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Abstract 
 
 Mucins are present in mucosal membranes throughout the body and play a key role in the 
microbe clearance and infection prevention. Understanding the metabolic responses of pathogens 
to mucins will further enable the development of protective approaches against infections. We 
update the genome-scale metabolic network reconstruction (GENRE) of one such pathogen, 
Pseudomonas aeruginosa PA14, through metabolic coverage expansion, format update, 
extensive annotation addition, and literature-based curation to produce iPau21. We then validate 
iPau21 through MEMOTE, growth rate, carbon source utilization, and gene essentiality testing to 
demonstrate its improved quality and predictive capabilities. We then integrate the GENRE with 
transcriptomic data in order to generate context-specific models of P. aeruginosa metabolism. 
The contextualized models recapitulated known phenotypes of unaltered growth and a 
differential utilization of fumarate metabolism, while also providing a novel insight about an 
increased utilization of propionate metabolism upon MUC5B exposure. This work serves to 
validate iPau21 and demonstrate its utility for providing novel biological insights. 
 
Introduction 
 

The mucosal barrier is a hydrated mucus gel that lines wet epithelial cells throughout the 
body, including eyes, mouth, lungs, and the gastrointestinal and urogenital tracts1,2. It serves as a 
key mechanism of protection against pathogens. The component responsible for the gel-like 
properties of the mucosal layer is the glycoprotein mucin3. The dysregulation of mucins 
underlies diseases like cystic fibrosis4 and chronic obstructive pulmonary disorders2. As mucins 
are involved in the clearance of microbes5, a dysregulation of mucins can result in pathogen 
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overgrowth and severe infections6. While some bacterial species, including pathogenic strains of 
Pseudomonas3, are capable of residing within the mucosal layer,  mucins typically impair the 
formation of biofilms and surface attachment7. Furthermore, mucins are reported to 
downregulate virulence genes involved in siderophore biosynthesis, quorum sensing, and toxin 
secretion1. By disturbing these key mechanisms of infection, mucins attenuate the virulence and 
infective potential of P. aeruginosa. 

Elucidating the metabolic responses of P. aeruginosa to mucins can enable the 
development of protective approaches against infection8. Genome-scale metabolic network 
reconstructions (GENREs) and associated genome-scale metabolic models (GEMs) are well 
suited for this purpose as they can enable the prediction of cellular behavior under different 
biological conditions such as the absence or presence of different mucins in an environment9. A 
GENRE can also be used to contextualize high-throughput data, such as transcriptomics or 
proteomics data10. Gene expression data can, for example, be used to constrain specific predicted 
metabolic fluxes11 and thereby increase the predictive value of the model. Metabolically active 
pathways under different conditions can be identified by integrating high-throughput data with a 
metabolic network12. 

P. aeruginosa is a critical bacterial species in the ‘Priority Pathogens List’ for research 
and development of new antibiotics published by the World Health Organization (WHO)13. 
However, the lack of novel antibiotics14,15 emphasizes the need for the development of 
innovative and protective therapeutic approaches. This pressing need for protective strategies 
coupled with new insights from recent research present an opportunity to further refine the 
GENRE of the highly virulent strain UCBPP-PA14 by Bartell et al.16. An updated GENRE can 
be used to better understand the metabolic underpinnings of P. aeruginosa infections and 
ultimately develop new therapeutic strategies from those insights. 

Here, we present iPau21, an updated GENRE of P. aeruginosa strain UCBPP-PA14 
metabolism. We improve predictions of carbon source utilization and growth yields in order to 
better recapitulate the behavior of the pathogen. Metabolic network coverage is expanded 
through the addition of genes, reactions, and metabolites supported by literature evidence. The 
quality of the reconstruction was improved through an update of standardized formatting, 
improved annotation, and the addition of binning metabolites representing macromolecular 
categories to assist with analysis. The metabolic network model was validated by comparing 
phenotypic predictions to experimental datasets16–21 and the quality of the reconstruction was 
assessed with the MEMOTE benchmarking software22. This updated reconstruction was further 
contextualized with recently published transcriptomic data1 in order to demonstrate its utility in 
elucidating the metabolic shifts of P. aeruginosa after exposure to mucins. The validated 
reconstructions will serve as a key resource for the Pseudomonas and microbial metabolic 
modeling communities and the insights into mucin-driven metabolic shifts in P. aeruginosa may 
serve to inform the future development of therapeutic strategies. 
 
Results 
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An updated network reconstruction of Pseudomonas aeruginosa metabolism: 

A metabolic network reconstruction of P. aeruginosa PA14 (iPau1129) was previously 
published16 and served as a starting point for an updated reconstruction (iPau21). The metabolic 
coverage of the reconstruction was expanded, the format and annotations were updated, and an 
ATP-generating loop was resolved in order to produce a refined model with improved accuracy 
and extensive annotation.  

We expanded iPau1129 by 40 genes, 24 metabolites, and 76 reactions (Fig. 1a) through 
manual curation based on literature evidence (Supplementary Data 1). Many of these additions 
served to increase the utility of the reconstruction for simulation (such as the addition of 33 
exchange reactions), while others expanded metabolic pathways for amino acid metabolism and 
glycerophospholipid metabolism. A periplasmic compartment containing hydrogen was added to 
the reconstruction to better represent the electron transport chain and ATP synthase, which 
eliminated all ATP-generating loops in the metabolic network. The format was updated from 
SBML Level 223 to Level 324, which enables additional functionality such as the utilization of 
several extension packages and the transfer of information content to dedicated new data 
structures. Annotations from various databases were added to metabolites, reactions, and genes 
where possible. 

The overall quality of the updated reconstruction was assessed using MEMOTE22, a 
recently developed GENRE test suite. The MEMOTE score of iPau21 improved in all 
subcategories when compared to iPau1129 resulting in an increase of the overall score from 30% 
to 89% (Fig. 1b and Supplementary Data 2). The scores in annotation subcategories were 
increased by adding annotations and SBO terms to metabolites, reactions, and genes in the 
updated GENRE. The consistency of the metabolic network was improved through the 
correction of imbalanced reactions and the resolution of energy generating cycles that were 
present in iPau1129.  

The biomass objective function (BOF) was updated to better reflect the macromolecular 
components found experimentally in P. aeruginosa including the inclusion of 
lipopolysaccharide25–27. BOF substrates were organized into corresponding macromolecular 
categories (i.e. DNA, RNA, protein, lipid) to better represent the categories of components that 
are required for growth.  
 
Model validation: 

Validation of iPau21 was performed by comparing in silico predictions of biomass flux, 
carbon source utilization, and gene essentiality to experimental data. Biomass flux and 
subsequent doubling time predictions in simulated lysogeny broth (LB), synthetic cystic fibrosis 
media (SCFM), and glucose minimal media were compared to experimental values found in 
literature (Fig. 2a)17–19. Doubling time predictions of iPau21 were more accurate than those of 
iPau1129 in all three conditions. Compared to the original model, iPau21 doubling times are 
higher, which reflects the resolution of the ATP-generating loop that previously allowed the 
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model to costlessly convert ADP to ATP. The iPau21 doubling time prediction on glucose 
minimal media of 40.2 minutes showed agreement with experimental data, falling within the 
range of experimentally determined values19. Model doubling time predictions on LB and SCFM 
were faster than observed experimentally, which is consistent with metabolic network models 
that are structured to predict the optimal growth of an organism. 

Carbon source utilization predictions were compared to previously collected 
experimental results16. The accuracy of iPau21 utilization predictions was 89% across 91 carbon 
sources, compared to an accuracy of 80% by iPau1129 (Fig. 2b and Supplementary Data 3). This 
increase in accuracy was achieved through the completion of pathways that allow for the 
utilization of more carbon sources and the removal of an unsupported reaction that previously 
allowed for the utilization of D-malate. Carbon source predictions of iPau21 remain incorrect for 
10 carbon sources. Five of the incorrect predictions are due to the absence of metabolic pathways 
required for growth on certain carbon sources. When addressing these predictions, our literature 
survey was unable to provide sufficient evidence for these pathways so the predictions remain 
incorrect and we opted to not gapfill without that additional evidence. To correct these 
predictions, summary reactions could be added to the reconstruction, but these reactions would 
lack the mechanistic granularity of associated genes and could have negative impacts on other 
aspects of the reconstruction. The other five incorrect predictions were caused by the presence of 
metabolic pathways that allow for the erroneous growth on the associated carbon sources. In 
each of these cases, the pathway was investigated and the corresponding genes were verified 
through the KEGG28 and ModelSEED29 databases, but there was not strong enough evidence to 
warrant changes in the reconstruction28,30. Some of these discrepancies may be due to 
considerations that are outside of the scope of the network, such as transcriptional processes. For 
example, in the case of D-serine, PA14 has the ability to metabolize this carbon source but 
expression of this gene is not triggered by the presence of D-serine so it is unable to grow on this 
single carbon source in vitro31. These predictions could be corrected by removing or modifying 
particular reactions in the metabolic network. However, since the gene-protein-reaction (GPR) 
rules were found to be valid and the prediction error could be due to unaccounted for regulatory 
control, we opted to leave the pathways intact. Overall, we were able to increase carbon source 
utilization prediction accuracy by 9% in comparison to the previously published model. 

Gene essentiality predictions were compared to a published dataset comprised of the 
overlap of essential genes identified through the growth of strains PAO1 and PA14 transposon 
insertion mutants in LB media20,21. The number of genes accounted for by iPau21 was expanded 
to 1169 and the gene essentiality prediction accuracy was maintained at 91%, which is 
equivalent to iPau1129, Supplementary Data 4). Three genes labeled as "SPONTANEOUS," 
"unassigned," and "Unassigned'' were removed from the reconstruction given that these labels 
did not correspond to genes belonging to P. aeruginosa. Gene essentiality data was not used for 
curation of the metabolic network given the variability in gene essentiality screens and the 
resultant challenges with data interpretation32. Instead, model predictions were compared to gene 
essentiality data as one facet of validation. As a reference, iPau21 has a gene essentiality 
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prediction accuracy of 91%, which is near the 93% accuracy of iML1515, a well-curated 
reconstruction of Escherichia coli33. 
  
Transcriptome-guided modeling of P. aeruginosa metabolism in the presence of human mucins: 
 Mucins are the primary macromolecules in mucosal layers known to modulate microbial 
phenotypes2. In order to investigate how the metabolism of P. aeruginosa shifts when it comes 
into contact with mucins, in vitro transcriptomic data was integrated with iPau21 to generate 
contextualized models that offer more biologically accurate representations of associated 
metabolic phenotypes. Analysis of the structure and pathway utilization in these transcriptome-
guided models offers insights into the metabolic shifts that arise when P. aeruginosa is exposed 
to mucins. 
 Transcriptomic profiles of P. aeruginosa PAO1 grown in agrobacterium minimal 
medium with thiamine, glucose, and casamino acids (ABTGC) medium supplemented with 
either MUC5AC, MUC5B, or mucin-glycans were collected from literature1,34. MUC5AC and 
MUC5B are mucin types found both individually and together at different sites of the human 
body that P. aeruginosa is known to infect8. The mucin-glycans used in the published 
experiments were isolated from the backbone of MUC5AC. The experiments were performed 
with strain PAO1, which has a highly similar genome to strain PA1435. The main difference 
between the strains is the presence of additional gene clusters in PA14 (most linked to virulence) 
that we would not expect to have a large effect on overall metabolism. PAO1 genes in the 
transcriptomic dataset were mapped to PA14 orthologs and then the data was integrated with the 
iPau21 using the RIPTiDe algorithm36. RIPTiDe uses transcriptomic evidence to create context-
specific metabolic models representative of a parsimonious metabolism consistent with the 
transcriptional investments of an organism. This analysis resulted in four contextualized models 
that more accurately represent the metabolism of P. aeruginosa when grown without mucin 
exposure (ABTGC) and when exposed to MUC5AC, MUC5B, and glycans. 
 Flux samples were generated for each model and BOF flux did not vary significantly 
among the contextualized models (less than five percent change), recapitulating the phenotype 
that was observed experimentally1. The flux distributions underlying the BOF values were 
compared across models using non-metric multidimensional scaling (NMDS) in order to 
compare the metabolic mechanisms of growth utilized by the condition-specific metabolisms 
(Fig 3a). The fluxes from the 378 consensus reactions (shared across all models) were used for 
this analysis. NMDS analysis revealed that among the tested conditions, the sampled flux 
distributions from the MUC5B model clustered the furthest from the ABTGC condition. This 
result indicates that although there was not a significant difference in the BOF value, exposure to 
MUC5B caused the largest shift in the metabolic pathways utilized for growth. MUC5AC 
clustered the second furthest away, while Glycans clustered most closely to the ABTGC model, 
showing that there was a variable metabolic response to different mucins and glycans by P. 
aeruginosa. Mucin-glycans do not contain the same level of structural and biochemical 
complexity as MUC5AC and MUC5B, which may account for the slight metabolic shift 
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observed in the Glycans model relative to the MUC5AC and MUC5B models. MUC5AC and 
MUC5B are known to differ from each other in terms of charge, shape, and glycosylation37. 
These differences could explain the variable metabolic response they elicit in P. aeruginosa. 
Additionally, of the two only MUC5B has been shown to be critical for murine mucociliary 
transport and antibacterial defense38. One mechanism of MUC5B antibacterial effects could be 
through modulation of pathogen metabolism, which would explain the larger shift in metabolism 
observed when P. aeruginosa was exposed to MUC5B.  

The differences between networks were further investigated through the metabolites that 
were produced and consumed by models in silico. This analysis offers a snapshot of the 
substrates used  and byproducts of particular metabolic states, which can be informative of the 
metabolism underlying that state. All models were found to consume the same metabolites with 
some small differences in specific flux values however, there were key differences in the 
metabolites that models produced (Supplementary Data 5). The graded differences between 
models seen in NMDS were highlighted by the production of formate by the models. The 
ABTGC and Glycans models produced substantially higher amounts of formate than the 
MUC5AC model, while the MUC5B model did not contain the formate exchange reaction. 
Therefore, with our model, we are able to predict subtle shifts in P. aeruginosa metabolism in 
response to different environmental mucins.  
 
Human mucins shift P. aeruginosa metabolism  

Further analysis was conducted on the contextualized models to better understand the 
shifts in metabolism that resulted in the observed dissimilarities in the NMDS analysis. 
Reactions not shared across all models (non-consensus reactions) were identified and compared 
to investigate how network structure varies across models (Fig. 3b). This analysis revealed a set 
of 13 reactions shared by the ABTGC, MUC5B, and Glycans models but absent from the 
MUC5AC network. This result suggests that while MU5B displayed the largest functional 
differences in metabolism, MUC5AC is the most structurally unique of our models. 
Additionally, we found that there was no correlation between network structure and utilization 
among our contextualized models (Fig. 4, p-value = 0.92). Since the NMDS analysis revealed 
that the ABTGC and MUC5B models had the largest difference in functional metabolism, these 
two models were further investigated to find key attributes that underlie these large differences. 
Random forest analysis was conducted on the flux samples from consensus reactions of the 
ABTGC and MUC5B models to find which reactions were most differentially utilized between 
the two cases (Fig. 5). Two reactions corresponding to fumarate transport were in the top seven 
most discriminating reactions between models, suggesting that there was a differential utilization 
of reactions involved in fumarate metabolism. The MUC5B model utilized the fumarate 
reactions more highly than the ABTGC model and contained a fumarase reaction that was not 
present in the ABTGC model, which further suggests that fumarate metabolism is a key point of 
difference between the models. This observation recapitulates what was noted in the original 
paper that produced the transcript data used for contextualization1. Of the top six most 
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discriminating reactions, five corresponded to propionate metabolism and were more highly 
utilized by the MUC5B model than the ABTGC model. While there was no propionate in the 
simulated (or in vitro) media, it is a known byproduct of mucin fermenters and has anti-lipogenic 
and anti-inflammatory properties in humans39,40. This analysis revealed that the exposure to 
MUC5B elicited the largest shift in metabolism compared to MUC5AC and Glycans. Further, an 
increased utilization of fumarate and propionate metabolism during simulated growth was 
responsible for this shift. 
 
Discussion 
 

We generated an updated network reconstruction of P. aeruginosa PA14 metabolism 
with considerable improvements in model annotation and accuracy of growth rate and carbon 
source utilization predictions. The metabolic reaction coverage of the reconstruction was 
expanded, the format and annotations were updated to be consistent with current best practices, 
and an ATP-generating loop was resolved. Model improvements were quantified through various 
metrics such as accuracy of growth yield and carbon source utilization predictions as well as 
MEMOTE benchmarking22.  

The updated network reconstruction was contextualized using transcriptomic data in 
order to investigate the shifts in metabolism that occur when P. aeruginosa is exposed to mucins 
present in the human body. This analysis recapitulated an unaltered growth rate and differential 
fumarate metabolism that has been reported in literature and also provided a novel insight into 
the increased utilization of propionate metabolism in the presence of mucins. Propionate is a 
short chain fatty acid with beneficial effects to human health such as anti-lipogenic, anti-
inflammatory, and anti-carcinogenic action39,41. While propionate is not present in the ABTGC 
medium, it is known to be produced by bacteria such as Akkermansia muciniphila when they 
come into contact with and catabolize mucins40. This shift of P. aeruginosa metabolism towards 
propionate metabolism may indicate a cross-feeding mechanism where MUC5B mucins signal to 
Pseudomonas to prepare to metabolize the propionate produced by other microbes as they break 
down the mucins. Once validated, this insight could be used to develop therapeutic strategies for 
P. aeruginosa infections of body sites containing MUC5B such as the lung, oral cavity, and 
middle ear1. Antibiotics could be designed to target proteins for propionate metabolism in order 
to combat drug-resistant strains that cannot be treated with traditional antibiotics.  

While the updates made to the model broadly improved the model accuracy, there were 
incorrect predictions about carbon source utilization, gene essentiality, and growth rate that were 
not able to be addressed. Some incorrect predictions are due to a lack of literature evidence, such 
as incorrect carbon source utilization predictions that are due to the absence of metabolic 
pathways in the model. Other incorrect predictions are due to factors that are outside of the scope 
of the model, such as the incorrect prediction of growth on D-serine that is caused by the 
transcriptional regulation of dsdA31. There are other opportunities for further curation that would 
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result in additional improvements to the MEMOTE score, which can be further interrogated by 
uploading the iPau21 reconstruction to the MEMOTE website (MEMOTE.io). 

The transcriptomic data that was used to contextualize the model was collected through 
experiments with P. aeruginosa strain PAO1. Therefore, the genes in the transcriptomic data set 
were mapped to their PA14 orthologs before being integrated with the network reconstruction. 
While the genomes of PAO1 and PA14 are highly similar, the PA14 (6.5Mb) genome is slightly 
larger than PAO1 (6.3Mb) and contains gene clusters that are not present in PAO135. The genes 
absent in PAO1 therefore would not be accounted for in the transcriptomic dataset. However, 
since most of these genes are linked to virulence, they should not have large effects on whole 
metabolism as simulated here. Therefore, we expect that this application of the model would 
allow the identification of broad shifts in metabolism due to exposure to mucins irrespective of 
the specific strain simulated. 

The improvements in the P. aeruginosa metabolic network reconstruction were made to 
reconcile key disagreements between in silico predictions and in vitro results, ultimately 
producing a higher quality metabolic network reconstruction. Through the update process, we 
identified key predictions that remain incorrect and offer targets for further curation. The 
application of the model to investigate metabolic shifts that occur upon exposure to mucins 
recapitulated phenotypes observed in literature and offered mechanistic insights that would be 
difficult to delineate experimentally. This application of the reconstruction serves as an example 
of how the reconstruction and associated models can provide insights into context-specific 
metabolism. Ultimately, this reconstruction can serve as a resource for investigating the 
metabolism of P. aeruginosa in a variety of settings and conditions.  
 
 
Methods 
 
Genome-scale Metabolic Reconstructions and Models (GENREs and GEMs) 
GENREs are network reconstructions that represent the metabolic capabilities of an organism 
and can be analyzed for various applications. An organism’s genes are connected to the proteins 
they code for and the reactions that those proteins catalyze. These associations are stored as 
gene-protein-reaction (GPR) relationships with the reactants and products of each reaction 
catalogued in a stoichiometric matrix. Metabolites in the reconstruction are assigned to 
compartments that mirror biologically discrete spaces such as the cytosol and the extracellular 
space. Exchange and transport reactions allow metabolites to flow between the compartments in 
the reconstruction. A GENRE is turned into a GEM (Genome-Scale Metabolic Model) by adding 
reaction bounds that capture the flux constraints and the reversibility of reactions. The flux 
bounds dictate the amount and direction of flux that a reaction can carry. Objective functions 
(OFs) that represent metabolic goals are added to the model to simulate biological processes. 
GEMs can be analyzed using flux balance analysis (FBA)-based methods to investigate and gain 
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insights into the metabolic state of a network42. The updated GENRE was named iPau21 
according to the community standard naming convention43. 
 
Adding annotations  
Metabolites and Reactions: Initially, the PA14 reconstruction did not contain extensive 
annotations for metabolites, reactions, or genes. ModelPolisher44 can be used to annotate 
metabolites and reactions of a metabolic model. To do so, identifiers of the BiGG database45 
(BiGG-IDs) are required as metabolite or reaction identifiers, respectively. Since the identifiers 
of the model were obtained from the ModelSEED database30, BiGG-IDs needed to be 
determined. For each metabolite, the BiGG-IDs were assessed manually. Since this is a very 
time-consuming procedure, the BiGG-IDs for the reactions were resolved in a semi-automated 
way: The cross-references of the ModelSEED database to other databases, such as BiGG or 
KEGG28, were used to automatically obtain the BiGG-IDs for the respective ModelSEED 
reaction identifier. If more than one BiGG-ID was returned, the correct identifier was determined 
by manual inspection of the respective reaction. The BiGG-IDs of the metabolites and reactions 
were added as biological qualifier (‘BQB_IS’) annotations to the model using libSBML Version 
5.17.046. The annotations were added in accordance with the MIRIAM guidelines47. After adding 
the BiGG-IDs to the model, ModelPolisher was used for further annotations of the model’s 
reactions and metabolites for references to other databases, such as KEGG, MetaNetX48, or 
MetaCyc44.  

For the reactions, the obtained KEGG annotations were used to further add all pathways 
that are associated with the respective reaction to the model. The pathways were obtained using 
the KEGG-ID and KEGG API to request all associated pathways. The pathways were then added 
to the respective reactions using the biological qualifier ‘BQB_OCCURS_IN’ in libSBML.   
  
Genes: The identifiers of the model genes are from the KEGG database. With the help of 
libSBML, the KEGG gene annotation was added to the model. For further gene annotations, the 
KEGG API was used to request NCBI49 Protein IDs and Uniprot50 IDs, which were subsequently 
added as respective annotations to the model. Additionally, the ID mapper from PATRIC51  was 
used to request RefSeq and NCBI49 gene identifiers, as well as identifiers of the ASAP database.  
  
SBO-Terms: Systems Biology Ontology (SBO)52 terms can give semantic information or be 
used for annotation purposes.  In our network reconstruction, all genes were labelled as genes 
with the SBO-term ‘SBO:0000243’. All metabolites without a valid SBO-term were labelled as 
simple chemicals with the SBO-term ‘SBO:0000247’. Transport reactions were divided into (1) 
active transport if ATP is required for the respective transport reaction (SBO:0000657), (2) 
passive transport if no external energy is required (SBO:0000658), (3) symporter-mediated 
transport if two or more molecules are transported into the same relative direction across a 
membrane (SBO:0000659), or (4) antiporter-mediated transport if two or more molecules are 
transported in relative opposite directions across a membrane (SBO:0000660).  
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All metabolic reactions were labelled as biochemical reactions with the SBO-term 
SBO:0000176. 
 
Upgrading SBML version 

The initial PA14 reconstruction was represented in SBML Level 2 Version 153. The 
current reconstruction was updated to the latest SBML edition (Level 3)54. With the help of 
libSBML, both the fbc-plugin55 and the groups-plugin56 were enabled.  
 
Fbc-plugin: Initially, the chemical formulas and charges of the metabolites were stored in the 
notes field. With the fbc-plugin, the charges were added as features of the metabolites to the 
reconstruction. The fbc-plugin also enables the addition of gene products to the reconstruction.  
 
Groups-plugin: In the initial reconstruction, the subsystems of the reactions were saved in the 
notes field. With libSBML and the groups-plugin, the subsystems were extracted from the notes 
field and added as groups to the reconstruction. For each subsystem, a list of reactions associated 
with that pathway according to the notes was created and added to the subsystem as members.  
 
Correcting charge and mass imbalances 

A list of all mass- and charge-imbalanced reactions was extracted from the 
reconstruction. From this list, all exchange, sink, demand and biomass reactions were excluded. 
Each remaining reaction was manually checked by looking up the reaction-ID in ModelSEED29: 
(1) If the reaction status in ModelSEED was balanced (‘OK’), but differed from the reaction 
equation in the reconstruction, the reaction was adapted according to ModelSEED and again 
checked for imbalances. (2) If the reaction in ModelSEED also had an imbalanced reaction 
status, other databases like MetaCyc57, BiGG45, or KEGG28 were explored and the reactions were 
adapted according to the respective reactions in the external databases. Where required, chemical 
formulas, charges, and coefficients were corrected, or chemical compounds were added or 
subtracted from the reactions according to the respective database reaction. All changed 
reactions are listed in Supplementary Table 1. 
 
Assessing the quality of the reconstruction 

MEMOTE is an open-source software that provides a measure for model quality22.  Every 
change and improvement of the model was continuously documented and quality-assessed using 
MEMOTE Version 0.9.11. Full MEMOTE reports are provided for iPau1129, iPau21, and 
iML1515 (Supplementary Data 2). Gene essentiality predictions were compared to a published 
dataset comprised of the overlap of essential genes identified through the growth of PAO1 and 
PA14 transposon insertion mutants in LB media20,21. Carbon source utilization predictions were 
compared to previously collected experimental results16. Biomass flux and subsequent doubling 
time predictions in lysogeny broth (LB), synthetic cystic fibrosis media (SCFM), and glucose 
minimal media were compared to experimental values found in literature (Fig. 1c)17–19 
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Literature-based updates 

Previous work identified multiple areas where the original reconstruction (iPau1129) was 
unable to accurately recapitulate experimental data. This assessment included 18 incorrect 
carbon source predictions16 and several incorrect gene essentiality predictions58. Pathways and 
gene-protein-reaction rules related to each incorrect prediction were manually curated to reflect 
the most recent evidence from literature, KEGG, and MetaCyc. In the absence of sufficient 
evidence, no changes were made, even if this absence of a change meant a prediction would 
remain uncorrected.  
 
Evaluating and updating the BOF 

Macromolecular categories represented in the dry weight of P. aeruginosa were 
identified through a literature survey. Metabolites in the biomass objective function (BOF) were 
organized into these macromolecular categories in order to better represent the components 
required for growth. The BOF was updated to include the presence of lipopolysaccharide based 
on literature evidence. A metabolite representing biomass was also added to the products of the 
BOF to represent the accumulation of biomass. 
 
Addition of exchange reactions 

A list of all extracellular metabolites in the reconstruction was compiled and compared to 
a list of all exchange reactions in the reconstruction. Exchange reactions were added for 33 
extracellular metabolites that previously did not have one. 
 
Removal of energy generating cycles 

Exchange reactions were closed and the objective function was set to energy dissipation 
reactions for electron carriers (ATP, NADH, NADPH, FADH2, and H+). The model was able to 
generate flux for only the ATP energy dissipation objective function, which indicated that an 
energy generating cycle existed. The cycle was resolved through the addition of a periplasm 
compartment to contain hydrogen involved in the electron transport chain and correcting the 
reversibility of four participating reactions. 
 
RIPTiDe Contextualization & Analysis 

Published transcriptomic data was integrated with the model using RIPTiDe36. The 
transcriptomic data was normalized then translated from PAO1 genes to the orthologous PA14 
genes prior to integration59. ABTGC medium was simulated in silico and applied to the model 
(Supplementary Data 6). Then, RIPTiDe was used to produce the contextualized models for in 
vitro media conditions.  

NMDS analysis was conducted on flux samples from each contextualized model (n = 500 
samples per model) using the Vegan package in R60. Only consensus reactions across all four 
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contextualized models were included in the flux sample data set and a constant was added to 
each flux value in the data set to make all data points positive to facilitate comparison. 

Random forest analysis was conducted on flux sampling data (n = 500 samples per 
model) from the consensus reactions of the ABTGC and MUC5B models using the 
randomForest package in R61. Reactions that were differentially present in contextualized models 
were identified and connected to their corresponding metabolic pathways manually.  

The Jaccard distance of network structures was calculated by comparing the reactions 
contained in pairs of networks62. The NMDS distance was calculated as the distance between the 
median NMDS coordinates of network pairs. Spearman's correlation was used to calculate a p-
value for the relationship between network structure and network utilization across all pairs of 
networks. 
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Figures 
 

Figure 1: Characteristics and MEMOTE benchmarking of iPau21. (a) Properties of iPau21 
as compared to iPau1129. (b) MEMOTE scores of iPau21, iPau1129, and iML1515, a high-
quality reconstruction of E. coli. 
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Figure 2: Updated reconstruction of P. aeruginosa enables accurate growth rate, gene 
essentiality, and carbon source utilization predictions. (a) Model doubling time predictions 
compared to results gathered from literature. (b) Model carbon source utilization predictions 
compared to results gathered from literature. 
 

Figure 3: Contextualization of updated reconstruction shows shifts in P. aeruginosa 
metabolism in response to mucins and mucin components. (a) NMDS analysis of flux 
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samples (n = 500) from each contextualized model. (b) Comparison of non-consensus reactions 
present within models displays subsets of reactions that are shared by groups of contextualized 
models. 
 

 
Figure 4: Network utilization does not correlate with network structure. The distance 
between median NMDS coordinates for each pair of networks was calculated as a metric of 
difference in network utilization, while the Jaccard distance of network reactions for each pair of 
networks was calculated as a metric of structural difference. Spearman's correlation shows an 
insignificant relation between the two metrics (p = 0.92). 
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Figure 5: Random forest analysis between ABTGC and MUC5B shows the networks differ 
most in terms of propionate and fumarate metabolism utilization. The top seven most 
discriminating reactions between the two models belong to propionate and fumarate metabolism. 
MUC5B utilizes these two types of metabolism more highly than the ABTGC model. 
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