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Abstract

Simulating complex biological and physiological systems and predicting their behaviours

under different conditions remains challenging. Breaking systems into smaller and more

manageable modules can address this challenge, assisting both model development and

simulation. Nevertheless, existing computational models in biology and physiology are

often not modular and therefore difficult to assemble into larger models. Even when

this is possible, the resulting model may not be useful due to inconsistencies either with

the laws of physics or the physiological behaviour of the system. Here, we propose a

general methodology for composing models, combining the energy-based bond graph

approach with semantics-based annotations. This approach improves model composition

and ensures that a composite model is physically plausible. As an example, we

demonstrate this approach to automated model composition using a model of human

arterial circulation. The major benefit is that modellers can spend more time on
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understanding the behaviour of complex biological and physiological systems and less

time wrangling with model composition.

Author summary

Biological and physiological systems usually involve multiple underlying processes,

mechanisms, structures, and phenomena, referred to here as sub-systems. Modelling the

whole system every time from scratch requires a huge amount of effort. An alternative

is to model each sub-system in a modular fashion, i.e., containing meaningful interfaces

for connecting to other modules. Such modules are readily combined to produce a

whole-system model. For the combined model to be consistent, modules must be

described using the same modelling scheme. One way to achieve this is to use

energy-based models that are consistent with the conservation laws of physics. Here, we

present an approach that achieves this using bond graphs, which allows modules to be

combined faster and more efficiently. First, physically plausible modules are generated

using a small number of template modules. Then a meaningful interface is added to

each module to automate connection. This approach is illustrated by applying this

method to an existing model of the circulatory system and verifying the results against

the reference model.

Introduction 1

Mathematical models have long been used to study biological systems and predict their 2

behaviours [1, 2]. However, the expansion of biological models to bridge between cells 3

and organs demands reusable and comprehensible existing models to avoid the 4

repetitive work of recreating them [3,4]. Constructing a complex model by composing 5

various well-defined sub-models (modularisation) helps researchers handle this 6

complexity [5], facilitates model composition and promotes model sharing [6–8]. 7

Mathematical modelling in the context of biology was first intended to simplify the 8

analysis of biological and physiological processes and systems. Such models are 9

generally applicable in the context in which they were developed, which determines how 10

complicated a model should be [9, 10]. While such single-purpose models are often 11

March 10, 2021 2/27

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2021. ; https://doi.org/10.1101/2021.03.09.434672doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.09.434672
http://creativecommons.org/licenses/by-nc/4.0/


computationally efficient, they cannot be utilised to simulate different biological 12

conditions [10]. This occurs because single-purpose models only give the investigator an 13

insight into the specific data from which they were derived, and are unable to predict 14

beyond that given knowledge [11,12]. Complex, fully detailed models may be valid 15

under more physiological conditions, but are often challenging to comprehend and 16

simulate [4]. In the end, we need a compromise between complexity and simplicity while 17

capturing the main physical features of a system. 18

In recent years, as the Physiome (www.physiomeproject.org) and Virtual 19

Physiological Human (VPH) (www.vph-institute.org) projects have demonstrated, 20

initial steps have been taken to construct more realistic models able to describe almost 21

every system in the body (from cell to organs) [13,14]. By assembling these models 22

(model composition), one can construct a model of the whole or part of the human body. 23

However, many computational models are not expressed in a uniform format, making it 24

difficult - if not impossible - to assemble them [15]. Most existing mathematical 25

modelling methods are not flexible enough for modularisation and require significant 26

editing of the equations and code after recombination the modules [16]. Establishing a 27

link between the physiological processes and biological systems at any level of operation 28

in the body requires multiscale modelling [17,18]. This calls for a standardised and 29

general-purpose platform, which once implemented, can help scientists conduct in silico 30

experiments and examine hypotheses on a virtual body model [19]. 31

Throughout the natural world, energy is always conserved [20]. Therefore, if energy 32

is selected as the exchange variable in the models, especially in composing multiple 33

models across different domains of physics, it ensures that all the individual models are 34

thermodynamically and physically consistent [21,22]. Bond graphs provide an 35

energy-based and general-purpose modelling framework that ensures models obey 36

thermodynamic and physical principles [22,23]. Bond graphs were invented by Henry 37

Paynter and were initially meant to be used in mechanical systems [24]. In bond graphs, 38

all systems are reduced to a graphical representation in which physical components are 39

connected by a network of bonds (graphically represented as half-arrows) and junctions. 40

Bonds carry two physical co-variables: potential (in Joule per quantity) and flow (in 41

quantity per second). Noting that the product of potential and flow is power (in Joules 42

per second), bonds are energy-conserving. Junctions either share a common potential 43
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(shown by ‘0’) or share a common flow (shown by ‘1’). These notations are analogous to 44

the Kirchhoff’s laws in electrical circuits, equilibrium of forces in mechanical systems, 45

and stoichiometry balance in chemical reactions [25]. Since these conservation laws in 46

different domains follow the same mathematical principles, they can be represented by 47

generalised equations using bond graphs. 48

The application of bond graphs to biochemical processes was proposed by Oster et 49

al. [26] and has recently been advanced by Gawthrop and Crampin [4, 22]. The bond 50

graph description of a biophysical model produces components that have physical and 51

biophysical interpretations, assisting a better understanding of the system. Once each 52

module is represented in bond graph form, correct coupling between modules is 53

straightforward, and the resultant model is itself a bond graph and hence physically 54

consistent [6]. 55

Endeavours to automate model composition have led to a number of proposed 56

composition platforms, standards, and outlines [15,27–30], each suitable for a specific 57

set of modelling tasks. Automating this procedure aids the investigators with faster and 58

more reliable model composition in which the linking points between the modules can 59

be automatically detected. However, at present, many biological models do not consider 60

fundamental physical and thermodynamic principles [23], often violating conservation of 61

mass and energy in the underlying equations [31]. Together these produce 62

inconsistencies when models are composed [19]. Semantically enriched bond graph 63

modules would enable the automation of model composition, as each module can be 64

confidently linked to others via common annotated components [30]. There has been a 65

consensus among the Physiome Project and the VPH to label the mathematical 66

contents of the computational models with meaningful semantics, known as 67

annotations [32]. In this way, not only do models contain biological knowledge that is 68

readily interpretable by everyone, but also they become accessible and reusable [14,32]. 69

Representing the modules in the Cellular modelling Markup Language (CellML) 70

format, meets these standards [5]. CellML is a machine-readable XML-based language 71

which relies on modular modelling and allows reusing components from other models 72

which facilitates model construction. It also reads and runs the simulation for the 73

models containing annotations. 74

CellML models can be merged using SemGen (available from: 75
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https://github.com/SemBioProcess/SemGen/releases). SemGen is a free 76

Java-based application designed for annotating, merging, and extracting biosimulation 77

models encoded in CellML [33], Systems Biology Markup Language (SBML) [34] and 78

JSim’s Mathematical Modelling Language (MML) [35,36]. It generates the semantic 79

annotations as Resource Description Framework (RDF) triples 80

(https://www.w3.org/RDF) and adds them to the model code. Unlike other 81

composition approaches that rely on pre-defined module interfaces for coupling, 82

SemGen uses a ‘white box’ approach in which any element of the modules can be 83

selected as joint components by constructing required mappings between the module 84

elements [37]. In contrast, for example, in ‘black box’ compositions, the internal 85

components of the blocks are hidden. Only the input/output variables are available for 86

the user for coupling the modules [3]. One of the disadvantages of this approach in the 87

biological context is that usually the majority of the entities in a model are potentially 88

capable of being considered as coupling ports. Therefore, using the ‘black box’ 89

configuration is not compatible with our modelling purposes. 90

Here, we demonstrate a general method for semantics-based automated model 91

composition using bond graphs, which enables rapid construction of whole body 92

multiscale models. To demonstrate this, we construct and combine simplified, reusable 93

bond graph modules for the Anatomically Detailed Arterial Network (ADAN) open-loop 94

circulatory model based on existing work by Safaei et al. [25, 38]. The ADAN model, 95

first mathematically developed as a partial differential equation (PDE) model by 96

Watanabe et al. [39], anatomically and physiologically describes the arterial network in 97

terms of segments and branches in which blood flow is simulated. Safaei et al. have 98

since developed physically-plausible lumped parameter models based on this work. The 99

ADAN model for the arterial network for the entire body is called ADAN closed-loop 100

whereas the reduced version of this model is called ADAN open-loop model, which 101

represents the arterial network of the body except for the cerebral system. To generate 102

the ADAN open-loop model, we employ SemGen’s semantics-based merging tool to 103

capture the common entities across the modules and provide a list of likely variables for 104

composition. Simulation results produced by the assembled model and comparisons to 105

the ADAN open-loop bond graph model are presented and discussed, along with 106

possible improvements to the semantics-based model composition approach. 107
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Materials and methods 108

This section discusses the composition of CellML models using SemGen’s merging tool 109

to reconstruct the ADAN open-loop model of the arterial system. Particularly, we will 110

show that we only need three templates to generate the 86 vessel segments of the 111

ADAN open-loop model. Later, we will demonstrate the potential for reuse in the case 112

of having similar sections in a system (as in the right and left limbs). Ultimately, the 113

quantities for all the biological entities can also be mapped to the model variables using 114

the SemGen merger tool. Our approach is summarised in Fig 1, illustrating the 115

flowchart of the modelling procedure. SemGen annotator and merger tools are discussed 116

further in [37]. 117
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Fig 1. Flowchart of the semantics-based automated model composition
method. The left column illustrates the general approach in the integration of bond
graph models in CellML using SemGen, and the right column shows the same procedure
specific to the ADAN circulation model. In both approaches, the bond graph models
are created based on template models (1), and annotated using the SemGen Annotator
(2). Later, depending on whether the system has similar larger compartments or any
symmetry, the SemGen merger tool joins the modules in a number of steps (3). The
amounts for the symbolic model parameters are allocated from a CellML file containing
the annotated parameters and their values (4). In stage (3): HN: Head and Neck, H:
Heart, RA: Right Arm, LA: Left Arm, T: Trunk, RL: Right Leg, LL: Left Leg.
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Semantic model composition using SemGen 118

SemGen has been used to integrate several mathematical models by treating them as 119

modules [35,40]. However, SemGen does not currently have the capability to edit the 120

equations in the models being merged [41]. Thus, conflicts may arise while coupling the 121

mathematical models, requiring post-merging adjustments in equations. Often, these 122

post-merging modifications are error-prone, prolonged [40,42] and require a 123

context-specific knowledge of the underlying equations. Thus, although SemGen has 124

facilitated mathematical model composition, it is still reliant on the modeller’s decisions 125

to produce an integrated biological model which produces feasible results [35,40,42, 43]. 126

To avoid this, we propose using the bond graph approach for creating the modules. 127

Describing biological and physiological systems in terms of bond graphs in CellML 128

allows us to take the advantage of both the energy-based and hierarchical nature of the 129

bond graph approach and the convenient semi-automated merging tool of SemGen. 130

Existing merging tools like SemGen do not consider physical constraints, while the bond 131

graph framework imposes these constraints to the system. Consequently, by defining the 132

CellML modules using bond graphs, the network structure allows conservation 133

equations to be systematically updated when merging models. This allows us to avoid 134

manually mapping the relationships between the sub-models in CellML. Furthermore, 135

representing the bond graph models in CellML also lets us create mappings via SemGen 136

between different variables and parameters, thus avoiding multiple definitions of the 137

same physiological parameter or variable. 138

Human arterial network model 139

Safaei et al. [25] developed a detailed CellML model of the human arterial network 140

using bond graphs, based on the ADAN model. The model was created by defining 141

manual mappings between different types of bond graph vessel models. For a large 142

model, these manual mappings are time-consuming and require a significant amount of 143

work. Here, we demonstrate that the same can be achieved in an automated manner 144

using the SemGen merger tool and intrinsic hierarchical properties of bond graphs. We 145

also demonstrate that adding an auxiliary variable to each bond graph module in 146

CellML enables coupling of modules via SemGen. Thereby, the creation of complex 147
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models becomes simpler, systematic, hence time-efficient, and less error-prone. 148

Each vessel segment can be modelled in bond graphs using R, C, and I components, 149

representing the viscous resistance, vessel wall compliance, and mass inertial effect in 150

fluid mechanics, respectively [25]. Here, 151

• The potential variable is u, the energy density or pressure (J/m3). The flow 152

variable is v, the fluid volumetric flow (m3/s); 153

• Segment compliances are defined using C components, given by the constitutive 154

relation u = q/C, where q (m3) is the excess volume caused by dilation of the 155

segment and C is the vessel wall compliance; 156

• Inertial storage is defined using an I component with a constitutive relation 157

u = Ia, where a = dv
dt is the flow rate and I is the mass inertial effect; 158

• R represents the viscous resistance with a constitutive relation u = Rv. 159

The relationships between the bond graph elements are determined by the energy 160

conservation laws in the network structure and the constitutive relations within 161

components, which make bond graph models physically coherent. The two conjugate 162

variables indicate the flow of energy between the bond graph elements; ‘potential’ and 163

‘flow’ which enable the bidirectional flow of information [44,45]. A more extensive 164

presentation of bond graph theory, and several examples can also be found in [46,47]. 165

The parameters of each segment were calculated in terms of vessel properties using 166

the equations: 167

R =
8νl

πr4
(1)

I =
ρl

πr2
(2)

C =
2πr3l

Eh
. (3)

The biological and geometric interpretations of the arterial parameters used in Eqs 168

(1), (2) and (3) are given in Table 1. 169
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Table 1. Vessel properties description.

Vascular Properties

Parameter Definition Value Unit
ν Blood viscosity 0.004 J.s.m−3

ρ Blood density 1050 J.s2.m−5

E Young’s modulus 0.4× 106 J.m−3

l Length (Segment specific) m
r Radius m
h Wall thickness r(aebr + cedr) m
a Fitting coefficient 0.2802 –
b Fitting coefficient −505.3 m−1

c Fitting coefficient 0.1324 –
d Fitting coefficient −11.14 m−1

The wall thickness constants (a, b, c, d) are mathematical fitting parameters and are
considered to be the same for all the vessels.

The dependency of the vessel wall thickness and its radius is logarithmic, as 170

discussed in [48] and later in [49] and [25]. 171

Template modules 172

Vessels are represented by generic template bond graph modules based on their 173

mechanical properties. Each non-branching vessel segment is composed of a parallel C, 174

an R and I in series, connected by bonds (Fig 2). To emphasise the concept of sharing 175

common potential and common flow in ‘0’ and ‘1’ junctions, we denote them as ‘0 : u’ 176

and ‘1 : v’, respectively, in which u stands for potential and v stands for flow. 177

Fig 2. Bond graph representation of a non-branching vessel. C, R and I
components show the mechanical properties of a vessel segment.
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Depending on whether a vessel is located adjacent to the source of flow (Sf), at a 178

terminal point, or in the middle of the vessels network (bifurcating or not), we modify 179

the original configuration of Fig 2 and define three types of modules: initial, 180

intermediate, and terminal. These three types of bond graph modules are described in 181

Fig 3. RA and RB in Fig 3A and Fig 3B account for the viscoelastic effect of the vessel 182

wall. 183

Fig 3. Required bond graph template modules for the vessels in the
ADAN open-loop model. Depending on the type and location of a vessel, three
template modules can be proposed: (A) initial segment; (B) intermediate segment; (C)
terminal segment; (D) the schematic of the segments connections. Sf and {Se1,Se2}
are sources of flow and pressure in bond graphs which are cardiac output and venous
pressure in the ADAN open-loop model [25]. The components in green boxes are the
added sections to the original bond graph configuration of Fig 2.

To ensure the conservation of mass and energy, potential and flow must obey 184

conservation laws, i.e., the sum of all the energy flows at each junction is zero [47] (i.e., 185

energy is neither created nor destroyed at a junction): 186

n∑
i=1

ui.vi = 0 (4)

where i indicates the number of bonds impinging on a junction. Depending on the type 187

of junction, one co-variable is considered fixed in the conservation equations. In a ‘0 : u’ 188

junction the potential is fixed; and in a ‘1 : v’ junction the flow is fixed. Eqs (5) and (6) 189

are the conservation relations for ‘0 : u’ and ‘1 : v’ junctions, respectively. 190
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u1 = u2 = ... = un,

∑n
i=1 vi = 0

(5)


v1 = v2 = ... = vn,

∑n
i=1 ui = 0

(6)

The terminal junctions in each module are selected for coupling with other modules. 191

When two modules are coupled, and a bond is added to a junction, there is 192

consequently a change in the conservation equations of that junction. For instance, 193

consider the modules in Fig 3A and Fig 3B. The conservation equations at their 194

terminal junctions would be as in Fig 4. 195

Fig 4. Conservation equations at the terminal junctions in two bond graph
modules. Equal flows at 1 : v junction and equal potentials at 0 : u junction. The sum
of potentials equals to the inward potential in the 1 : v junctions and the sum of flows
equals to the outward flow in the 0 : u junctions.

To track the changes to the constitutive equations, we have selected the C/2 and RA 196

components at 1 : vA∗ junction in A. The constitutive equations in the case of Fig 4 197

would be: 198


uRA

= RAvA∗ ,

uC/2
= 2

C
dvA∗
dt .

(7)
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where based on the conservation laws, vA∗ = −vA. 199

By creating an additional bond between the 0 : u junction in A and the 1 : v 200

junction in B, these two segments can be coupled together. As potential is fixed in a 201

0 : u junction, an additional bond to the junction means the addition of one flow term 202

in Eq (5). In the same manner adding a bond to a 1 : v junction means an extra 203

potential term in Eq (6). This is illustrated in Fig 5 where the amount of vB in B is 204

added to the conservation equation at 0 : uA∗ junction in A and also the amount of uA∗ 205

in A is added to the conservation equation at 1 : vB junction in B. 206

Fig 5. Conservation equations at the terminal junctions in two coupled
bond graph modules. vB in B is added to the conservation equation at 0 : uA∗

junction in A and uA∗ in A is added to the conservation equation at 1 : vB junction in
B. Each terminal junction’s v or u in each module is added to the other module’s
conservation equation, representing the addition of a bond.

By adding a bond between the junctions, the constitutive equations of the 207

components at 1 : vA∗ junction in A remain as in Eq (7). However, based on the 208

conservation laws in Fig 5, vA∗ would be calculated as vA∗ = −vA − vB . 209

In order to compose models from these modules, we need to impose these changes 210

into the CellML models. To do this, we propose adding auxiliary variables (vx or ux, 211

depending on the type of the junction) to each module. These auxiliary variables are set 212

to zero by default, so they do not have any impact while the model is running 213

separately. However, when the modules are integrated, we can readily create a mapping 214

between the terminal junctions’ known variables (v or u, depending on the type of the 215

junction). This is demonstrated in Fig 6. 216
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Fig 6. Bond graph modular connection of the vessel models. v in the initial
junction of the following module will be mapped to vx at the terminal junction of its
preceding module. In the same way, u at the terminal junction of each module will be
mapped to ux at the initial junction of its following module. vx and ux are auxiliary
variables.

We also need to deal with the case when a vessel is split into two or more branches. 217

We have already stated that for any number of branching or even non-branching vessels, 218

we use a common type of bond graph configuration. In this case, the idea is to impose a 219

priori a maximum number of branching occurring in a vessel of the network (say four). 220

Then we create our template module having four vx variables (see Fig 7). This creates 221

the generic modules we require for composing the full circulation model. 222

Fig 7. The template bond graph module for intermediate vessels in our
version of the ADAN open-loop model. The number of vx variables depends on
the maximum number of branches occurring in any segment. Here, four auxiliary
variables corresponding to four branches are demonstrated.

The SemGen merger tool 223

SemGen allows models encoded in CellML and SBML to be composed and is a powerful 224

tool for semantics-based annotations, which enriches the models with the physiological 225

and biological information about the entities and processes. Once modules are 226

annotated, merging becomes easier as SemGen automatically detects the semantic 227

overlaps and suggests to the user a list of identical or similar annotations in both 228
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modules. SemGen can merge only two models at one time. So, for the composition of n 229

models, (n-1) merging steps are required. In this paper, we propose a hierarchical 230

approach for module composition in fractal and repetitive segments in large systems, 231

which reduces the number of merging tasks significantly. In the ADAN open-loop 232

vascular model, the vessels can be grouped in seven subdivisions; head and neck, 233

heart (cardiac output), trunk, left arm, right arm, left leg and right leg. 234

Each subdivision can be created separately by merging the required vessel segments, 235

and then be put together with other vascular sections. As the vascular segments for the 236

limbs can be assumed identical, we can wrap the vascular model of a limb as a lumped 237

module and then reuse it. The schematic of the created lumped modules of the ADAN 238

open-loop model is illustrated in Fig 8. This lumping method can be generalised and 239

applied to all types of systems that have similar sections. 240

Fig 8. Lumped modules in the ADAN open-loop model. These lumped
modules will be connected in the final step using the SemGen merger tool to produce
the whole ADAN open-loop model.
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The series of vessel segments in each lumped module is shown in Figure 9. 241

Fig 9. Vessels network in the ADAN open-loop model. The blue dashed
shapes delineate the segments in each lumped module. The three bond graph templates
of Fig 3 are shown in blue boxes for three exemplar segments. The segments network is
adopted from [25].

To visualise how the SemGen merger tool is utilised, the merging of two modules is 242

depicted in Fig 10. 243
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Fig 10. The SemGen merger tool visualisation for two modules. The model
of left ventricle output flow (LV.cellml) is merged with the model of the ascending aorta
(ascending aorta C0.cellml). Time (t) and the amount of the flow (vLV ) in the
LV.cellml module are mapped to the time (t) and the source of flow (Sfin) variables in
the ascending aorta C0.cellml module. The grey lines show the internal dependencies
between the variables in each module and the orange and blue lines show the links
between the modules.

We started the model composition by creating the input to the system, which was 244

generating the output flow of the heart left ventricle. The flow wave was obtained from 245

digitising the analogous signal in the whole heart model, previously created in the 246

ADAN closed-loop system [25]. The fitting task was performed in MATLAB, using a 247

two-term Gaussian function as in Eq (8) with the settings shown in S1 Table. 248

f(x) =
2∑

i=1

aie
[−( x−bi

ci
)2]

(8)
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The digitised flow was imposed to both the newly merged model and the manually 249

composed (ADAN open-loop) model in CellML for 10 seconds (S2 Fig). 250

To compare the simulation results between the two approaches, normalised root 251

mean square error (NRMSE) was also computed for each set of results as in Eq (9), 252

where ŷi corresponds to the simulation points of our composed model using SemGen, 253

and yi corresponds to the original ADAN open-loop simulation points. The 254

normalisation was done relative to the difference of maximum and minimum data of the 255

reference model (ADAN open-loop) in each simulation. 256

NRMSE =

√∑n
i=1

(ŷi−yi)2

n

ymax − ymin
(9)

Results 257

We applied our hierarchical semantic model composition method to the bond graph 258

ADAN model downloaded from the Cardiovascular Circulation Workspace on PMR 259

(Physiome Model Repository). Thereafter, modules were extracted and modified to 260

create templates (as described in Template modules section). Creating all the vessel 261

segments from these templates, the modules where annotated and coupled using 262

SemGen. The output model was then imported to OpenCOR (an environment to 263

simulate CellML models: www.opencor.ws). The final composed model is available at 264

https://github.com/Niloofar-Sh/ADAN-86-Bond-Graph-Model-Composition. 265

The aim of our approach is to show that the ADAN model equations can be 266

generated using automated semantic composition. Here, we compare the simulation 267

results of our approach with the existing ADAN open-loop model. After reaching 268

steady-state, blood flow and pressure were plotted from t = 9 s to t = 10 s. The results 269

from the two models are compared in Fig 11 and Fig 12. The plots show an almost 270

exact match between the results of the two modelling approaches, indicating that the 271

semantically composed model closely approximates the ADAN model. The minor 272

differences that arise are due to the limbs’ symmetrical nature, whereas the original 273

ADAN model used separate parameters for the left and right limbs. 274
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Fig 11. Comparison between the flows obtained from the ADAN open-loop
model and our version of the model. (A) Flow in the abdominal aorta; (B) flow
in the radial artery; (C) flow in the vertebral artery; (D) flow in the femoral artery. The
normalised root mean square errors (NRMSE) are represented as percentages.

Fig 12. Comparison between the pressures obtained from the ADAN
open-loop model and our version of the model. (A) Pressure in the abdominal
aorta; (B) pressure in the radial artery; (C) pressure in the vertebral artery; (D)
pressure in the femoral artery. The normalised root mean square errors (NRMSE) are
represented as percentages.
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Discussion 275

In this paper, we introduced a general method for assembling models from templated 276

modules, demonstrated with the ADAN open-loop arterial model. This was done by 277

encoding bond graph sub-models in CellML and using the annotation-based merging 278

tool of SemGen to construct the system model using semantic annotations. Having the 279

sub-models represented as bond graphs has allowed us to systematically compose a 280

model from a large number of modules. Furthermore, enriching the modules with 281

biological semantics assists us in coupling them. In the case where the system has 282

similar sections consisting of several modules (here we have symmetric limbs in the 283

ADAN open-loop model), a hierarchical approach to model composition can be utilised. 284

Once a section is composed, other similar sections can be created by generating copies 285

of that section. 286

Simulation results were compared to the ADAN open-loop model. The slight 287

differences in the flow and pressure of the vessels in the two models originate from the 288

fact that unlike the original ADAN model, similar limbs were considered identical. 289

Supposing that similar limbs are identical and exactly have the same vessel segments 290

and parameter values, the modules for one limb were merged, and this integrated model 291

was copied and used for the other limb as well (both for arms and legs). This 292

significantly accelerated the process of merging models at the expense of minor 293

differences in simulation results. Even if this simplification is not made and each limb 294

segments are coupled individually, still the model composition procedure remains fast 295

and more reliable than editing the CellML code directly in complex biological systems. 296

Currently, SemGen does not allow importing other CellML models to the main 297

model; for example, in [25], the list of required units (Units.cellml module) was 298

imported to the main.cellml model. Thus, in our recreated model, all the required units 299

were defined in the same file in which each module was defined. We expect this file 300

importing feature will be added to SemGen in the near future. Although the current 301

composition method is more convenient and faster compared to time-consuming and 302

error-prone manual merging, it does require adding extra variables to the modules and 303

managing the mappings between the biological annotations in SemGen. According to 304

the long-term goals presented for SemGen, the capability of equation modification in 305
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the case of merging two models will be added [41]. This will enable the reuse of the 306

existing modules without needing to add such extra variables. 307

This approach can also be utilised in other domains of application, for example 308

cellular biochemistry, where different modules of biochemical reactions couple together 309

and represent a biological pathway or network. Bearing in mind that one biochemical 310

species can be both produced in one reaction and consumed by another reaction, the 311

rate of molar change for each species would be the summation of multiple reaction rates. 312

By adding and annotating auxiliary variables to the constitutive equations in each 313

module, a number of ports for model composition will be available. The idea of manual 314

‘white box’ composition of bond graph models of biochemical systems has previously 315

been explored by Gawthrop [20] where a modular bond graph model of mitochondrial 316

electron transport chain was developed. Gawthrop et al. [50] have also described a 317

reusable and modular model of glycogenolysis in skeletal muscle. Our work expands on 318

these approaches through the addition of the biological semantics, which enables the 319

automation of model composition. 320

Conclusion 321

We have utilised the the SemGen annotator and merger tools to create a composed 322

model of artery segments based on the ADAN open-loop model. Describing the vessel 323

segments in terms of bond graphs helped us avoid post-merging adjustments in the 324

model equations (as is almost always necessary in dealing with conventional 325

computational models). The bond graph framework facilitates the procedure of 326

extending biological and physiological models with minimal error and effort. Also, using 327

the SemGen merger tool for coupling the modules allowed us to skip the manual 328

code-wise mappings between the modules in CellML. We anticipate that our approach 329

will enable future work on constructing multiscale models of organs that bridge 330

biochemical processes at the cellular level to tissue-level processes such as circulation. 331
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Supporting information

S1 Table. MATLAB fitting tool settings and estimated parameters in

digitising the cardiac output flow. The fitting options which are not mentioned in

the table are remained untouched as their default values in the MATLAB fitting tool.

S2 Fig. The digitised cardiac output flow. The yellow line and dashed red line

show the same imposed flow in the SemGen merged model and the ADAN open-loop

model.
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