpGs in each analysis. E) Sector plot of DNA methylation aging in blood and liver of horse 
tissues. Red dotted line: p<10-4; blue dotted line: p>0.05; Red dots: shared CpGs; black 
dots: tissue specific changes; blue dots: CpGs whose age correlation differs between 
blood and liver tissue.  
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Figure 4. Castration moderately alters DNAm profile of horse blood. A) Manhattan 
plots of the EWAS of castration, in the blood of male horses. Co-variate: chronological 
age. Sample size: geldings, 48; stallions, 10. The coordinates are estimated based on the 
alignment of Mammalian array probes to Equus_caballus.EquCab3.0.100 genome 
assembly. The direction of associations with p < 10-4 (red dotted line) is highlighted by 
red (hypermethylated) and blue (hypomethylated) colors. Top 15 CpGs were labeled by 
the neighboring genes. B) Sector plot of DNA methylation aging by castration in blood of 
male horses. Red-dotted line: p<10-4; blue-dotted line: p>0.05; Red dots: age-related 
CpGs not affected by castration; black dots: CpGs whose aging pattern differs between 
geldings and stallions. Scatter plots of selected CpGs that change with age in both (C), 
or only stallions (D), or geldings (E) blood. The red dots and blue dots in the scatter plot 
correspond to blood samples from geldings and stallions, respectively.  
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.11.435032doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.435032
http://creativecommons.org/licenses/by-nd/4.0/


 
 

19 
 

 
Figure 5. DNAm levels in promoters relate to gene expression changes in horse 

tissues. This analysis was based on linear correlation of DNAm and mRNA level of the 

adjacent genes in 29 tissues from the two female horses. A) Relationship of DNAm, 

mRNA expression, distance to transcription start site, and chromatin states in the gene 

promoters. The chromatin states are based on the stackHMM annotations, which 

represent a consensus chromatin state in over 100 human tissues 43. Red horizontal lines: 

z> 2 and z< -2 values. B) Boxplot of DNAm-mRNA association by stackHMM state in 
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CpGs with significant cis-expression relationship. Only the stackHMM states with 

significant association (p<0.05) in any direction are shown in the figures. C) Scatter plots 

of selected CpGs with DNAm-mRNA association in horse tissues. Additional analysis by 

CpG island status and some sensitivity analyses are represented in the supplement 

(Figure S5-S6).  
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