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Abstract

Turing patterns are commonly understood as specific instabilities of a spatially homogeneous steady
state, resulting from activator-inhibitor interaction destabilised by diffusion. We argue that this view is
restrictive and its agreement with biological observations is problematic. We present two alternative to
the ‘classical’ Turing analysis of patterns. First, we employ the abstract framework of evolution equations
to enable the study of far-from-equilibrium patterns. Second, we introduce a mechano-chemical model,
with the surface on which the pattern forms being dynamic and playing an active role in the pattern
formation, effectively replacing the inhibitor. We highlight the advantages of these two alternatives vis-
à-vis the ‘classical’ Turing analysis, and give an overview of recent results and future challenges for both
approaches.
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1 Introduction
The prevailing ‘Turing theory’ of pattern formation in biology, and treatment of associated ‘Turing pat-
terns’, can be traced to the work of Hans Meinhardt, germinating from his seminal paper with Alfred Gierer
[1]. While Turing in his pioneering paper [2] introduced the framework of reaction-diffusion equations,
and the different scenarios in which pattern-like solutions can occur, Gierer and Meinhardt took a distinctly
more ‘modelling’ point of view. They introduced the concept of local activation versus long range inhib-
ition, and argued there (and in subsequent work [3, 4, 5]) why this mechanism is not only sufficient, but
also necessary, to explain de novo pattern formation. This viewpoint has inspired and guided a significant
portion of pattern formation research in the last decades [6, 7, 8, 9, 10, 11]. While Turing-type models are
based on intercellular signaling through diffusive molecules, they may also arise in continuous-limit of a
direct cell-to-cell communication through cell-membrane molecules. Other models of pattern formation
are based on different mechanisms of signal transduction such as chemotaxis [12, 13], haptotaxis [14],
phase shift in signaling between discrete cells [15] or mechanical forces [16, 17].

To go ‘beyond Turing’, we first briefly discuss pivotal aspects of the canonical ‘Turing’ approach to
pattern formation. This discussion will be, by its brevity, both schematic and inherently incomplete. One
should be aware of the danger that such a schematic picture can, inadvertently, lead to a caricature descrip-
tion of the theory of Turing patterns, thereby dressing up a straw man that can easily be put aside in favour
of new, ‘better’ approaches. With that in mind, our aim is to highlight certain defining viewpoints inher-
ent to the canonical Turing approach, and to present alternatives to these viewpoints, describing situations
where these alternatives might be worth considering.

1.1 Formation of Turing patterns
Generally speaking, when the terms ‘pattern formation’ and/or ‘Turing patterns’ are used, the following
mechanism is assumed to play a role.
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1. The system under consideration admits a stationary, spatially homogeneous steady state.

2. The temporal evolution of the system is described by certain evolution rules. In the context of these
rules, one assumes that the stationary homogeneous steady state is unstable for spatially heteroge-
neous perturbations. This instability is assumed to be of a certain type, so that there exist certain
‘modes’ exhibiting spatial regularity, that are thought to induce a pattern forming process.

3. When initialising the system close to the stationary homogeneous steady state, the early evolution
of such an initial state is assumed to be dominantly determined by these ‘pattern modes’, thereby
initiating the growth of a ‘pattern’.

4. The spatial heterogeneity of the solution, induced by the pattern modes, is assumed to become more
pronounced under the evolution of the system. Eventually, the system settles into a stationary con-
figuration that has the same spatial shape as the dominant ‘pattern mode’. This solution is called a
‘Turing pattern’.

To summarise, the necessary ingredients are a stationary, homogeneous steady state, that is unstable in
such a way that ‘Turing modes’ dominate the initial evolution – these ingredients then enable the sponta-
neous formation of a pattern by self-organisation.

1.2 Evolution equations
The above description of pattern formation and Turing patterns is deliberately kept vague in terms of the
details of the system under consideration, and the ‘rules’ that govern its evolution. This is to highlight the
methodology, rather than the specific modelling context – indeed, a pattern forming process as described
here, can take place in a wide variety of models including systems of reaction-diffusion equations [18],
non-local models of integro-differential equations [19, 20], degenerated reaction-diffusion-ODE systems
[21, 22, 23] or fourth order partial differential equation models accounting for evolution of thin elastic
structures [17, 24]. Hence, it seems useful to adapt a rather abstract approach, and describe the system as
the evolution of a state variable u(x, t) ∈ Rn, determined by the evolution equation

∆tu = F [u], (1.1)

where the functional F encodes the evolution ‘rules’. In the context proposed by Turing and used by
Gierer and Meinhardt, namely that of reaction-diffusion equations, the state variable u(x, t) obeys a system
of parabolic partial differential equations in the variables t ≥ 0 and x ∈ Ω ⊂ Rm, which can be cast in this
abstract framework by choosing

∆t =
∂

∂t
and F = D∆x + F(u), (1.2)

where ∆x is the m-dimensional Laplacian with, for example, zero-flux boundary conditions, D is an n × n
diffusion matrix (which might depend on u), and F : Rn → Rn encodes the ‘reaction terms’. It is important
to note that the class of evolution equations (1.1) consists of more than ‘just’ reaction-diffusion systems:
∆t can also be chosen to describe a discrete time step, for example ∆tu = u(·, t + 1) − u(·, t), where t ∈ N;
in addition, the spatial variable x can be chosen to be discrete, such that x ∈ Zm; furthermore, the evolution
operator F might describe not only deterministic, but also stochastic evolution.
Whatever the context, the abstract formulation (1.1) suggests the viewpoint of dynamical systems theory.
That is, for a suitably chosen phase spaceM, the functional F can be seen as a map fromM toM, and the
evolution equation (1.1) induces a (semi-)flow on this phase space. In this formulation, stationary states
are equilibria of this flow, and are therefore equivalent to a solution u∗ to the equation

F [u∗] = 0. (1.3)

Whether such a stationary state is spatially homogeneous as well, depends on the details of the operator
F – in particular, the manner in which F depends on x. Note that, in the context of reaction-diffusion
equations (1.2), spatially homogeneous stationary states are determined by the reaction terms F(u) only, as
they are solutions to the equation F(u∗) = 0 (1.2).
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Figure 1: (A) The formation of a Turing pattern in the abstract context of evolution equations. (B) Possible
evolution scenarios.

In this abstract context, formation of Turing patterns as described above, is depicted in Figure 1 A. We
would like to highlight two important aspects suggested by this view. First, the flow of the system steers
the evolution of an initial state u0 that is close to the stationary homogeneous state u∗, towards a second
stationary state up, which we call the pattern, which is not spatially homogeneous, but displays a spatial
regularity. Second, this ‘target state’ up must be stable in some sense, as it is the ‘endpoint’ of the evolution
of a certain initial state u0. Indeed, if we demand that this pattern formation process does not sensitively
depend on the specifics of the initial state u0 – that is, that an entire open neighbourhood of the stationary
homogeneous state u∗ is attracted to, and flows towards, this stationary pattern-like equilibrium up – then
the pattern equilibrium up must be stable, and the stationary homogeneous steady state u0 must lie in (the
interior of) the basin of attraction of the equilibrium up. In many cases, this is ensured by assuming that
the pattern state up is close to the homogeneous equilibrium u∗ – note that this implies the need for a notion
of distance in phase space, as we have to specify and quantify what we mean by ‘close’. As a result, Turing
patterns in reaction-diffusion systems, where the prime candidate for the phase space is the Hilbert space
L2, often have relatively small amplitude.

Described in this manner, the conditions for Turing pattern formation seem to be very special indeed.
We are invited by abstract viewpoint of evolution equations to ask whether these ‘Turing conditions’ are
necessary or sufficient for patterns to occur. In the ‘dynamical systems’ context described above, it seems
worthwhile to investigate whether the following scenarios may occur, see also Figure 1 B:

1. An initial state u0 close to the spatially homogeneous stationary state u∗ may evolve to an equilib-
rium that is far away from u∗. If this equilibrium has pattern-like qualities, it is called a far-from-
equilibrium pattern.

2. An initial state u0 close to the spatially homogeneous stationary state may not evolve towards an
equilibrium at all; its evolution might be unbounded, it might evolve towards a chaotic attractor,
or towards a non-trivial invariant set in phase space, such as a (time-)periodic orbit or a solution
exhibiting mass concentration or a blow-up in finite or infinite time.

3. We may initialise the system not close to the spatially homogeneous stationary state u∗, and this
initial state may yet evolve towards a stationary pattern.

The feasibility of these scenarios will be discussed in section 2.

1.3 Pattern formation mechanisms
One might object to, or have reservations about, the highly abstract viewpoint of evolution equations,
as introduced above. After all, models for specific biological systems do not appear out of thin air, but
are carefully constructed based on deep knowledge of, and experience with, the underlying biological phe-
nomena. As such, the building blocks of these models (diffusion or advection processes, specific non-linear
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reaction terms, etc.) aim to have specific biological meaning, as to provide a faithful description of bio-
logical, observed, reality. From a modelling perspective, the evolution equation context does not seem to
give any guidance towards the question which terms to include, or which terms to leave out, for the model
to exhibit a desired behaviour – such as the occurrence and formation of spatial patterns. Perhaps surpris-
ingly, there turns out to be a general framework in which such specific guidances can be obtained; this will
be discussed in section 2. For now, we continue our discussion of the ‘modelling’ perspective.

The local activation / long range inhibition (LALI) approach as advocated by Gierer and Meinhardt
has proven to be very effective in producing pattern-like structures, in a range of different model contexts
[4]. The efficacy of this approach is directly related to two concepts that, when intertwined in the man-
ner suggested by Gierer and Meinhardt, promote self-organisation and the formation of spatially periodic
structures. First, in order to make a meaningful distinction between local and long range, the biological
process (and the model describing that process) needs to incorporate a form of spatial scale separation, or
multiple spatial scales. Second, there need to be identified two separate model components that interact
in a specific way, forming an activator-inhibitor pair. The implementation of this interaction might differ
from model to model, but the general idea is that the activator a promotes its own growth as well as that of
the inhibitor h, while the latter inhibits the growth of a. When the inhibitor acts on a spatially long range,
while the action of the activator is more spatially localised, the emergence of periodic patterns is thought
to occur spontaneously; see Figure 2 A.
In the model context of reaction-diffusion equations, this idea is implemented by studying the interaction
of two diffusing species (i.e. u(x, t) = (a(x, t), h(x, t))), where a significant difference in diffusion rates
between the two species induces a spatial scale separation in the spatial spread, and therefore the action,
of these two species. The specific activator-inhibitor interaction is encoded in the reaction terms F(u) (1.2).

The success and impact of the LALI approach rests on two pillars: First, the mechanism underly-
ing the formation of patterns is compelling, easy to understand, and sufficiently general to implement in
a wide range of biological contexts. Second, when implemented in a specific model context, numerical
simulations robustly show the emergence of spatial patterns, the shape of which can be adjusted to match
biological observations and experiments by tweaking the model (e.g. [25, 5]). Hence, the approach pos-
sesses strong explanatory and predictive qualities, which make it a prime candidate for the explanation of
several spatial patterns observed in nature. However, when merging this theory of pattern formation with
biological practice, a hurdle presents itself, which prevents the direct application of the ideas of Gierer
and Meinhardt. The difficulty lies in the fact that the theory needs (at least) two independent, diffusing,
species, that in addition must form an activator-inhibitor pair, i.e. interact in the specific manner described
above. In very many applications, this poses an insurmountable problem. While a prime candidate for the
activator can often be identified without much difficulty, the same is not the case for the inhibitor. Either a
long-range (fast diffusing) agent exists, but does not interact with the activator in the required fashion, or
an inhibitory agent does not manifest the required spatial long range action (e.g. [26]). In both cases, the
proposed inhibitor remains elusive.

Nevertheless, the LALI idea remains singularly persuasive. Its simplicity endows it with a ring of
truth: When patterns are observed, the LALI mechanism must be its cause, therefore an inhibitor must be
present. This conviction has guided the experimental efforts in several biological contexts where patterns
are observed (e.g. [26, 5]).

We perceive this discrepancy between theory and practice as a strong motivation to go ‘beyond Tur-
ing’ in the following sense. We propose to challenge the ‘Turing’ paradigm, implemented in the specific
manner advocated by Gierer and Meinhardt, and present an alternative explanatory principle, namely that
of mechano-chemical feedback. This novel principle has three distinct selling points. First, the simple,
convincing aspects of the principle of LALI are preserved, thereby acquiring its persuasive qualities as an
explanatory principle. Second, the need for a ‘second species’ that acts as an inhibitor disappears, automat-
ically providing a better potential match with biological practice. Third, the spatial background (i.e. the
biological environment) now plays an active and pivotal role, in contrast to the ‘classical Turing’ approach,
where the spatial model variables are mostly taken to be in a featureless, Euclidean space Rm – where,
in contrast, biological patterns often form on a dynamic background and thus under continually changing
conditions [27]. The principle of mechano-chemical feedback can therefore be viewed as equally compel-
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Figure 2: (A) The local activation / long range inhibition idea of Gierer and Meinhardt. (B) Mechano-
chemical feedback, curvature takes the role of the long range inhibitor. (C) Self-organized pattern forma-
tion based on a simple positive feedback loop between morphogen production and local tissue curvature.

ling, more simple, and closer to biological practice than the ‘classical Turing’ pattern formation principle.
The mechano-chemical approach to pattern formation will be discussed in more detail in section 3.

1.4 Beyond Turing: Change of perspective, change of paradigm
Both the study of far-from-equilibrium patterns and the introduction of mechano-chemical feedback present
ways to go ‘beyond Turing’. The abstract viewpoint of evolution equations, where the study of patterns as
the final stage of an evolutionary process, presents a change of perspective. One could describe this as a
focal shift from de novo pattern formation towards pattern analysis. Indeed, for many far-from-equilibrium
patterns, or even for more general spatio-temporal ‘dynamic’ patterns such as rotating spirals [28, 29], the
question is not so much where the system was initialised, but to which stable states the system can evolve
towards. This frees oneself from the ‘restriction’ of having to initialise the system close to a stationary
homogeneous steady state that is unstable in a specific manner, as is the case in the ‘classical Turing’ view
of pattern formation, presented at the beginning of section 1.
This does not mean that the process of de novo pattern formation is uninteresting, or not relevant. On the
contrary, in many applications, the question how patterns can emerge from a homogeneous background
state is central to understanding the underlying biological process. In this context, the novel mechano-
chemical feedback paradigm offers an attractive and viable alternative to the ‘classical Turing’ theory of de
novo pattern formation. This paradigm change also has important consequences for experimental studies
of pattern formation: Rather than having to look –perhaps in vain– for a candidate inhibitor, one should
pay close attention to the geometrical properties of the surface on which the pattern forms.
The impact of the two viewpoints presented in this paper on questions of pattern observability, experimental
verification, and biological practice, will be summarised and discussed in section 4.

2 Far-from-equilibrium patterns
From the viewpoint of evolution equations (1.1), a pattern can be understood as a (stationary) equilibrium
u∗(x) in phase spaceM, which is spatially non-homogeneous – in particular, which exhibits a clear spatial
regularity, e.g. periodicity. Equilibria are, by definition, solutions to (1.3), which is usually called the
‘existence problem’. In the context of reaction-diffusion systems (1.2), this existence problem can take the
form of a system of elliptic PDEs (in the case of two or more spatial dimensions), or a system of ODEs
(in the case of one spatial dimension). The dimension of x, the shape of the spatial domain, the type of
boundary conditions, and the specific form of the nonlinearity F(u) (1.2) all influence the complexity of
the existence problem, and the extent to which this problem is analytically tractable.
Once more, dynamical systems theory can, in several important cases, be used to gain insight into pattern
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solutions. In one spatial dimension, the existence problem (1.3) takes the form of a system of ODEs, in
the independent variable x ∈ R. This system can now be viewed as a dynamical system in x, on the phase
space R2n. For example, if we consider the two-component reaction-diffusion system

∂u1

∂t
=
∂2u1

∂x2 + F1(u1, u2), (2.1a)

∂u2

∂t
=
∂2u2

∂x2 + F2(u1, u2), (2.1b)

the associated existence problem can be written as the dynamical system

du1

dx
= v1,

dv1

dx
= −F1(u1, u2), (2.2a)

du2

dx
= v2,

dv2

dx
= −F2(u1, u2), (2.2b)

with (u1, v1, u2, v2) ∈ R4. In this viewpoint, patterns are identified as special orbits of the dynamical system:
Spatially periodic patterns are equivalent to periodic orbits, spatially localised (pulse type) solutions to
homoclinic orbits, and wave fronts to heteroclinic orbits. This viewpoint of pattern formation, which
is sometimes called spatial dynamics [30, 31, 32, 33, 34], aims to use techniques and methods for the
analysis of special solutions that have been developed in the context of dynamical systems.

2.1 Spatial scale separation and geometric singular perturbation theory
Nevertheless, identifying a suitable mathematical context does not immediately imply that real insight into
the existence and shape of patterns can be gained. High-dimensional, nonlinear dynamical systems can
–and often will– exhibit chaotic and highly complex behaviour, posing a clear difficulty for the explicit
analysis of pattern-like structures.
Here, the biological context offers a way forward, alleviating these mathematical difficulties by introdu-
cing spatial scale separation. Almost without exception, biological models for pattern formation in a
specific context explicitly incorporate the observation that different model components act on different
spatial scales. Not only is this spatial scale separation seen as a prerequisite for pattern formation (cf. the
LALI principle); in addition, model components are frequently defined by the spatial scale on which they
act – thereby ingraining this principle of spatial scale separation in the core of the model. In the context of
reaction-diffusion equations, this principle is implemented by the assumption that the ratio of the diffusivity
rates of two model species is small, that is, D1

D2
:= ε2 � 1. This small parameter ε now introduces a scale

separation in the existence problem, in the following way. Take the example system (2.1). Introducing ε2

as the diffusivity of u1 would change the associated existence problem to

ε
du1

dx
= v1, ε

dv1

dx
= −F1(u1, u2), (2.3a)

du2

dx
= v2,

dv2

dx
= −F2(u1, u2), (2.3b)

Introducing the short scale variable ξ = x
ε
, (2.3) transforms to

du1

dξ
= v1,

dv1

dξ
= − F1(u1, u2), (2.4a)

du2

dξ
= εv2,

dv2

dξ
= −εF2(u1, u2), (2.4b)

For ε > 0, the dynamics of systems (2.3) and (2.4) are completely equivalent, and their orbit structure is
identical. However, their singular limit ε→ 0 is completely different. System (2.3) reduces to

v1 = 0 = F1(u1, u2),
d2u2

dx2 = −F2(u1, u2), (2.5)

two algebraic equations and a second-order differential equation, while the singular limit of system (2.4)
yields

d2u1

dξ2 = −F1(u1, u2),
du2

dξ
= 0 =

dv2

dξ
, (2.6)
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a second-order differential equation and two very simple first-order differential equations. Hence, we can
identify (u1, v1) as short scale components and (u2, v2) as long scale components, presenting a decomposi-
tion of the original existence problem. This decomposition reduces the model complexity, thereby enabling
more detailed and explicit analysis.

The procedure sketched above is made rigorous by geometric singular perturbation theory (GSPT),
which is based on the pioneering work by Fenichel [35, 36]. GSPT employs a combination of techniques
and concepts from geometry and dynamical systems to constructively establish the existence of special
orbits, which makes it a perfect candidate for the analysis of pattern formation from the viewpoint of
spatial dynamics. By virtue of the geometric techniques, specific properties of the constructed orbit (such
as amplitude, shape, spatial period) are found explicitly, as they play a pivotal role in the construction
process, which at the same time provides a mathematically rigorous proof of the existence of the pattern.
Hence, GSPT not only provides mathematical rigour, but also direct practical applicability of the results for
specific models [37]. That is, given a reaction-diffusion system that incorporates spatial scale separation,
a successful GSPT analysis will make clear which patterns exist, what these patterns look like, what their
period is, and how these properties depend on the model parameters [38, 39].
However, the practical applicability of GSPT transcends specific model contexts. This is because the
existence and properties of (special) orbits is directly related to the shape and transverse intersection of
certain geometrical objects (stable/unstable manifolds) in phase space, see Figure 3. This has, from a
model perspective, two consequences. First, recent results [40, 41] show that the existence (and properties)
of several important types of special orbits can be established using only general properties of the reaction
terms F(u) (1.2) – that is, patterns such as pulses or periodic orbits, and their properties, can be found for
general classes of reaction-diffusion systems. For a specific reaction-diffusion system, one only needs to
check whether its reaction terms obey certain (mild) conditions (e.g. [40, Assumptions (A1–4)]); if so,
the pattern properties are explicitly given in terms of integrals involving the reaction terms, and certain
solutions to lower-dimensional differential equations. A second, and related, consequence of the geometric
approach, is that because the specific functional form of the reaction terms F(u) (1.2) is not important,
the reaction terms can be directly defined through an (experimentally obtained) response curve. Only
the geometric shape of this curve determines the existence and properties of pattern solutions, not the
specific algebraic implementation of this shape. Therefore, patterns obtained by a GSPT construction are
structurally stable. This is particularly important for the connection with biological practice. The fact that
mathematical models are, by nature, a strongly reduced idealisation of biological reality, is often a major
point of criticism from biologists, who object that the omission of several biologically observed processes
that are thought to play a minor role, makes the resulting model less reliable. The geometrical construction
provided by GSPT shows that, as long as the resulting response curves do not fundamentally change when
these minor processes are included, the mathematical statements regarding patterns remain valid for the
extended model.
From the mathematical perspective, it is worthwhile to note that the orbits constructed by GSPT are exact
solutions to the full nonlinear existence problem (1.3), even though their construction uses approximations
in the singular limit ε→ 0. In contrast to the linear analysis of a Turing bifurcation, the nonlinearity of the
reaction terms F(u) is crucial to the pattern construction procedure. An additional advantage, in comparison
with ‘classical’ matched asymptotics approaches, is that one avoids potentially divergent asymptotic series
and technicalities such as secular terms; for sufficiently small ε, GSPT rigorously and robustly proves the
existence of (singular) orbits.

2.2 Pattern stability and the Busse balloon
Solving the existence problem (1.3) by finding a pattern solution is necessary, but not sufficient, to describe
the process of pattern formation. In the context of evolution equations (1.1), we have found a candidate
stationary state, but it as yet unclear if and when the evolution will steer the system towards this state.

A minimal requirement for a pattern state to be observable as a stationary solution to the evolution
equation (1.1), is that the pattern needs to be dynamically stable. That is, when the stationary pattern state
is perturbed, this perturbation should disappear in time, as the system returns to the pattern state. In other
words, when the system is initialised at a point in phase space close to the pattern equilibrium, the (local)
flow of the evolution equation should point towards the equilibrium. Hence, a stable pattern is a local
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Figure 3: Left: A sketch of the GSPT construction of a homoclinic orbit in a projection of phase space.
A homoclinic orbit can be constructed at every point where the blue and green curve have a transverse
intersection. Right: The resulting pattern, a localised pulse. Source: [40].

attractor in the phase space of (1.1).
The local behaviour of the flow of (1.1) in the neighbourhood of an equilibrium u∗ (1.3) can be determined
by linearisation. In the context of reaction-diffusion equations, one obtains a linear, parabolic, system
of PDEs which explicitly (i.e. non-autonomously) depend on x, because we linearise ‘around’ a pattern
solution, which has spatial structure – indeed, that last property is at the heart of our endeavour. For the
two-component reaction-diffusion system (2.1), the associated linearised system around a given stationary
pattern solution (u1(x), u2(x)) would take the form

∂p1

∂t
=
∂2 p1

∂x2 +
∂F1

∂u1
(u1(x), u2(x)) p1 +

∂F1

∂u2
(u1(x), u2(x)) p2, (2.7a)

∂p2

∂t
=
∂2 p2

∂x2 +
∂F2

∂u1
(u1(x), u2(x)) p1 +

∂F2

∂u2
(u1(x), u2(x)) p2, (2.7b)

where (p1(x, t), p2(x, t)) is the perturbation. The pattern (u1(x), u2(x)) is linearly (asymptotically) stable if
(p1(x, t), p2(x, t))→ (0, 0) as t → ∞.
Due to the presence of non-autonomous terms, the analysis of systems such as (2.7) is difficult in general,
making it challenging to obtain information about the temporal behaviour of perturbations (p1, p2). How-
ever, when the original system exhibits spatial scale separation, this feature is carried over to the linearised
problem. In turns out that, by taking an approach similar to that taken in the existence problem (GSPT), one
can obtain detailed information on the temporal behaviour of perturbations, and derive explicit conditions
for stability of the underlying pattern [40, 41]. Again, the spatial scale separation makes all the difference:
It turns an intractable problem into a manageable one.

Whether one employs analytical techniques or numerical simulations to investigate patterns and their
stability: Given a specific biological system, one would like to have a clear overview of the set of stable
patterns. The Busse balloon [42, 43, 44] provides such an overview, see Figure 4 A. Here, the focus is on
patterns with a clearly defined wavelength, which can therefore be used to characterise the pattern. The
Busse ballon is defined as the set in (parameter,wave number) space where patterns with that wave number
are dynamically stable for that parameter combination. The specific shape of the Busse balloon can vary
significantly from system to system, and the Busse balloon sketched in Figure 4 A captures some important
pattern formation phenomena, but certainly not all. Perhaps most importantly, the Busse balloon does not
incorporate the amplitude of the pattern, which means close-to-equilibrium and far-from-equilibrium pat-
terns cannot be distinguished in this view. As another example, given a parameter combination for which
multiple (sometimes, a range of) stable patterns exist, the Busse balloon does not tell us which pattern is
selected – that is, which pattern is ‘the most stable’, or which pattern has the largest ‘basin of attraction’ in
the phase space of (1.1). The answer to this question may even, for example, depend on the rate of change
of the system parameter, see [44, Figure 12].

With the help of the analytical techniques described in this section, we can investigate the feasibility of
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Figure 4: (A) The Busse balloon in (µ, k) space, where µ is a generic system parameter, and k the wave
number; spatially homogeneous steady states have wave number k = 0. In the shaded region, patterns with
wave number k exist and are stable. At the tip of the Busse balloon, a Turing bifurcation takes place for
µ = µT . For µ < µh, the homogeneous background state is stable, yet stable patterns exist. (B) Given a
sufficiently strong perturbation (‘nudge’), a system can be forced to evolve towards a far-from-equilibrium
pattern, even though the homogeneous stationary state is stable.

the different scenarios identified in section 1.2. For comparison, we add a fourth scenario that incorporates
the ‘classical Turing’ view on pattern formation.

1. An initial state u0 may evolve towards a far-from-equilibrium pattern. The existence of such far-
from-equilibrium patterns can be established using GSPT; similar techniques can be used to deter-
mine whether an existing pattern is a local attractor. Whether the initial state actually flows towards
this stationary pattern solution, depends on the global properties of the evolution equation: The ini-
tial state has to lie inside the pattern’s basin of attraction. Note that these considerations do not
depend on whether the initial state u0 is chosen close to a spatially homogeneous steady state; hence,
this also incorporates scenario 3.

2. An initial state u0 may evolve towards a an attractor in phase space that is not an equilibrium (1.3),
i.e. not a stationary solution, but a fully spatiotemporal solution to (1.1). Establishing the existence
of such attractors is a challenging task, but can be be accomplished in the presence of certain system
symmetries (e.g. rotating spirals [45]), or in the neighbourhood of bifurcations (e.g. breathing pulses
[46]). As in scenario 1, these considerations do not depend on whether the initial state u0 is chosen
close to a spatially homogeneous steady state; hence, this also incorporates scenario 3.

3. The system may evolve towards a stationary pattern, regardless of the proximity of the initial state
u0 to a spatially homogeneous stationary state u∗; see points 1 and 2. Note that this implies that
a stable spatially homogeneous steady state and a stable (far-from-equilibrium) pattern can coexist;
this phenomenon is also (potentially) present in the Busse balloon shown in Figure 4 for µ < µh.
From a classical pattern formation point of view, this implies that the system needs a sufficiently
large ‘nudge’ to escape the basin of attraction of the homogeneous steady state and evolve towards
a pattern. This bistability phenomenon can have profound implications for the understanding of
pattern formation in biological systems where a homogeneous steady state is robustly stable.

4. An initial state u0, that is chosen close to a spatially homogeneous steady state, evolves to a close-
to-equilibrium pattern with a small amplitude; this is the ‘classical Turing scenario’. This means
that a pattern solution close to the steady state must be shown to exist. The existence and stability
of close-to-equilibrium patterns for general systems can be determined using modulation equations
and related techniques (e.g. [47, 48, 49]).
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3 Mechano-chemical feedback: A new paradigm for pattern forma-
tion

Recent experimental research indicates that besides molecular signalling, also tissue mechanics play an
active role in tissue patterning [50, 51, 52, 53]. Motivated by the lack of experimental identification of the
long-range inhibitor [54, 55], the mechano-chemical concept of pattern formation offers a viable alternative
to the ‘classical Turing’ theory that may have important consequences for experimental studies. Among
others, this yields a question whether the interplay between chemical and mechanical processes matches
the LALI principle, e.g., by mechanical cues providing the long-range inhibition.

A first toy model demonstrating pattern formation potential of mechano-chemical feedback loops has
been presented in [17]. It is based on existence of one diffusing morphogen that yields tissue evaginations.
In turn, the tissue evagination stimulates production of the morphogen. The positive feedback loop results
in a local self-activation, accompanied by a long-range inhibition. The latter effect emerges since local
outward bending (relative to the initial curvature) always induces inward bending at the boundaries of the
evaginated patch. We consider evolution of a closed 2D tissue surface Γ given by a parametric represent-
ation ~X : U × T → Γ ⊂ R3 and a morphogen concentration φ : U → R≥0 naturally moving with the
deforming tissue (by identifying φ(~u) with φ(~X(~u)). Curvature-dependent elastic properties of the tissue
are given by the modified Helfrich energy

Ftissue =

∫
Γ

κ(H − H0(φ))2 ds, (3.1)

which is an approach frequently used for elastic modelling of thin cell membranes [56, 24, 57, 58]. Here,
H is the mean curvature, ds is the surface measure, the bending rigidity is given by κ, and the preferred
local curvature by H0. H is a nonlinear function of the second derivatives of ~X; κ and H0 are elastic
parameters representing local mechanical properties. Dependence of H0 on φ reflects the assumption that
the morphogen φ induces local outward bending (e.g., H0 := φ). The evolution of the tissue ~X is defined
by a L2−gradient flow of Ftissue under the constraint of local incompressibility of the tissue. The energy
minimisation approach results in a 4th-ordern partial differential equation (PDE):

dt[~X] = −LX
δ

δ~X

[
Ftissue +

∫
Γ

η ds
]

(3.2)

dt[
√

g] = 0, (3.3)

where dt is the total time derivative, LX is a kinetic coefficient, δ

δ~X
[.] denotes the variation with respect to

the arbitrary vector ~X, and η is a local Lagrange multiplier [59] due to the constraint of incompressibility,
and
√

g represents the local tissue area (more details are given in [24, 17]).

Morphogen dynamics are given in terms of a reaction-diffusion equation on the deforming surface.
Additionally to diffusion and degradation [60, 61, 62], we assume that production of the morphogen φ is
induced by the local curvature H > Hi with initial (mechanically relaxed) curvature Hi = H(t = 0, ~X). The
latter is motivated by some experiments [63, 64, 50]. Using a Michaelis-Menten model for production and
defining H≥0 := max{(H − Hi), 0}, we obtain a dynamical equation for φ:

dt[φ] = γ∆Γ[φ] − δφ +
( ζH≥0

ω + H≥0

)
, (3.4)

with constants γ, δ, ζ, ω ∈ R≥0. In summary, the mechano-chemical model is given by a nonlinear 4th-order
PDE system, coupling a gradient flow for tissue mechanics (3.2) under the constraint of local area incom-
pressibility (3.3) with a reaction-diffusion equation (3.4) for morphogen dynamics. Model simulations
show spontaneous formation of morphogen and curvature patches (Fig. 2 C) that are robust to parameter
changes: All examined scenarios led to de novo patterns [17]. Further works using 3D continuum mechan-
ical models confirmed that robustness. It was shown that different feedback loops between morphogens and
tissue mechanics (measured in terms of strain, stress, or compression) can lead to a spontaneous patterning
[65, 27]. Due to the complexity of the structure of the mechano-chemical model, it analysis and numerical
implementation are challenging and require application of novel mathematical and numerical techniques.
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4 Beyond Turing: Bridging the gap between observation and theory
The two approaches presented in this paper represent two distinct views on the study of patterns: pattern
formation versus pattern analysis. Pattern formation is concerned with the initial stages of the pattern
forming process, and aims at understanding de novo patterns; in this view, the (biological) interpretation of
the underlying model and its separate components is central to understanding and interpreting the creation
of patterns. In contrast, pattern analysis considers the final stages of a pattern formation process, and aims
to study a pattern as a stationary, spatially structured solution to an evolutionary process, which is often
modelled using evolution equations. Here, the question is not how a certain pattern arises, but whether it
exists and is stable. Both structural and dynamical stability, that is, robustness under both external/random
perturbations and internal/systematic perturbations, is necessary for a pattern to be observable.

Patterns that are observed in nature are often robust, stationary features. Hence, to understand these
patterns in the context of a biological model, the pattern analysis view seems appropriate. After all, ‘clas-
sical’ Turing analysis focuses on the emergence of pattern-like structures from a homogeneous steady state,
but does not provide any statements about the result of this pattern forming process: This is a clear gap
between ‘theoretical understanding’ and ‘experimental observation’. Moreover, not every observed pattern
needs to have arisen through a Turing bifurcation, and vice versa, not every Turing bifurcation necessarily
leads to an observable, robust, stable pattern.

In addition, the evolution equation view shows that multiple stable patterns can coexist; in particular,
a stable homogeneous background state can coexist with a stable pattern, which presents a departure from
the ‘classical’ Turing intuition. This phenomenon of bi- or multi-stability can be seen as a sign of robust-
ness of the underlying system, as several steady states can be stable with respect to dynamical or structural
perturbations. In contrast, a system that is close to a Turing bifurcation, is very sensitive to perturbations.
This induces a degree of unpredictability of the outcome of the system’s evolution: One cannot precisely
predict if, and when, a small randomly occurring perturbation may induce spontaneous pattern formation.
This lack of control seems to be an undesirable quality of a biological system. For example, the formation
of patterns could trigger the next stage of a developmental process, and the timing of this step is crucial for
the success of this developmental process. On the other hand, if a system is bi-stable, a sufficiently strong
nudge would be needed to perturb the system sufficiently far away from its stable stationary state (see Fig-
ure 4 B). The probability of such a strong nudge appearing at random is negligible; therefore, this presents
a strong measure of potential control over de novo pattern formation, which can be induced only by a
targeted, strong, perturbation. In some cases both mechanisms can co-exist resulting in de novo initiation
of spatially heterogeneous structures that evolve towards far-from-equilibrium patterns [22]. Recent simu-
lation studies have demonstrated richness of possible chemical networks that are able to produce patterns
following Turing instability [66, 67]. However, simulation results alone do not provide understanding of
the nature of the observed patterns. For example, it was shown that in models coupling a reaction-diffusion
equation with a system of ordinary differential equations all close-to-equilibrium (Turing) patterns are un-
stable and the solutions that emerge due to Turing instability must be far-from-equilibrium patterns [21, 22].

Instead, the viewpoint of pattern formation is much more focused on the details of the biological model,
where the creation of de novo patterns results from the interplay of different model features, and is seen as
a hallmark of, for example, a LALI-type model structure. Hence, a pattern is seen as evidence for LALI,
and for the presence of an activator-inhibitor type interaction. However, as the identification of model
components that seem to be necessary to produce patterns this way has proven to be difficult, we propose
a paradigm change. That is, we propose that one should consider the spatial background as an active com-
ponent in the patterning process. In the most fundamental description, one chemical component diffusing
on a surface interacts with that surface through change in curvature, yielding an effective LALI-interaction
that produces patterns. This has at least two clear advantages: one does not need to assume the existence
of an elusive second chemical component, and one takes the actual shape of the ‘biological’ background
into account. More generally, almost all pattern formation analysis thus far has assumed a fixed, flat back-
ground, based on the assumption that the shape of the background does not influence the behaviour of
the pattern (see [68, 69, 70] for notable exceptions). In the mechano-chemical approach as presented in
section 3, we abandon this assumption, and investigate what happens if the background shape does matter
– not only that, but what if the background plays an active role? In many developmental applications, one
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observes that the shape of the organism changes according to the pattern that occurs [71]. Until now, this
has been considered a response to a previously established pattern. We propose that these two phenomena,
i.e. the formation of a pattern and the change of background curvature, occur simultaneously. Moreover,
we propose that these two dynamical processes interact, and that the combination of pattern and curvature
arises precisely due to this interaction.

Regardless whether one takes the viewpoint of pattern formation or pattern analysis, observed patterns
are regarded as large-scale features that arise from small-scale, sometimes microscopic, interactions. As
such, patterns as emergent phenomena can be used to make complex microscopic interactions experimen-
tally accessible. When one adopts this line of reasoning, two questions present themselves. First: are the
‘canonical’ models that are widely in use, able to produce all types of patterns that have been observed?
Second: given an observed pattern, is it possible to infer the structure of the underlying model? The
answer to the first question highly depends on what one considers to be ‘canonical’. However, recent pat-
tern analysis research has shown that well-known reaction-diffusion models such as the Gierer-Meinhardt,
Gray-Scott/Klausmeier or Schnakenberg model only admit a restricted class of far-from-equilibrium pat-
terns – that is, when one considers reaction-diffusion systems with sufficiently general nonlinear reaction
terms, one suddenly has access to a vastly extended library of pattern shapes. Even more so: for a reaction-
diffusion system exhibiting spatial scale separation, thereby allowing the application of GSPT, one can let
the pattern shape define the nonlinear reaction terms in the model. Moreover, as the temporal behaviour of
far-from-equilibrium patterns in general reaction-diffusion systems strongly depends on the specific shape
of the reaction terms, the stability [72], the spatio-temporal dynamics of patterns [46], and even the shape
of the Busse balloon [73] can be tuned, to yield novel pattern dynamics. The second question is of funda-
mental importance when one aims to use observed patterns for model comparison purposes. Not only is
this closely related to the question to which degree the presence of hypothesised microscopic processes can
be experimentally verified; it also directly impacts model benchmarking, model selection, and parameter
identifiability. Recent research has shown that the relation between observed patterns and candidates for
the underlying model is far from one-to-one: On one hand, an observed pattern can be matched to several
distinct pattern generating models; on the other hand, patterns that look identical to the naked eye can be
distinguished using statistical measures, and can hence be shown to originate from different models [74].
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