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Abstract

Motivation: The chromatin profile measured by ATAC-seq, ChlP-seq, or DNase-seq experiments
can identify genomic regions critical in regulating gene expression and provide insights on biological
processes such as diseases and development. However, quality control and processing chromatin
profiling data involve many steps, and different bioinformatics tools are used at each step. It can be
challenging to manage the analysis.

Results: We developed a Snakemake pipeline called CHIPS (CHromatin enrichment_Procegsor) to
streamline the processing of ChlP-seq, ATAC-seq, and DNase-seq data. The pipeline supports
single- and paired-end data and is flexible to start with FASTQ or BAM files. It includes basic steps
such as read trimming, mapping, and peak calling. In addition, it calculates quality control metrics
such as contamination profiles, PCR bottleneck coefficient, the fraction of reads in peaks,
percentage of peaks overlapping with the union of public DNasel hypersensitivity sites, and
conservation profile of the peaks. For downstream analysis, it carries out peak annotations, motif
finding, and regulatory potential calculation for all genes. The pipeline ensures that the processing is
robust and reproducible.

Availability: CHIPS is available at https://bitbucket.org/plumbers/cidc_chips/src/master/

Contact: mtang@ds.dfci.harvard.edu; henr fci.harvard.

DNase-seq data following best practices (Bailey et al., 2013). CHIPS is
a scalable and reproducible pipeline written in Snakemake (Kdster and
Rahmann, 2012). Encapsulated in a Conda environment, it can be
executed in the local computing cluster engine or in the cloud computing
settings such as Amazon AWS and Google Cloud. CHIPS has been used

1 Introduction

Protein-DNA binding interactions are fundamental to gene regulation
and involved in regulating disease processes. However, the methods of
investigating these interactions through ATAC-seq, ChIP-seq, and
DNase-seq experiments generate data that require extensive processing
before biological interpretation (Furey, 2012). Chromatin profiling using
sequencing technology can also generate bias, which needs to be
mitigated before interpreting the biological significance (Meyer and Liu,
2014). Therefore, consistent and reproducible processing of the
chromatin profiling data is essential in deriving meaningful information
from the experimental data. Moreover, experiments can fail due to
technical complexities. Comprehensive quality control will help to
identify failed samples, and robust processing can facilitate reproducible
analysis.

We developed CHromatin enrlchment ProcesSor (CHIPS) to standardize
processing and quality control evaluation for ATAC-seq, ChIP-seq, and

to analyze >1500 samples since 2016 within Dana-Farber Cancer
Institute, and now serves as the standard processing pipeline for tumor
ATAC-seq data from the Cancer immune Monitoring and Analysis
Centers and Cancer Immunologic Data Commons (CIMAC-CIDC) trials
(Chen et al., 2021).

2 Methods

2.1 Alignment and basic quality control

CHIPS takes FASTQ or BAM files as input and supports both
single-end and paired-end data. To save time and resources, CHIPS
subsamples 100,000 reads and uses them in the FASTQC module for
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basic quality control analysis. For aligning reads to the reference
genome, FASTQ files are trimmed to remove adaptors and low-quality
sequences using fastp (Chen er al, 2018) and then aligned by
BWA-MEM (Li and Durbin, 2009) to generate sorted and deduplicated
BAM files. After alignment, the mapping statistics, including the number
of mapped and uniquely mapped reads, are then reported.

CHIPS carries out other basic quality control. The contamination
profile reports the percentage of 100,000 reads that map to a
contamination panel’s reference genomes. The contamination panel,
specified by the user in a configuration file, includes dm3,
Saccharomyces cerevisiae, E. coli, and mycoplasma of different types in
addition to hg38, hgl9, mm10, and mm9 genomes. We provide static
reference files along with the installation of CHIPS. Users may add new
assemblies to the contamination panel by adding the BWA index files.
In addition, 4,000,000 reads are downsampled for calculating the PCR
bottleneck coefficient (PBC). The PBC is the number of locations with
exactly one uniquely mapped read divided by the number of uniquely
mapped genomic locations. PBC ranges from 0-1, and a higher number
indicates higher library complexity.

Particularly useful in the setting of ATAC-seq experiments, CHIPS
also provides a fragment lengths distribution plot. ATAC-seq data with
high quality should have fragment length peaks at < 100 bp
nucleosome-free regions and show periodical enrichment at the 1- and
2-nucleosome lengths.

2.2 Peak calling and peak characteristics for quality control

Peaks represent regions of the genome that are enriched with aligned
reads. The MACS2 (Zhang et al., 2008) algorithm is used to call peaks
from uniquely sorted bam files. The minimum false discovery rate
(FDR) cutoff for defining peak confidence is set to 0.01 by default but
can be changed in the config.yaml file. A summary of the number of
peaks, including those with a > 10 or > 20-fold increase relative to the
background, is also reported describing the data quality. More peaks and
a higher fraction of >10X peaks tend to indicate higher quality.
Moreover, a read per million (RPM) normalized BedGraph signal track
file generated by MACS2 is further converted to a BigWig file for
visualization in the genome browsers more efficiently. A qualitative
assessment of peak quality can be determined by static genome browser
track views in the CHIPS output.

After peak calling, the fraction of reads in peaks (FRIP) scores is
calculated to assess the samples’ quality. The FRIP score is the fraction
of 4,000,000 subsampled reads that fall within the peak regions. FRIP
score increases with sequencing depth, so a subsample of reads is used.
The FRIP score indicates data’s signal-to-noise ratio, and a higher FRIP
score indicates higher quality.

Certain characteristics of the peaks can be used to describe further the
quality of the data. Peaks from a high-quality sample should have a high
percentage of overlap with the known DNasel sites. CHIPS overlaps the
peaks with the union of the public DNasel hypersensitive sites to
determine the data’s quality. Moreover, high-quality peaks tend to be
evolutionarily conserved across species. CHIPS plots the conservation
plot across all peaks. The conservation plots of transcription factors
typically show a high focal point around the peak summits, while histone
modifications show bimodal peaks with a dip in the center.

2.3 Downstream analysis

Peak annotation is performed to describe how the peaks distribute
across the genome. Specifically, CHIPS determines the proportions of
peaks that overlap with promoters, exons, introns, or intergenic regions.
Motif identification is carried out using Homer (Heinz et al., 2010). The
top 5,000 most significant peak summits (ranked by the MACS P-value)
are used for motif analysis. Finally, to determine which genes may be
regulated by the peaks, a regulatory potential score is calculated for each
gene using an exponential decay model implemented in LISA (Qin et
al., 2020). LISA calculates regulatory potential scores that represent the
cumulative influence of nearby peaks associated with each gene.

2.4 Output

CHIPS provides results files in txt and png forms inside well-structured
folders and a dynamic HTML report summarizing quality control metrics
at the sample level. An example report for TCGA-LUAD ATAC-seq data
is available at http:/cistrome.org/~lentaing/chips/report/report.html.
Documentation accompanying the CHIPS software describes the
installation process and the structure of the analysis results and report
directories. Due to the modular nature of the Snakemake workflow, the
report can be customized to meet individual needs and easily expanded if
new metrics are added. Furthermore, the same metrics are reported in the

CistromeDB (Zheng et al., 2019) which facilitates comparisons of results
with that resource.

3 Conclusion

Taken together, CHIPS performs quality control and reproducible
processing of the chromatin profiling data generated from ATAC-seq,
ChIP-seq, and DNase-seq experiments. CHIPS does not explicitly label
samples as being “low” or “high” quality overall. We rely on the users to
interpret information from multiple quality control features to determine
which samples to include for further downstream analyses. CHIPS also
does not provide downstream analyses comparing cases and controls.
Downstream analyses depend on the biological context of the
experiments and may consist of differential binding, motif analysis, and
pathway analysis in the setting of chromatin profiling experiments. An
independent Snakemake pipeline COBRA(Qiu et al., 2020) is designed
for this purpose.
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Fig. 1. CHIPS workflow. The CHIPS pipeline is designed to perform robust quality
control and reproducible processing of chromatin profiling data derived from ChIP-seq,
ATAC-seq, and DNase-seq. The CHIPS pipeline includes basic steps of read trimming,
read alignment, and peak calling. For quality control, it calculates metrics such as
contamination profile, mapping statistics, the fraction of reads in peaks (FRIP) score,
PCR bottleneck coefficient (PBC), overlap with union DNasel hypersensitive sites
(DHS), and peak evolutionary conservation. For downstream analysis, CHIPS carries out
peak annotation, motif finding, and putative target prediction. The inputs to the pipeline
are FASTQ/BAM format DNA sequence read files.
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