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Abstract (150 words)
Mendelian Randomization (MR) has proved to be a powerful tool for inferring causal1

relationships among a wide range of traits using GWAS summary statistics. Great efforts have2

been made to relax MR assumptions to account for confounding due to pleiotropy. Here we show3

that sample structure is another major confounding factor, including population stratification,4

cryptic relatedness, and sample overlap. We propose a unified MR approach, MR-APSS,5

to account for pleiotropy and sample structure simultaneously by leveraging genome-wide6

information. By further correcting bias in selecting genetic instruments, MR-APSS allows to7

include more genetic instruments with moderate effects to improve statistical power without8

inflating type I errors. We first evaluated MR-APSS using comprehensive simulations and9

negative controls, and then applied MR-APSS to study the causal relationships among a10

collection of diverse complex traits. The results suggest that MR-APSS can better identify11

plausible causal relationships with high reliability, in particular for highly polygenic traits.12
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Introduction13

Inferring the causal relationship between a risk factor (exposure) and a phenotype of interest14

(outcome) is essential in biomedical research and social science [1]. Although randomized15

controlled trials (RCTs) are the gold standard for causal inference, RCTs can be very costly16

and sometimes even infeasible and unethical (e.g., random allocation to prenatal smoking)17

[2]. Mendelian randomization (MR) was introduced to mimic RCTs for causal inference in18

observational studies [3, 4]. Recently, MR analysis has drawn increasing attention [5] because19

it can take summary statistics from Genome-Wide Association Studies (GWASs) as input,20

including SNP effect size estimates and their standard errors, to investigate causal relationship21

among human complex traits.22

MR is an instrumental variable (IV) method to infer causal relationship from the association23

between an exposure and an outcome, where genetic variants, e.g., single-nucleotide polymor-24

phisms (SNPs), serve as IVs of the exposure [6, 7]. To eliminate the influence of confounding25

factors, conventional MR methods rely on strong assumptions of valid IVs, including (i) IVs are26

associated with the exposure; (ii) IVs are independent of confounding factors; and (iii) IVs only27

affect the outcome through the exposure. However, IV assumptions (ii) and (iii) are often not28

satisfied in practice due to confounding factors hidden in GWAS summary statistics, leading to29

false positive findings [8, 9]. To perform causal inference with genetic data, it is indispensable30

to distinguish two major confounding factors: pleiotropy [10] and sample structure [11, 12].31

First, SNPs exhibit pervasive pleiotropic effects. Pleiotropy occurs when a genetic variant32

directly affects both exposure and outcome traits or indirectly through an intermediate pheno-33

type [13]. Pleiotropy can induce trait association or genetic correlation in the absence of causal34

relationship [13]. Due to the polygenicity of complex traits and linkage disequilibrium (LD)35

in the human genome, the pleiotropic effects can widely spread across the whole genome [14].36

Therefore, a substantial proportion of SNPs can carry pleiotropic effects and they fail to satisfy37

assumptions (ii) and (iii) on IVs in conventional MR methods.38

Second, sample structure can lead to bias in SNP effect size estimates and introduce39

spurious trait associations. Here, sample structure encompasses population stratification,40

cryptic relatedness, and sample overlap in GWASs of the exposure and outcome traits. In41

the presence of population stratification and cryptic relatedness, SNPs can affect the outcome42

through the sample structure and thus they violate assumptions (ii) and (iii) on IVs. Without43

correcting for sample structure, SNP effect size estimates can be severely biased, which may44

lead to mis-interpretation on trait association and thus many false positive discoveries in causal45

inference. Sample overlap can also lead to spurious trait associations [15]. Although principal46

component analysis (PCA) [16] and linear mixed models (LMM) [17] are widely used to account47

for sample structure in GWASs, the results from LDSC [18] show that sample structure is often48

unsatisfactorily corrected in publicly available GWAS summary statistics.49

Recently, a number of MR methods have been developed, including Egger [19], MR-PRESSO50

[20], GSMR [21], RAPS [22], BWMR [23], MRMix [24] and CAUSE [25], for more robust MR51

analysis. Despite much effort, there are two major limitations in the existing MR methods.52

First, most methods only use a small subset of strong IVs passing the genome-wide significance53

(p-value < 5×10−8) to account for pleiotropy. With limited information from a small number of54

strong IVs, it is very challenging to fit a flexible model to account for pleiotropy. Second, existing55

MR methods presume that PCA or LMM-based approaches have satisfactorily accounted for56
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sample structure and thus they largely ignore the influence of sample structure in the released57

GWAS summary statistics. Due to the complexity of human genetics, sample structure driven58

by socioeconomic status [26] or geographic structure [27] may not be corrected by routine59

adjustment and it still remains as a major confounding factor hidden in the released GWAS60

summary statistics.61

Here, we develop MR-APSS, a unified approach to Mendelian Randomization Accounting62

for Pleiotropy and Sample Structure simultaneously. Specifically, we propose to decompose the63

observed SNP effect sizes into background and foreground signals, where the background signal64

can be attributed to the confounding factors hidden in the observed SNP effect sizes, including65

pleiotropy and sample structure, and the foreground signal corresponds to the remaining SNP66

effect sizes used for causal inference. MR-APSS differs from existing methods in the following67

aspects. First, under the assumptions of LD score regression (LDSC) [28], a background model68

is built to analytically account for pleiotropy and sample structure. In contrast to existing69

MR methods that account for confounding factors using a small number of selected IVs under70

strong assumptions, we estimate the background model using genome-wide summary statistics.71

Second, MR-APSS allows to include more SNPs with moderate effects as IVs to improve72

statistical power without inflating type I errors. With the pre-estimated background model,73

MR-APSS can inform whether a SNP belongs to the background component or the foreground74

component. Even in the presence of many invalid IVs, the type I error will not be inflated75

because only the foreground signals are used for causal inference. As more SNPs are included,76

the increasing amount of the foreground signal can improve statistical power.77

To demonstrate the effectiveness of MR-APSS, we have performed a comprehensive sim-78

ulation study and analysed 640 pairs of exposure and outcome traits from 26 GWASs. In79

the simulation study, we showed that MR-APSS had satisfactory performance when the as-80

sumptions of IVs were violated. We examined MR-APSS on a wide spectrum of complex81

traits using GWAS summary statistics, including psychiatric/neurological disorders, social82

traits, anthropometric traits, cardiovascular traits, metabolic traits and immune-related traits.83

Real data results indicate that pleiotropy and sample structure are two major confounding84

factors. By rigorous statistical modelling of these confounding factors, MR-APSS not only85

avoids many false positive findings but also improves statistical power of MR. When inferring86

causal relationships among highly polygenic traits, such as psychiatric disorders and social87

traits, the strengths of IVs tend to be relatively weak and causal inference is vulnerable to88

confounding effects. Thus, existing MR methods can suffer from either low statistical power or89

inflated type I errors. The empirical results indicate that MR-APSS is particularly useful in90

this scenario because it accounts for confounding factors and allows for incorporating many91

IVs with moderate effects, thus demonstrates its advantage over existing MR methods.92

Results93

Method Overview94

Causality, pleiotropy, and sample structure are three major sources to induce correlation95

between GWAS estimates of exposure-outcome traits. To distinguish causality from correlation,96

it is indispensable to eliminate the possibility that correlation is induced by confounding factors,97

such as pleiotropy and sample structure (population stratification, cryptic relatedness and98
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sample overlap).99

MR-APSS takes GWAS summary statistics of exposure and outcome traits as its input, and100

performs causal inference based on a proposed background-foreground model (see an overview101

in Fig. 1 and details in the Method section). Under the assumptions of LDSC, the background102

model can effectively account for confounding factors by disentangling pleiotropy (Fig. 1b)103

and sample structure (Fig. 1c). This is because the pleiotropic effects can be tagged by LD104

and the influence of sample structure is uncorrelated with LD [28]. By further accounting for105

winner’s curse [29] due to selection of IVs (see Method section), the foreground model can106

use the classical causal diagram to perform causal inference (Fig. 1a). With these advances107

in statistical modeling, MR-APSS relaxes those strong assumptions in the conventional MR108

analysis.109

The keys to the success of MR-APSS are twofold. First, MR-APSS accounts for confounding110

factors by exploiting the LD structure of the human genome. More specifically, pleiotropy and111

sample structure are captured by the first-order term and the zero-order term of LD score112

(slope and intercept of LDSC), respectively. Our real data results indicate that confounding113

factors associated with the first-order and zero-order terms of LD score are the major sources114

of confounding. Although confounding factors associated with higher-order terms of LD score115

may exist, they are nearly ignorable in real data analysis. Second, MR-APSS accounts for116

winner’s curse [29] due to IV selection. Thus, it allows to include more IVs with moderate117

effects to improve statistical power without inflated type I errors. Through simulation and real118

data study, we demonstrate that MR-APSS can be applied to infer causal relationships with119

high reliability, in particular, for highly polygenic traits. The software of MR-APSS is freely120

available at https://github.com/YangLabHKUST/MR-APSS.121

Compared methods122

We compared the performance of MR-APSS with five representative MR methods: Inverse123

Variance Weighted regression (IVW) [6], Egger [19], RAPS [22], MRMix [24], and CAUSE [25].124

We roughly grouped these methods into three categories based on their assumptions (Table125

1). In the first group, MR methods require that all IVs satisfy the three strong assumptions126

in MR analysis. IVW is such a method and it tends to report many false positive findings127

when some assumptions do not hold. We included IVW in simulation study and real data128

analysis as a baseline method. In the second group, MR methods, such as Egger and RAPS,129

relax assumption (iii) by allowing for a direct effect between IV and outcome. Egger assumes a130

non-zero but constant direct effect to model the directional pleiotropy. For this purpose, Egger131

requires the orientation of genetic variants to avoid ambiguity [19, 30]. Therefore, Egger often132

suffers from large estimation errors and thus has low power to detect the causal effect [25].133

RAPS also allows direct effects from IVs to the outcome trait but requires that the Instrument134

Strength must be Independent of the Direct Effect, which is known as the InSIDE condition135

[19]. In the third group, recently developed MR methods, such as MRMix and CAUSE, further136

relax the three strong assumptions. MRMix is a four-components mixture model, where its137

first component requires aforementioned MR assumptions (i), (ii) and (iii), and the other138

three components handle scenarios in which some of these assumptions do not hold. In other139

words, MRMix requires that there exist a proportion of IVs which exactly satisfy all the three140
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Figure 1: The MR-APSS model. To infer the causal effect β between exposure X and

outcome Y , MR-APSS uses a foreground-background model to characterize the estimated effects

of SNPs Gj on X and Y (γ̂j, Γ̂j), where the background model accounts for pleiotropy (b) and

sample structure (c), and the foreground model (a) performs causal inference. Specifically, we

assume a variance component to model polygenic effects (uj, vj) and their correlation induced

by pleiotropy corr(uj, vj) = rg. We also explicitly account for the bias of estimation errors

(εj, ξj) and their correlation, where c1 and c2 capture the biases and c12 captures the correlation.

In the presence of population stratification and cryptic relatedness, c1 and c2 deviate from

one, and c12 becomes nonzero due to either population stratification or sample overlap. Under

the assumptions of LDSC, the background model can be well estimated using genome-wide

summary statistics. After accounting for the major confounding factors, the foreground model

can use the classical causal diagram to infer the causal effect. Note that IVs are selected by a

z-score threshold t with |γ̂j/ŝX,j| ≥ t or an equivalent p-value threshold. The number of IVs

Mt depends on threshold t: the smaller t, the larger Mt. For a given threshold t, a Bernoulli

variable Zj is introduced to indicate whether SNP Gj carries a foreground signal (Zj = 1)

or not (Zj = 0). By further accounting for the bias in IV selection process, MR-APSS can

accurately estimate the foreground model. With the estimated foreground-background model,

it is easy for MR-APSS to exclude IVs without foreground signals (Zj = 0) and utilize valid

IVs (Zj = 1) for causal inference. By using a loose threshold t, MR-APSS can include more

SNP with moderate effects to improve statistical power without inflated type I errors.
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strong assumptions. For example, by assumption (iii), IVs belonging to the first component141

are not allowed to have direct effects on outcome traits. However, SNPs often have small or142

moderate direct effects on outcome traits due to polygenicity and pleiotropy, which makes the143

assumptions of MRMix violated (see more discussion about MRMix in Section 1.6.1 of the144

Supplementary Note). CAUSE aims to account for pleiotropic effects by distinguishing two145

types of pleiotropy: correlated pleiotropy and uncorrelated pleiotropy. Despite this conceptual146

advance, it is very challenging for CAUSE to distinguish the underlying true causal effects147

from correlated pleiotropic effects. A closer examination of CAUSE shows that CAUSE tends148

to consider the causal effect as correlated pleiotropy during the model fitting, leading to very149

conservative performance for detecting causal effects (see more discussions in Section 1.6.2 of150

the Supplementary Note). Compared with existing MR methods, MR-APSS has much weaker151

assumptions. Specifically, it relaxes the InSIDE condition for all IVs by analytically accounting152

for pleiotropy and sample structure under the assumptions of LDSC. Moreover, MR-APSS153

accounts for winner’s curse to avoid bias due to the IV selection. Thus, it allows to include154

more SNPs with moderate effects as IVs to improve statistical power without inflated type I155

errors.156

Table 1: Summary of compared MR methods

Method IV selection Three IV assumptions InSIDE assumption
Account for

winner’s curse

Account for

sample structure

IVW Strong IVs (i)(ii)(iii) Required No No

Egger Strong IVs (i)(ii) Required No No

RAPS Strong IVs (i)(ii) Required No No

MRMix Strong IVs
(i)(ii)(iii)

(for a subset of IVs)

Relaxed

(for a subset of IVs)
No No

CAUSE Strong and moderate IVs
(i)(ii)

(for a subset of IVs)

Relaxed

(for a subset of IVs)
No

Partially (only account

for sample overlap)

MR-APSS Strong and moderate IVs (i)
Relaxed

(for all IVs)
Yes Yes

IV: Instrumental Variable; Three IV assumptions: (i) IVs are associated with the exposure; (ii) IVs are independent of confounders; and

(iii) IVs only affect the outcome through the exposure. InSIDE assumption: the Instrument Strength must be Independent of the Direct

Effect. Winner’s curse is also known as selection bias, i.e., the bias induced by selecting IVs.

Simulation studies157

To evaluate MR-APSS in various scenarios and compare it with five MR methods in Table158

1, we performed simulations based on real genotype data. For exposure and outcome traits,159

we used 47,049 SNPs on chromosomes 1 and 2 of 20,000 individuals of white British ancestry160

randomly drawn from the UK BioBank (UKBB). SNP effect sizes (γj, αj, uj, vj) were generated161

from the relationship shown in Fig. 1 and Eq. (1) in the Method section. Based on real162

genotype data and simulated SNP effect sizes, we generated both traits and obtained summary163

statistics (as discussed in Section 1.7 of the Supplementary Note). The relationship shown in164

Fig. 1 is composed of the background signal and the foreground signal. For the background165

signal, polygenic effects (uj, vj) of all SNPs were normally distributed with variance components166

(σ2
u = τ 2v = 0.5/47, 049), such that the heritabilities of both exposure X and outcome Y were167

specified at 0.5. The magnitudes of the error terms (εj, ξj) were determined by the fixed sample168

sizes of 20, 000. For the foreground signal, we randomly assigned 500 out of 47,049 SNPs as169

IVs. Note that the instrument strength (γj) and the magnitude of the direct effect (αj) are170
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Genetic correlation rg ≠ 0, sample structure c12 = 0 Genetic correlation rg = 0, sample structure c12 ≠ 0
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Figure 2: Type I error control of different methods on inferring causal effects.

Quantile-quantile plots of − log10(p)-values from different methods in the absence of causal

effect (β = 0). Null simulations were performed under different scenarios: (a-b) Null simulations

with genetic correlation (rg = 0.2) induced by pleiotropy, but without correlation in estimation

errors (c12 = 0). (c-d) Null simulations in the presence of correlation in estimation errors

(c12 = 0.15) due to sample structure, but in the absence of non-zero genetic correlation (rg = 0).

The results were summarized from 50 replications.

given by variance components σ2 and τ 2 (Fig. 1). To mimic real data scenarios, we specified171

σ2 : σ2
u = 20. We set τ 2 : τ 2v = 1 (i.e., magnitude of the direct effects in the foreground model172

is the same as that of the polygenic effects).173

We compared MR-APSS to five MR methods, including IVW, Egger, RAPS, MRMix and174

CAUSE. Note that the performance of MR methods depends on the selected IVs. Using a175

stringent criterion, fewer SNPs will be selected as IVs and MR methods tend to have lower176

power of detecting the causal effect and low false positive rate. When more SNPs are included177

using a loose criterion, MR methods tend to have higher power but more false positive findings178

because their model assumptions are more likely to be violated. To evaluate the performance179

of MR methods under null (β = 0), we used a stringent criterion (IV threshold p = 5× 10−6)180

to select IVs for IVW, Egger, RAPS and MRMix. For CAUSE, we used its default threshold181

p = 1× 10−3 to include IVs. For MR-APSS, we used p = 5× 10−4 as the IV threshold. For all182

six MR methods, we applied LD pruning (r2 = 0.01) to selected IVs, and ensured that they183

were nearly independent.184

We first examined type I error control of different MR methods under the null (β = 0)185

in the presence of genetic correlation induced by pleiotropy. We simulated data with genetic186

correlation but without correlation in estimation errors. Quantile-quantile plots of different MR187

methods are shown in Fig. 2 (a,b) for genetic correlation rg = 0.2 (more results for different188

genetic correlations are given in Supplementary Fig. S2). Clearly, MR-APSS is the only189

method that produces well calibrated p-values. To better examine how MR-APSS accounted190

for polygenicity and pleiotropy, we manually set the variance component of MR-APSS to zero,191

i.e., Ω = 0. We denote this version of MR-APSS as MR-APSS (Ω = 0). As shown in Fig. 2b,192

MR-APSS produced well calibrated p-values while MR-APSS (Ω = 0) produced overly inflated193

p-values. This suggests that variance component Ω plays a critical role in accounting for194

polygenicity and pleiotropy. We also noticed different performance of alternative MR methods195

(Fig. 2a). In the presence of non-zero genetic correlation, MR methods, such as IVW, RAPS,196
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MRMix and MR-APSS (Ω = 0), tended to produce inflated p-values. Different from other MR197

methods, CAUSE produced very deflated p-values and thus CAUSE was very conservative in198

identifying causal effects.199

Next, we examined type I error control under null (β = 0) in the presence of correlation200

between estimation errors due to sample structure. To focus on correlation in estimation201

errors, we set genetic correlation rg = 0 and simply generated correlation of estimation errors202

(c12 = 0.15) using 10,000 overlapped samples in exposure and outcome studies (more results203

for different c12 are given in Supplementary Fig. S3). We notice that correlation between204

estimation errors can also be induced by population stratification and cryptic relatedness. To205

avoid unrealistic simulation of population stratification, we investigated this issue when we206

performed real data analysis. The quantile-quantile plots of different MR methods are shown207

in Fig. 2 (c,d). IVW, RAPS, and MRMix produced overly inflated p-values. These results208

indicate that correlation between estimator errors can be a major confounding factor which209

leads to false positive findings. Again, CAUSE produced very deflated p-values. To see how210

MR-APSS accounts for correlation between estimation errors, we set C = I, i.e., c1 = c2 = 1211

and c12 = 0. In such a way, MR-APSS was forced to ignore the correlation between estimation212

errors. We denote this version of MR-APSS as MR-APSS (C = I). As shown in Fig. 2d,213

MR-APSS (C = I) produced inflated p-values. In contrast, MR-APSS also produced well214

calibrated p-values. These evidence suggests that MR-APSS can satisfactorily account for215

correlation between estimation error due to sample structure.216
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Figure 3: Comparison of MR-APSS, Egger and CAUSE under both the null and

the alternative simulations. (a) Quantile-quantile plots of − log10(p)-values under null

simulations with both genetic correlation (rg = 0.1) and correlation of estimation error

(c12 = 0.1). (b) Boxplots comparing the estimated number of valid IVs obtained from MR-

APSS with the number of selected IVs. (c) The power under causal effect size β varied from

0.0 to 0.45. (d) Estimate of causal effect under the alternative simulations (β = 0.25). The

results are summarized from 50 replications.

Finally, we examined power of MR methods. As shown above, IVW, RAPS and MRMix217

often produced overly inflated type I errors in the presence of either pleiotropy or sample218

structure. Hence, we only compared MR-APSS with Egger and CAUSE. Recall that the power219

of MR methods depends on the number of IVs. As a common practice, we used a stringent220

threshold p = 5 × 10−6 for Egger and denote it as Egger (5 × 10−6). We used the default221

threshold p = 1× 10−3 for CAUSE. To have a fair comparison, we considered two IV thresholds222
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p = 5 × 10−6 and p = 5 × 10−4 for MR-APSS, and denote them as MR-APSS (5 × 10−6)223

and MR-APSS (5 × 10−4), respectively. We simulated data with both genetic correlation224

(rg = 0.1) and correlation between estimation error (c12 = 0.1). We varied the causal effect225

size β from 0.0 to 0.35. Under the null (β = 0), MR-APSS (5× 10−4), MR-APSS (5× 10−6),226

and Egger (5× 10−6) produced well calibrated p-values (Fig. 3a). Again, CAUSE produced227

overly deflated p-values (Fig. 3a). Under the alternative (β 6= 0), MR-APSS (5× 10−4) was the228

overall winner in terms of the power (Fig. 3c). To see why MR-APSS (5× 10−4) could further229

improve MR-APSS (5× 10−6), we recorded the estimated number of valid IVs and the number230

of selected IVs corresponding to the two thresholds (Fig. 3b). When the p-value threshold231

varied from p = 5 × 10−6 to p = 5 × 10−4, the number of SNPs included as IVs increased a232

lot. However, MR-APSS did not use all of them as valid IVs. Recall that a binary variable Zj233

was introduced in MR-APSS to SNP j to indicate whether it had a foreground signal (Zj = 1)234

or not (Zj = 0). MR-APSS only used SNPs with foreground signals for causal inference,235

avoiding inflated type I errors. When the p-values varied from p = 5× 10−6 to p = 5× 10−4,236

the number of valid IVs increased steadily. Therefore, statistical power of MR-APSS was237

improved by including more SNPs with moderate effects. We further compared the estimation238

accuracy of the causal effects using MR-APSS, Egger and CAUSE (Fig. 3d). Consistent with239

the literature [30], we observed that Egger had a very large estimation error. As discussed240

in Section 1.6.2 of the Supplementary Note, CAUSE often mis-interprets the causal effect as241

correlated pleiotropy, leading to underestimation of the true causal effect. Consistently, we242

observed that the estimate of CAUSE was biased to the null (β = 0). In the above simulations,243

the foreground-background variance ratio was fixed at σ : σu = 20 : 1. We provide more results244

with different foreground-background variance ratios (σ : σu ∈ {40, 10}) in Supplementary Figs.245

S4 and S5.246

Besides the above simulation study with our own model, we also conducted simulation with247

the CAUSE model. The main patterns of the performance of the six MR methods largely248

remained the same. We provide details in Section 1.7 and Figs. S6, S7, S8 of the Supplementary249

Note.250

Real data analysis: negative control outcomes251

In this section, we evaluate type I error control of MR methods by applying them to infer the252

causal effect of exposures on negative control outcomes, where we do not expect any causal253

effects. The traits that can serve as ideal negative control outcomes should satisfy two conditions.254

First, they should not be causally affected by any of the exposure traits considered here. Second,255

the exposure and outcome traits could be affected by some unmeasured confounders, e.g.,256

population stratification. Following the same way of [11] to choose negative control outcomes,257

we considered natural hair color before greying (Hair colour: black, Hair colour: blonde, Hair258

color: light brown, Hair color: dark brown) and skin tanning ability (Tanning) from UKBB259

because they are largely determined at birth and they could be affected by sample structure.260

We considered 26 exposure traits from UKBB and Genomics Consortiums (Details for the261

GWAS sources are given in Supplementary Table S1). These traits can be roughly divided into262

five categories, including psychiatric/neurological disorders, social traits, anthropometric traits,263

cardiometabolic traits, immune-related traits. The sample sizes of those GWASs range from264
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114,244 to 385,603, with a minimum of 15,954 for ASD and a maximum of 898,130 for T2D.265

Given the large sample size of GWASs, we used genome-wide significance threshold 5× 10−8
266

as the IV threshold for IVW, RAPS, Egger, and MRMix in real data analysis. This stringent267

criterion helps to exclude invalid IVs for these methods and thus reduce their false positive268

rates. Due to the stringent IV selection, we were not able to find enough SNPs (> 4) as IVs for269

four exposure traits, i.e., major depressive disorder (MDD), autism spectrum disorder (ASD),270

subject well-being (SWB) and number of children Ever born (NEB). For CAUSE [25], we used271

its default p-value threshold p = 1× 10−3 to select IVs. For MR-APSS, we used 5× 10−5 as272

the default IV threshold.273

First, we applied MR-APSS and five other MR methods to infer the causal effects between274

these 26 exposure traits and 5 negative control outcomes. To make fair comparison, we focus on275

the results for 110 pairs where each method had sufficient IVs for MR analysis. Ideally, these276

p-values should be uniformly distributed between 0 and 1 under the null (β = 0). Fig. 4a shows277

the QQ-plots of − log10(p) values of the six methods (red dots). Clearly, MR-APSS produced278

well calibrated p-values. IVW, RAPS and MRMix produced overly inflated p-values, and279

Egger produced slightly inflated p-values. CAUSE produced deflated p-values in the beginning280

but inflated p-values later. We investigated the reason why the five MR methods performed281

unsatisfactorily. As shown in Fig. 4b, we examined the estimates of two key parameters, rg and282

c12, of our background model, where rg captures the overall correlated pleiotropic effects and c12283

captures the correlation of estimation errors due to sample structure. Among the 110 pairs of284

exposure and outcome traits, 81 trait pairs had nearly zero genetic correlation and 29 trait pairs285

had nonzero genetic correlation at the nominal level 0.05 (marked by *). We also examined the286

correlation of estimation errors due to sample structure (e.g., population stratification, cryptic287

relatedness, and sample overlap). Among the 110 trait pairs, 63 trait pairs had significant288

nonzero ĉ12 at the nominal level 0.05 (marked by *). To identify the major reason for the289

inflated p-values produced by the five MR methods, we restricted ourselves to the 81 trait pairs290

whose genetic correlation was nearly zero. For these 81 trait pairs, we generated the QQ-plots291

of − log10(p) values of the six MR methods (blue triangles in Fig. 4a). Clearly, IVW, RAPS292

and MRMix still produced overly inflated p-values, Egger produced slightly better calibrated293

p-values, and CAUSE produced deflated p-values in the beginning but inflated p-values later.294

We further restricted ourselves to trait pairs whose genetic correlation and correlation of295

estimation error were both nearly zero. For these trait pairs (green diamond), MR-APSS,296

RAPS, MRMix and Egger produced well calibrated p-values. IVW still produced inflated297

p-values because it did not allow direct effects. Again, CAUSE produced very conservative p298

values. These results suggest that sample structure is another major confounding factor in299

addition to pleiotropy.300

It is worthwhile to mention that nonzero c12 can be induced by either population stratification301

or sample overlap. To see this, let us consider the relationship between Height (GIANT) [31]302

and Tanning from UKBB. Recall that parameters c1 and c2 capture the bias in estimation errors303

(εj, ξj) and parameter c12 captures their correlation (Fig. 1). By applying LDSC to estimate304

our background model, we obtained the estimates of c1 and c2: ĉ1 = 1.34 (s.e. = 0.022) for305

Height (GIANT), ĉ2 = 1.81 (s.e. = 0.023) for Tanning, respectively. These results indicate that306

the publicly released GWAS summary statistics are affected by confounding factors, such as307

population stratification. By applying bivariate LDSC, we obtained ĉ12 = −0.17 (s.e. = 0.011).308

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.11.434915doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434915
http://creativecommons.org/licenses/by-nc-nd/4.0/


As we know, the samples from GIANT do not overlap with UKBB [32]. Therefore, the nonzero309

ĉ12 value should be mainly attributed to population stratification. As a comparison, we also310

considered Height (UKBB) [33] and Tanning from UKBB. By applying LDSC, we obtained311

ĉ1 = 1.97 (s.e. = 0.040) for Height (UKBB), suggesting that the released GWAS summary312

statistics of Height (UKBB) might potentially suffer from population stratification. By applying313

bivariate LDSC, we obtained ĉ12 = −0.36 (s.e. = 0.014) for Height (UKBB) and Tanning314

(UKBB). Such a nonzero value could be attributed to both population stratification and sample315

overlap.316

To better examine the role of MR-APSS in accounting for pleiotropy or sample structure,317

we applied MR-APSS but fixed Ω = 0 and C = I, respectively. We denote the two variations318

as MR-APSS (Ω = 0) and MR-APSS (C = I), where MR-APSS (Ω = 0) does not account319

for pleiotropy and MR-APSS (C = I) does not account for sample structure. As shown in320

4c, both MR-APSS (Ω = 0) and MR-APSS (C = I) reported inflated p-values. For example,321

Based on Bonferroni correction, several trait pairs (marked with black circles in Fig. 4c) were322

falsely detected as causal by MR-APSS (Ω = 0) and MR-APSS (C = I). As shown in Fig. 4b323

(marked by squares), their corresponding r̂g and ĉ12 values were significantly different from324

zero. By using negative control outcomes, we show that MR-APSS can produce well calibrated325

p-values by accounting for pleiotropy and sample structure.326

Inferring causal relationships among complex traits327

To perform causal inference, we considered 26 complex traits from five categories including328

psychiatric/neurological disorders, social trait, anthropometric traits, cardiometabolic traits,329

and immune-related traits. Before applying MR methods, we examined the estimates of rg and330

c12 in the background model of MR-APSS for all 325 pairwise combination of the 26 traits.331

We found that genetic correlation of 198 pairs significantly differed from zero at the nominal332

level 0.05 (marked by ∗ in Fig. 5a). Among them, genetic correlation of 130 pairs remained to333

be significant after Bonferroni correction with p ≤ 0.05/325 (marked by ∗∗ in Fig. 5a). For334

the estimates of c12, 126 pairs had significant nonzero ĉ12 at the nominal level 0.05 (marked335

by ∗ in Fig. 5b), and 76 pairs of them remained to be significantly different from zero after336

Bonferroni correction (marked by ∗∗ in Fig. 5b). Of note, 56 pairs of traits had significantly337

nonzero estimates of both r̂g and ĉ12 after Bonferroni correction. The above results suggest that338

both pleiotropy and sample structure are presented as major confounding factors for causal339

inference.340

We considered inferring the causal relationship between traits X and Y in both directions,341

i.e., X → Y (X as exposure and Y as outcome) and Y → X (Y as exposure and X as outcome).342

To avoid causal inference between two very similar phenotypes (e.g., Angina and CAD), we343

excluded several trait pairs which were marked in grey color as non-diagonal cells in Fig. 5c.344

Therefore, 640 trait pairs remained for MR tests in total. We applied MR-APSS to these trait345

pairs using IV threshold p = 5× 10−5 and identified 34 significant causal relationships after346

Bonferroni correction (Fig. 5c, marked by triangles). As shown in Fig. 5a, many traits in347

social or neurological/psychiatric categories were observed to be genetically correlated with348

a wide range of complex traits from different categories. After accounting for pleiotropy and349

sample structure, the results from MR-APSS indicate that genetic correlation of many trait350
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Figure 4: Evaluation of type I error control of MR methods using negative control

outcomes. (a) Quantile-quantile plots of − log10(p)-values from six MR methods for causal

inference between complex traits and negative control outcome. Red dots present all 110

trait pairs tested by each method. Blue triangles present the 81 trait pairs with insignificant

genetic correlation at the nominal level 0.05. Green diamonds present the 29 trait pairs whose

genetic correlation rg and c12 are both insignificant at the nominal level 0.05. (b) Estimates of

rg and c12 for trait pairs between 26 complex traits and five negative control outcomes. (c)

Quantile-quantile plots of − log10(p)-values from MR-APSS, MR-APSS (Ω = 0) and MR-APSS

(C = I) for trait pairs between 26 complex traits and five negative control outcomes. The

circled p-values correspond to the trait pairs squared in (b), which are largely confounded by

pleiotropy and sample structure.
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pairs should be not be attributed to the causal effects. An example is Intelligence which was351

observed to be genetically correlated with 18 complex traits, such as type 2 diabetes (T2D)352

(r̂g = −0.132, s.e. = 0.023) and coronary artery disease (CAD) (r̂g = −0.183, s.e. = 0.030)353

from the Cardiometabolic category, body mass index (BMI) (r̂g = −0.129, s.e. = 0.021),354

Height (GIANT) (r̂g = 0.090, s.e. = 0.019) and Height (UKBB) (r̂g = 0.156, s.e. = 0.018)355

from the Anthropometric category, schizophrenia (SCZ) (r̂g = −0.264, s.e. = 0.024) and major356

depressive disorder (MDD) (r̂g = −0.206, s.e. = 0.048) from the neurological/psychiatric357

category, household income (Income) (r̂g = 0.577, s.e. = 0.048) and number of children ever358

born (NEB) (r̂g = 0.172, s.e. = 0.039). Among the 18 traits, MR-APSS only confirmed one359

significant causal effect of Intelligence on household income (Income) (β̂ = 0.355, p-value360

= 2.23 × 10−9). Another example is Depression which was also genetically correlated with361

18 complex traits from different categories, such as T2D (r̂g = 0.194, s.e. = 0.027) and CAD362

(r̂g = 0.157, s.e. = 0.035) from Cardiometabolic category, BMI (r̂g = 0.220, s.e. = 0.024) from363

Anthropometric category, Insomnia (r̂g = 0.454, s.e. = 0.025) and SCZ (r̂g = 0.321, s.e. =364

0.027) from neurological/psychiatric category, Income (r̂g = −0.450, s.e. = 0.029) and NEB365

(r̂g = 0.214, s.e. = 0.048). Again, MR-APSS only confirmed the causal effect of Depression on366

Insomnia (β̂ = 0.570, p-value = 4.38× 10−5). Clearly, MR-APSS can serve as an effective tool367

to distinguish causality from genetic correlation.368

As a comparison, we also applied the five other MR methods to infer the causal relationships369

for the 640 trait pairs. We used p = 5× 10−8 as the IV selection threshold for IVW, RAPS,370

MRMix and Egger and used p = 1× 10−3 as the IV selection threshold for CAUSE. For MR371

methods including IVW, RAPS, Egger and MRMix, only 541 trait pairs were tested because372

99 trait pairs had less than four SNPs as IVs. For CAUSE, all 640 trait pairs were included.373

A summary of the causal relationship detected by the five compared methods are given in374

Supplementary Figs. S13-S17. RAPS reported 58 trait pairs with significant causal effects after375

Bonferroni correction. Among them, 24 trait pairs were considered insignificant by MR-APSS376

after Bonferroni correction. Notably, RAPS made a similar assumption with the foreground377

model of MR-APSS, however, it has no background model to account for pleiotropy and sample378

structure. To better understand the difference between RAPS and MR-APSS, we applied379

MR-APSS (Ω = 0) or MR-APSS (C = I) to those trait pairs. The testing p-values of 18 trait380

pairs became significant based on Bonferroni correction. An example was BMI and Insomnia381

(see Fig. 6a) with r̂g = 0.184 (s.e. = 0.025) and ĉ12 = 0.058 (s.e. = 0.010). RAPS produced382

β̂ = 0.07 with p-value 3.04 × 10−9. Without accounting for pleiotropy or sample structure,383

MR-APSS (Ω = 0) and MR-APSS (C = I) reported β̂ = 0.070 with p-value = 1.70× 10−7 and384

β̂ = 0.063 with p-value = 1.01× 10−4, respectively. After accounting for both pleiotropy and385

sample structure, MR-APSS estimated causal effect between BMI and Insomnia as β̂ = 0.0337386

with p-value = 0.128. The result indicated that RAPS was likely affected by pleiotropy and387

sample structure.388

Since IVW, RAPS, MRMix tended to have higher type I error than the nominal level, we389

mainly compared statistical power of MR-APSS with Egger and CAUSE (Fig. 5d). A complete390

list of causal relationship among these traits detected by MR-APSS, Egger and CAUSE are391

summarized in Supplementary Table S2. Based on Bonferroni correction, MR-APSS detected392

18 significant causal effects which were not reported by CAUSE and Egger, showing higher393

statistical power of MR-APSS than both CAUSE and Egger. For example, MR-APSS detected394
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significant causal effects of BMI on eight traits. Five of them were supported with evidence395

of causality from previous literature, including T2D [34], serum urate (Urate) [35] and three396

cardiovascular diseases (high blood pressure (HBP), Angina and CAD) [36]. For these five397

supported trait pairs, Egger only detected two significant causal relationships (BMI and CAD;398

T2D and HBP), and CAUSE only detected two significant causal relationships (BMI and399

Urate; HBP and T2D). In addition to the confirmed findings, MR-APSS detected significant400

causal effects of BMI on Depression (β̂ = 0.07, p-value = 2.09× 10−5), ever smoked regularly401

(Smoking) (β̂ = 0.11, p-value = 1.36× 10−6) and Income (β̂ = −0.17, p-value = 1.83× 10−11).402

Those findings are consistent with results from previous MR studies [37, 38, 39], suggesting403

that being overweight not only increases the risk of depression and tobacco dependence but404

also suffers from reduced income. For these three traits, Egger only detected a significant405

causal effect of BMI on Income. CAUSE detected significant causal effects of BMI on both406

Income and Smoking. Neither CAUSE nor Egger detected significant causal effects between407

BMI and Depression (Fig. 6b). Our results also revealed Neuroticism as an important health408

indicator especially for human psychiatric health. Neuroticism is one of the big five personality409

traits, characterized by negative emotional states including sadness, moodiness, and emotional410

instability. Higher neuroticism is associated with premature mortality and a wide range of411

mental illnesses or psychiatric disorders [32, 40]. There is growing evidence that neuroticism412

plays a causal role in psychiatric disorders, such as SCZ [41] and MDD [42]. Evidence from413

MR-APSS also supported the significant causal effect of Neuroticism on SCZ (β̂ = 0.57, p-value414

= 7.02×10−7) and MDD (β̂ = 0.18, p-value = 2.06×10−5). Neither CAUSE nor Egger detected415

significant causal effects of Neuroticism on MDD (Fig. 6c) or SCZ. MR-APSS also revealed416

that Neuroticism could be causally linked to Insomnia (β̂ = 0.29, p-value = 2.7× 10−10) and417

Anorexia (β̂ = 0.4, p-value = 6.90× 10−7). Egger did not report these two cases, and CAUSE418

only detected a significant causal effect between Neuroticism and Insomnia (β̂ = 0.14, p-value419

= 3.89× 10−6).420

It is worthwhile to mention the two trait pairs reported by Egger but not reported by421

MR-APSS. One trait pair is HBP and BMI. It is well known that HBP and BMI are positively422

correlated [36]. Among all methods, only Egger reported a causal effect with negative direction423

(Fig. 6d). As suggested by strong confounding effect from pleiotropy (r̂g = 0.346, s.e. = 0.019)424

and sample structure (ĉ12 = 0.289, s.e. = 0.0102), the InSIDE condition has been severely425

violated and Egger tends to report a biased result. By accounting for pleiotropy and sample426

structure between HBP and BMI, the result given MR-APSS implies no clear evidence for427

the causal effect of HBP on BMI. Another trait pair detected by Egger but not MR-APSS is428

HBP and Urate. Again, this result is likely a false positive finding because of the unaccounted429

confounding effects (Supplementary Fig. S18). Consistently with literature [30], the real data430

results here indicate that Egger can produce unreliable estimates when the InSIDE condition431

does not hold.432

Improving statistical power of MR-APSS by including more IVs with433

moderate effects434

We have presented the real data results of MR-APSS using a relative looser IV threshold435

5× 10−5 where more IVs below the genome-wide significance (5× 10−8) are involved. As more436
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Figure 5: Application of MR-APSS to infer causal relationships between 26 complex traits. (a)

Estimates of genetic correlation between 26 complex traits. Positive and negative estimates of

genetic correlation r̂g are indicated in red and blue, respectively. Trait pairs with significant

r̂g at the nominal level 0.05 are marked by ∗. Trait pairs that remain to be significant after

Bonferroni correction with p ≤ 0.05/325 are marked by ∗∗. (b) Estimates of c12 between 26

complex traits. Positive and negative estimates of c12 are shown in purple and blue, respectively.

Trait pairs with significant ĉ12 at the nominal level 0.05 are marked by ∗. Trait pairs remain

to be significant after Bonferroni correction with p ≤ 0.05/325 are marked by ∗∗. (c) Causal

relationships detected by MR-APSS. The positive and negative estimates of causal effects

of the exposure on the outcome are indicated by red up-pointing triangles and blue down-

pointing triangles, respectively. (d) The Venn diagram plot shows the causal effects detected

by MR-APSS, CAUSE and Egger after Bonferroni correction.
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Figure 6: Four examples of MR-APSS analysis results. The left panel of each subplot

shows the result of MR-APSS with its default IV threshold p = 5× 10−5. The estimated causal

effect is indicated by a red line with its 95% confidence interval indicated by the shaded area

in transparent red color. Triangles indicate the observed SNP effect sizes (γ̂j and Γ̂j). The

color of triangles indicates the posterior of a valid IV, i.e., the posterior of an IV carrying the

foreground signal (Zj = 1, dark blue) or not (Zj = 0, light blue). The precise definition of the

posterior is given in the Method section. The right panel in each subplot shows the estimated

causal effect β̂, p-value as well as the number of IVs used by the six MR methods. (a) BMI

and Insomnia. (b) BMI and Depression. (c) Neuroticism and MDD. (d) HBP (high blood

pressure) and BMI.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.11.434915doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.434915
http://creativecommons.org/licenses/by-nc-nd/4.0/


Valid IV 5e-05 5e-08 Invalid IV 5e-05 5e-08

0

200

400

600

Angina Urate CAD T2D HBP

N
o.

 o
f I

Vs
Cardiometabolic

0

100

200

300

400

NEB SWB Income Intelligence

N
o.

 o
f I

Vs

Social

0

100

200

300

RA CD IBD

N
o.

 o
f I

Vs

Immune

0

500

1000

1500

2000

Height 
(GIANT)

Height
(UKBB)

BMI

N
o.

 o
f I

Vs

Anthropometric

0

200

400

600

AD AlcoholAnorexiaASD Daytime
sleepiness

Depression InsomniaMDD Neuroliticism SCZSmoking

N
o.

 o
f I

Vs

Neurological/Psychiatric

a

0

1

2

3

4

5

0 1 2 3 4 5
Expected -log10P

O
bs

er
ve

d 
-lo

g 1
0P

MR-APSS (5e-08)
MR-APSS (5e-05)

Negative control study
b

0

10

20

30

MR-APSS
(5e-05)

MR-APSS
(5e-08)

N
o.

 o
f s

ig
ni

fic
an

t p
ai

rs

MR tests between traits
c

Figure 7: Comparison of MR-APSS using IV thresholds p = 5×10−5 and p = 5×10−8.

(a) The average estimated number of valid IVs (dark color) and invalid IVs (light color) for

traits from each category using IV thresholds p = 5× 10−5 and p = 5× 10−8. The number of

valid IVs for one trait pair is the number of IVs that carry the foreground signal, as defined in

the Method section. Clearly, the number of valid IVs increases as the IV threshold becomes

looser. (b) Quantile-quantile plots of − log10(p)-values from MR-APSS for MR tests between 26

complex traits and negative control outcomes, using IV thresholds p = 5×10−5 and p = 5×10−8.

MR-APSS produces well calibrated p-values for both loose and stringent IV thresholds. (c) The

number of significant pairs detected by MR-APSS using different IV thresholds when applied to

infer causal relationship among 26 complex traits. The statistical power of MR-APSS increases

by including more IVs with a looser threshold.

IVs involved with a looser IV threshold, the number of invalid IVs increases because they are437

prone to violation of MR assumptions. Moreover, the number of IVs with moderate effects438

increases, bias due to confounding becomes increasingly influential. Without accounting for439

pleiotropy and sample structure, the type I error rate of MR methods can be more inflated440

when using a looser IV threshold. To have a better understanding of how MR-APSS works with441

the selected IVs, we examined the results of MR-APSS using a loose IV threshold (p = 5×10−5)442

as well as the results using a stringent IV threshold (p = 5 × 10−8). As we show later, the443

proposed background-foreground model can include more IVs with moderate effects to improve444

statistical power without inflated type I errors. On one hand, the number of selected IVs445

increased dramatically as the IV threshold become looser. However, most of IVs were detected446

by MR-APSS as invalid IVs (Fig. 7a). Since MR-APSS only uses the valid instrument strength447

in the foreground model for causal inference, the type I error will not be inflated when more448

invalid IVs are included. As shown in Fig. 7b, the p-values from MR-APSS for trait pairs449

between 26 complex traits and five negative control outcomes remain to be well calibrated using450

IV thresholds at 5×10−5 and 5×10−8. These results confirm that the type I error of MR-APSS451
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is insensitive to the IV threshold. On the other hand, MR-APSS allows to use a looser IV452

threshold to include more IVs with moderate effects, and thus increase its statistical power453

(Fig. 7c). When investigating the causal relationship among 26 complex traits, the number of454

valid IVs increased a lot by changing the IV threshold from 5× 10−8 to 5× 10−5. Clearly, the455

social and neurological/psychiatric traits can benefit a lot from this property. Despite the large456

sample sizes for these traits, the number of IVs is too small to perform powerful MR analysis457

when using the IV threshold p = 5× 10−8 (Fig. 7a). For example, Depression only had seven458

IVs using a stringent IV threshold p = 5 × 10−8. Due to limited number of IVs, MR-APSS459

could not detect a significant causal effect of Depression on Insominia (β̂ = 0.197, s.e. = 0.214,460

p-value = 0.358). With a looser IV threshold p = 5 × 10−5, the number of IVs increased to461

197 and the number of valid IVs was estimated around 71. As a result, MR-APSS detected462

a significant causal relationship between Depression and Insomnia (β̂ = 0.569, s.e. = 0.139,463

p-value = 4.38× 10−5).464

It is important to note that the correction of bias due to IV selection allows MR-APSS465

to include more SNPs with moderate effects. In the context of GWAS, the bias induced by466

selecting SNPs with different p-value thresholds is known as winner’s curse [29, 43]. In the467

presence of winner’s curse, the magnitude of the true effect of an IV is typically overestimated468

and the bias for SNPs with moderate effects tends to be much more severe than SNPs with large469

effects [44]. Without accounting for winner’s curse in MR-APSS, IV strength would be falsely470

amplified. As a result, more SNPs from the background component would be falsely detected471

as valid IVs carrying foreground signals. When they are used for causal inference as valid IVs,472

the type I error rate increases dramatically. To verify this, we modified MR-APSS to ignore473

the winner’s curse and applied this modified version to infer the causal relationships between474

26 complex traits and the five negative control outcomes. We changed the IV thresholds from475

5 × 10−5 to 5 × 10−8. Without accounting for winner’s curse, the proportions of valid IVs476

estimated by MR-APSS were close to 1 (Supplementary Fig S19(a)), indicating that most477

of IVs were falsely detected as valid IVs. As a result, the p-values produced by MR-APSS478

became inflated (Supplementary Fig S19 (b-c)), and the inflation was more severe at a looser479

IV threshold p = 5 × 10−5 where more SNPs with moderate effects were falsely detected as480

valid IVs.481

Discussion482

Through comprehensive simulations and real data analysis, we have demonstrated that483

MR-APSS can be applied to infer the causal relationship between a wide spectrum of exposure484

and outcome traits. The major advance of MR-APSS for causal inference can be attributed to485

the background-foreground model, where the background model accounts for confounding due486

to pleiotropy and sample structure, and the foreground model safely makes use of the valid487

signal for causal inference under the classical causal diagram. With the background-foreground488

model, MR-APSS allows to include more IVs with moderate effects to effectively improve489

statistical power without inflated type I errors.490

A salient feature of MR-APSS is that it explicitly accounts for sample structure, including491

population stratification, cryptic relatedness and sample overlap. In particular, we find that492

population stratification is a major confounding factor in MR analysis. Recently, accumulating493

evidence suggests that population stratification in the UK Biobank can be driven by socioe-494
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conomic status [26] or geographic structure [27], which cannot be accounted for by routine495

adjustment (e.g., using principal components). As a result, the publicly available GWAS496

summary statistics still suffer from confounding effects [18]. In our real data analysis, we have497

also shown that causal relationship among psychiatric/neurological disorders, social traits, and498

anthropometric traits are often confounded by sample structure. Examples include Height499

(UKB), Height (GIANT), BMI and intelligence (see Fig. 4). However, this issue has been500

largely ignored by existing MR methods, resulting in many false positive findings.501

We have also largely relaxed MR assumptions by leveraging genome-wide information. Many502

existing MR methods perform causal inference by only using information from the selected503

IVs. Due to limited information, they cannot easily distinguish causality from correlation504

without relying on strong assumptions, such as the InSIDE condition. To address this challenge,505

MR-APSS uses genome-wide information to estimate the background model. The benefits506

of pre-estimated background model are twofold. First, the pre-estimated background model507

can account for correlation between polygenic effects across the whole genome (uj and vj)508

and correlation between estimation errors (εj and ξj). This means that MR-APSS allows all509

SNPs to carry direct effects correlated with their instrument strength. Thus, the InSIDE510

condition is relaxed for all IVs. Second, it is helpful to ensure the model identifiability. With511

the pre-estimated background model, it is much easier to estimate the foreground model by512

using information from selected IVs. In contrast, CAUSE requires an additional condition513

to ensure its model identifiability: the portion of IVs with correlated pleiotropy to be small.514

This condition may not hold due to polygenic or omnigenic genetic architecture [45], where515

many genes jointly affect phenotypes through shared genetic pathways. From this perspective,516

relaxation of the InSIDE condition to all IVs is essential to address the complexity of human517

genetics.518

In addition to pleiotropy and sample structure, one may wonder whether there exist some519

other major confounding factors in MR analysis. We believe that the influence of other520

confounding factors should be nearly ignorable. Under the LDSC assumptions, we exploit the521

LD structure of human genome to account for confounding factors, where pleiotropy and sample522

structure are captured by the first-order and zero-order terms of LD score, respectively. In this523

sense, what we ignored in MR-APSS is the confounding factors associated with higher-order524

terms of LD score. As shown in our real data analysis (Figs. 4-5), statistical inference based525

on MR-APSS is well calibrated, indicating the influence of other confounding factors should526

be very minor. Regarding the winner’s curse, we have noticed that LD clumping may also527

potentially introduce some bias because SNPs with smaller p-values will be selected as IVs.528

Such a bias is very small when IV threshold p ≤ 5× 10−5. We can empirically correct the bias529

via adjusting the IV threshold by the ratio of the median after the LD clumping to the median530

before LD clumping (see the details in the Supplementary Note 1.8 and and Supplementary531

Figs S9- S10).532

Despite the improvement of MR-APPSS over many existing MR methods, more research533

is needed for causal inference with genetic data. First, the background model is proposed534

to account for pleiotropy and sample structure hidden in GWAS of complex traits. The535

direct application of this model in some other contexts may not be suitable. For example,536

transcriptome-wide association studies (TWAS) have identified genetically regulated genes that537

are associated with complex diseases [46, 47, 48]. Recent studies have shown that a significant538
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proportion of phenotypic variation can be attributed to the genetically regulated gene expression539

[49, 50]. It is of great interest to infer the causal relationship between gene expression and540

complex diseases based on transcriptome-wide Mendelian randomization. However, it remains541

unclear what kind of signals should be represented as the background signals. The development542

of new statistical methods for transcriptome-wide Mendelian randomization is highly desirable,543

where cell-type shared or specific information may be helpful to define the background signal.544

Second, multivariate Mendelian randomization (MVMR) is drawing more and more attention545

[51, 52]. As some risk factors are known to a certain type of disease, it is more interesting546

to ask what other risk factors can be inferred conditioning on the known ones. For example,547

obesity is known to be a causal risk factor for CAD and T2D. The identification of some other548

causal risk factors for CAD and T2D through MVMR gains more biological and etiological549

understanding of these complex diseases.550

We have mainly focused on comparing MR-APSS with methods using IVs. We note that551

causal inference can be performed without using IVs. A recently developed method is the latent552

causal variable (LCV) model [53]. We have also compared MR-APSS with LCV and found553

that LCV is often more conservative than MR-APSS (see details in the Supplementary Note554

1.9 and Supplementary Figs S20-S21). In summary, we believe that MR-APSS will be widely555

applicable for causal inference, and we hope that MR-APSS can motivate more researchers to556

uncover more reliable causal relationships using rich genetic data resources.557

Methods558

The MR-APSS model. MR-APSS takes GWAS summary statistics {γ̂j, Γ̂j, ŝX,j, ŝY,j
∣∣∣|γ̂j/ŝX,j| ≥559

t}j=1,...,Mt as input to perform causal inference, where γ̂j and Γ̂j are the estimated j-th SNP’s560

effects on exposure X and outcome Y , respectively, and ŝX,j and ŝY,j are their standard errors,561

|γ̂j/ŝX,j| ≥ t is the selection criterion to ensure that SNP j is associated with X, and Mt is562

the number of SNPs selected as IVs using a threshold t of z-values. To infer the causal effect563

β of exposure X on outcome Y , we propose to decompose the observed SNP effect sizes into564

background and foreground signals (Fig. 1):565 (
γ̂j
Γ̂j

)
= Zj

(
γj

βγj + αj

)
︸ ︷︷ ︸

Foreground

+

(
uj
vj

)
Pleiotropy

+

(
εj
ξj

)
Sample structure

(Population stratification,
cryptic relatedness,

sample overlap etc.)︸ ︷︷ ︸
Background

, j = 1, · · ·Mt,

(1)

where uj and vj are the polygenic effects of SNP j on X and Y , εj and ξj are the estimation566

errors of SNP effect sizes, γj is the remaining SNP effect on exposure X as the instrument567

strength, αj is the direct SNP effect on outcome Y , and Zj is a Bernoulli variable indicating568

whether SNP j has a foreground component (Zj = 1) or not (Zj = 0).569

The background model of MR-APSS. To model polygenic effects and their correlation570

induced by pleiotropy (Fig. 1b), we assume a variance component model571

p (uj, vj|Ω) = N
((

uj
vj

) ∣∣∣0,Ω) , with Ω =

(
σ2
u rgσuτv

rgσuτv τ 2v

)
, (2)
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where rg is the genetic correlation induced by pleiotropic effects between X and Y , σ2
u and572

τ 2v are the variance of polygenic effects on X and Y , respectively. To account for bias and573

correlation in estimation errors due to sample structure (Fig. 1c), we consider the following574

model:575

p
(
εj, ξj|C, Ŝj

)
= N

((
εj
ξj

) ∣∣∣0, ŜjCŜj

)
, with Ŝj =

(
ŝX,j 0

0 ŝY,j

)
, C =

(
c1 c12
c12 c2

)
, (3)

where parameters c1 and c2 are used to adjust the bias in estimator errors, c12 accounts for576

the correlation between the estimation errors. In the presence of population stratification and577

cryptic relatedness, c1 and c2 will deviate from one (typically larger than one). Moreover,578

either population stratification or sample overlap can induce covariance between the estimation579

errors, resulting in nonzero c12. Under the assumptions of LDSC [28], we can exploit the LD580

structure of human genome to account for confounding factors in the background model. Let581

`j =
∑

k r
2
jk be the LD score of SNP j, where rjk is the correlation between SNP j and SNP k.582

The key idea to adjust LD effects is based on the following fact: the underlying true genetic583

effects are tagged by LD while the influence of sample structure is uncorrelated with LD. Then584

we show that our background model (Zj = 0) can be written as (see details in Section 1.1 of585

Supplementary Note)586

p(γ̂j, Γ̂j|Ω,C, Ŝj, `j) = N

((
γ̂j
Γ̂j

)∣∣∣0, `jΩ + ŜjCŜj

)
, (4)

where pleiotropy and sample structure are captured by the first-order and zero-order terms of587

LD score, respectively. Therefore, both Ω and C in the background model are pre-estimated588

by LDSC using genome-wide summary statistics (see details in Section 1.4 of Supplementary589

Note). As we see in real data analysis, genetic correlation of polygenic effects and correlation590

of estimation errors are two major confounding factors for causal inference.591

The foreground model of MR-APSS. By accounting for confounding factors using the592

background model, we only need three mild assumptions on instrument strength γj and direct593

effect αj to infer causal effect β, as shown in Fig. 1(a). First, there exist some nonzero594

values in {γj}j=1,...,Mt . Second, the strengths of instruments {γj}j=1,...,Mt are independent of595

confounding factors. Third, the instrument strengths are independent of the direct effects,596

i.e., (γ1, . . . , γMt) ⊥ (α1, . . . , αMt). Although our assumptions seem similar to those of existing597

methods, they are only imposed to the foreground signal and thus they are much weaker than598

existing MR methods. Specifically, we assume that γj and αj are normally distributed and599

independent of each other:600

p (γj, αj|Σ) = N
((

γj
αj

) ∣∣∣0,Σ) , where Σ =

(
σ2 0

0 τ 2

)
. (5)

The background-foreground model of MR-APSS. Now we combine the background601

model and the foreground model to characterize the observed SNP effect sizes (γ̂j, Γ̂j). Let602

π = p(Zj = 1) be the probability that SNP j carries the foreground signal. Combining Eqs.603

(1,2,3,5) and integrating out γj, αj, uj, vj, εj, ξj and Zj, we have the following probabilistic604
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model:605

p(γ̂j, Γ̂j|π, β,Σ,Ω,C, Ŝj, `j)

=πN

((
γ̂j
Γ̂j

)∣∣∣0, `jA(β)ΣA(β)T + `jΩ + ŜjCŜj

)
+ (1− π)N

((
γ̂j
Γ̂j

)∣∣∣0, `jΩ + ŜjCŜj

)
,

(6)

where A(β) =

(
1 0

β 1

)
. A detailed derivation for Eq. (6) is given in Section 1.2 of the606

Supplementary Note.607

Accounting for winner’s curse. Recall that SNPs are selected based on a p-value threshold608

or equivalently a threshold t of z-score, i.e., |γ̂j/ŝXj
| ≥ t. This selection process introduces609

non-ignorable bias, i.e., E(γ̂j

∣∣∣|γ̂j/ŝXj
| ≥ t) 6= γj, which has been known as winner’s curse in610

GWAS [43, 29]. To correct the selection bias in MR, we further take into account the selection611

condition |γ̂j/ŝXj
| ≥ t. After some derivations (Section 1.3 of the Supplementary Note), model612

(6) becomes mixture of truncated normal distributions:613

p
(
γ̂j, Γ̂j

∣∣∣|γ̂j/ŝXj
| ≥ t, πt, β,Σ,Ω,C, Ŝj, `j

)

=πt

N

((
γ̂j
Γ̂j

)∣∣∣0, `jA(β)ΣA(β)T + `jΩ + ŜjCŜj

)

2Φ

(
−tŝXj√

`jσ2+`jσ2
u+ŝ

2
Xj

) + (1− πt)
N

((
γ̂j
Γ̂j

)∣∣∣0, `jΩ + ŜjCŜj

)

2Φ

(
−tŝX,j√
`jσ2

u+ŝ
2
X,j

) ,

(7)

where πt = p(Zj = 1
∣∣∣|γ̂j/ŝXj

| ≥ t) is the probability that the j-th SNP carries the foreground614

signal after selection.615

Parameter estimation and statistical inference. In MR-APSS, the parameters of Ω̂ and Ĉ616

in the background model are estimated by LDSC using genome-wide summary statistics. Given617

Ω̂ and Ĉ, the log-likelihood function of the observed data Dc = {γ̂j, Γ̂j, ŝX,j, ŝY,j
∣∣∣|γ̂j/ŝX,j| ≥618

t}j=1,...,Mt can be written as:619

L(θ|Dc)

=

Mt∑
j=1

log

πt
N

((
γ̂j
Γ̂j

)∣∣∣0, `jA(β)ΣA(β)T + `jΩ̂ + ŜjĈŜj

)

2Φ

(
−tŝX,j√

`jσ2
u+`jσ

2+ĉ1ŝ2X,j

) + (1− πt)
N

((
γ̂j
Γ̂j

)∣∣∣0, `jΩ̂ + ŜjĈŜj

)

2Φ

(
−tŝX,j√

`jσ2
u+ĉ1ŝ

2
X,j

)
 ,

(8)

To obtain the maximum likelihood estimate of model parameters θ = {β, πt,Σ}, we then derive620

an efficient expectation-maximization (EM) algorithm with details given in Section 1.5 of the621

Supplementary Note. As a byproduct, we can estimate the numbers of valid IVs and invalid622

IVs as π̂tMt and (1− π̂t)Mt, respectively. Real data results of the estimated numbers of valid623

and invalid IVs are shown in Fig.7a. The posterior of SNP j serving as a valid IV can be624

estimated as p(Ẑj = 1|Dc), as shown in dark blue in Fig. 6. The likelihood ratio test can be625

conducted to examine the existence of the causal effect. Consider the following hypothesis test:626

H0 : β = 0 v.s. H1 : β 6= 0, (9)
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the likelihood-ratio test statistic (LRT) is given by627

T = 2
(
L(θ̂|Dc)− L(θ̂0|Dc)

)
, (10)

where θ̂ and θ̂0 are the parameter estimates obtained under hypotheses H1 and H0, respectively.628

Under the null hypothesis H0, the test statistic T is asymptotically distributed as χ2
df=1 and its629

p-value can be obtained accordingly.630

GWAS summary statistics and pre-processing. For all GWAS summary datasets, we used631

SNPs in the set of HapMap 3 list with minor allele frequency >0.05. We further excluded SNPs632

in the complex Major Histocompatibility Region (Chromosome 6, 26Mb−34Mb). Following633

the process in LDSC [54], we checked the χ2 statistic of each SNP and excluded SNPs with634

χ2 > max{80, N/1000} to prevent the outliers that may unduly affect the results. For a pair635

of exposure and outcome traits, we took the overlapped SNPs from their GWAS summary636

statistics and aligned the sign of effect sizes for those SNPs to the same allele. Then we applied637

bivariate LDSC to estimate the Ω and C using genome-wide summary statistics. After this638

step, we selected SNPs as IVs using an IV threshold (with the default p-value 5× 10−5), and639

applied PLINK clumping (r2 < 0.001, window size 1Mb) to obtain nearly independent IVs.640

Finally, we fitted the proposed background-foreground model to infer the causal effect.641
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