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Abstract  

Estimating cell type composition of blood and tissue samples is a biological challenge 

relevant in both laboratory studies and clinical care. In recent years, a number of computational 

tools have been developed to estimate cell type abundance using gene expression data. While 

these tools use a variety of approaches, they all leverage expression profiles from purified cell 

types to evaluate the cell type composition within samples. In this study, we compare ten 

deconvolution tools and evaluate their performance while using each of eleven separate 

reference profiles. Specifically, we have run deconvolution tools on over 4,000 samples with 

known cell type proportions, spanning both immune and stromal cell types. Twelve of these 

represent in vitro synthetic mixtures and 300 represent in silico  synthetic mixtures prepared 

using single cell data. A final 3,728 clinical samples have been collected from the Framingham 

Cohort, for which cell populations have been quantified using electrical impedance cell 

counting. When tools are applied to the Framingham dataset, the tool EPIC produces the 

highest correlation while GEDIT produces the lowest error. The best tool for other datasets is 

varied, but CIBERSORT and GEDIT most consistently produce accurate results. In terms of 

reference choice, we find that the Human Primary Cell Atlas (HPCA) and references published 

by the EPIC authors produce accurate results for the largest number of tools and datasets. 

When applying deconvolution to blood samples, the leukocyte reference matrix LM22 is also a 

suitable choice, usually (but not always) outperforming HPCA and EPIC. Running time varies 

substantially across tools. For as many as 5052 samples, SaVanT and dtangle reliably finish in 

under one minute, while slower tools may require up to two hours. However, when using 

custom references, CIBERSORT can run very slowly, taking over 24 hours to complete for large 
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datasets. We conclude that combining the best tools with optimal reference datasets can 

provide significant gains in accuracy when carrying out deconvolution tasks. 

 

Introduction 

Biological tissues are rarely homogeneous, and are instead typically composed of a 

variety of distinct cell types. The relative abundance of these cell types is fundamental to tissue 

biology and function, and therefore of frequent interest to the biomedical community. In 

medical settings, knowledge of cell type populations can provide insight into the nature of a 

wide range of diseases and, in some cases, inform treatment. In cancer, for instance, the 

abundance of certain T cells correlates strongly with survival, as well as the efficacy of 

immunotherapy treatment1–3. In laboratory settings, researchers frequently observe gene 

expression changes that are difficult to interpret without knowledge of cell type composition. 

Such patterns may be the result of changes of cell type abundance, rather than altered 

expression in any particular cell type. Cell type deconvolution methods enable researchers to 

distinguish between these two cases and extract further insights from their experiments. 

Existing molecular techniques of cell type quantification can be difficult to apply to large 

scale studies or to certain cell types. Fluorescence-Activated Cell Sorting (FACS) is often 

considered a gold standard method. However, FACS is typically based on a limited number of 

markers that are selected beforehand, sometimes limiting the cell types that can be quantified. 

Moreover, standard FACS cannot quantify cell types with unusual morphologies, such as 

neurons, myocytes, and adipocytes. Single cell RNA-seq methods (scRNA-seq) are becoming 

increasingly popular, but their cost remains high4. Moreover, current scRNA-seq methods 
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capture only a small fraction of cells present in a tissue, and the observed cells may not 

represent a random sample5. Both scRNA-seq and FACS require cells to be dissociated into a 

single cell suspension before processing 6. During this process, some cells may be lysed before 

they are observed, while others remain aggregated and are less likely to be detected. 

Consequently, subtle alterations during the cell dissociation step can produce dramatic 

differences in observed cell type fractions7. 

To overcome these limitations, a number of expression-based methods have been 

developed that aim to serve the biomedical community’s need for accurate estimation of cell 

type abundances from gene expression data 8–15. These tools utilize either RNA-seq or 

microarray expression data to digitally deconstruct tissue samples, a process known as  cell 

type deconvolution. However, it is often unclear to the user which tool will best suit their 

needs 16.  Evaluations performed as part of tool publications are often limited in scope, assessing 

accuracy for only a limited number of datasets, platforms, and tissue types.  

Attempts to benchmark these tools have largely been limited to simulated data, which 

fails to capture the true complexity of tissue samples in living organisms 16,17. Studies that do 

incorporate clinical data often rely on small numbers of samples or on samples of unknown cell 

type content (rather than evaluated by reliable molecular methods). Conclusions derived from 

these limited datasets can be misleading and incomplete, and we currently lack a systematic 

comparison of deconvolution methods evaluated on high-quality data. As such, researchers are 

left with little guidance as to which deconvolution tool is most suitable for their needs. 

In addition, reference data is a requirement for many tools, and existing benchmarking 

studies do not address the relationship between choice of reference and prediction quality. 
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Here, we explore this relationship by running tools using a variety of reference datasets and 

reporting performance in each case. 

In this study, we compare ten deconvolution tools and evaluate their performance 

across eleven separate reference profiles. We have tested all these tools using multiple 

references, and have produced predictions for 3,728 clinical blood samples, 300 simulated 

blood and stromal samples, and 12 blood samples mixed in vitro. The cell type composition of 

the clinical blood samples has been evaluated via an impedance-based electronic cell counter, a 

gold standard for high-throughput cell type quantification in blood. In addition, we have 

thoroughly evaluated the effect of reference choice on the accuracy of deconvolution 

predictions. Overall, we utilize over 3,500 clinical samples from the Framingham cohort study 

18–20 to evaluate the performance of deconvolution methods in the most powerful, complete 

and unbiased manner to-date. 

 

Results 

Deconvolution tools selected for benchmarking 

We have selected ten commonly used deconvolution tools, which we benchmarked on 

our datasets in order to evaluate their ability to accurately predict cell type content of tissue 

samples. The tools included in this study are CIBERSORT (normal and absolute mode)10, the DCQ 

algorithm9, DeconRNASeq8, dtangle 13, EPIC15, GEDIT, MCP-Counter 11, quaNTiseq14, SaVanT22, and 

xCell12 (Table 2). Some of these tools do not explicitly predict fractions, but rather ‘enrichment 

scores’. These scores may be calculated based on the sum (or log-sum) of marker gene 

expression,  and attempt to quantify the prominence of cell type signatures in each sample. 
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While scores for a particular signature can be compared across samples, comparisons across 

cell types may not be valid and are not recommended. For example, a higher score for B cells 

compared to NK cells does not imply a greater prevalence of B cells. Other tools perform 

deconvolution, utilizing such tools as basic linear regression (e.g. DeconRNASeq), modified 

linear regression (e.g. dtangle, quaNTiseq) and support vector regression (CIBERSORT). Outputs 

for these tools can be interpreted as fractions, allowing comparisons across cell types. 

 

 
Table 1. Summary of deconvolution tools evaluated by this benchmarking study, with 

details of inputs, algorithm, and publication. Included in the table are year of publication, 
format of required reference data, nature of the deconvolution algorithm and output values, 
and the language in which the tool is implemented. Tools are sorted by publication year. 
*These tools do not allow for custom references without extensive pre-processing steps or 
direct modification of the tool’s code.  
 
Gold standard datasets 
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In this study, we use both simulated and experimental datasets to evaluate the accuracy 

of existing deconvolution tools (Supplementary Table 1). Cell type fractions of these datasets 

have been evaluated by trusted molecular techniques able to deliver highly accurate cell type 

proportions.  The samples consist of 300 synthetic mixtures prepared in silico using single cell 

data, 12 mixtures prepared in vitro and sequenced using microarray, and 3,728 clinical samples. 

 
The 300 pseudo-bulk synthetic mixtures were prepared using scRNA-seq data. For each 

mixture, individual cells were randomly selected and their expression profiles summed: 200 of 

these represent simulated PBMC mixtures containing five common PBMC cell types (B, CD4 T, 

CD8 T, natural killer and monocytes). Exactly 100 of these were created using data obtained 

from a previous study21 and 100 using data from 10x Genomics 

( https://www.10xgenomics.com/resources/datasets/) . Lastly, a third set of 100 mixtures 

contained stromal cell types as well (B, CD4 T, CD8 T, macrophage, mast, endothelial and 

fibroblast cells), also using data from 10x Genomics. Following clustering, PBMC cell type 

assignment was performed using four to six marker genes for each cell type (Supplementary 

Figure 1). Cell type assignment of the stromal dataset was performed by 10x Genomics. In each 

case, 1000 cells were selected in total, their expression values summed, and the cell type ratios 

noted.  

In addition, 12 in vitro mixtures were prepared by physical titration of purified cell types in 

known proportions. Six immune cell types were used to produce these mixtures (B, CD4 T, CD8 

T, monocytes, natural killer, neutrophils), which were combined in varying proportions 

(Supplementary Figure 2). The mixtures were then profiled using an Illumina HT12 BeadChip 

microarray. Lastly, the Framingham Cohort data 20 is collected from the blood of healthy 
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individuals and profiled on Affymetrix Human Exon Array ST 1.0 arrays. Gold standard cell type 

fractions were obtained using electrical impedance. 

 

 
Optimal reference choice varies across deconvolution tools 

In addition to expression data from heterogeneous tissue samples, most deconvolution 

tools require reference data containing expression profiles of pure cell types. These data can be 

in the form of an expression matrix, a list of signature genes, or both. It has been shown that 

the choice of reference can have a significant impact on the quality of results 23, and as part of 

this study we explore the effect of reference choice on tool performance. 

As reference data is a requirement for most tools included in this study, we have 

carefully curated an extensive list of reference datasets (Supplementary Table 2). These 

references include data from a variety of sources, including scRNA-seq, bulk RNA-seq, and 

multiarray platforms. Each reference contains a different set of cells, with some including 

stromal cells and others only immune. Each reference also contains a varying number of genes; 

ImmunoStates24 and LM2210 have been curated to contain only a short list of signature genes, 

whereas other matrices contain the larger set of genes measured by their respective platforms. 

 
In this study, there are eight deconvolution tools that accept custom references and we 

provide ten reference datasets to each. The reference profiles used derive from a variety of 

sources and platforms, including LM2210, ImmunoStates 24, 10x Genomics25, EPIC15 , 

BLUEPRINT26, and the Human Primary Cell Atlas27. In order to evaluate the effect of reference 

choice on prediction quality, we systematically evaluate each tool using each reference source. 
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For every set of results, we calculate the Pearson correlation between true cell type fractions 

and tool output, and treat these correlations as our metric of performance. For tools that 

predict fractions, we also compare average absolute error (Supplementary Figure 3). 

We find that the choice of reference has a substantial impact on quality of results across 

all datasets (Figure 1). Some tools produce accurate results when the optimal reference is 

selected, but high error and even negative correlations when an improper reference is used. 

This is particularly evident when applied to the Framingham dataset, where several references 

produce poor-quality predictions when used with any tool (10x Immune, BLUEPRINT, EPIC-TIC, 

HPCA-Stromal). While no reference performs best for all tools or all mixtures, LM22 may be the 

most suitable for predicting hematopoietic cell types. EPIC and HPCA references also perform 

well in many cases, and allow the user to predict fractions of both stromal and blood cell types. 
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Figure 1. Determining the optimal reference choice for each tool that supports external 
references. Shown here are Pearson correlations between true cell fractions and tool output for 
each combination of tool and reference matrix. Results are shown for PBMC and Stromal in 
silico simulated mixtures (a and b), for in vitro mixtures of immune cells (c), and clinical samples 
from the Framingham cohort dataset (d). Tools not able to deliver results within 48 hours were 
excluded and are not reported here. Highest correlation for each tool is shown in black boxes. 

 
CIBERSORT and GEDIT produce consistently high correlations between estimated and true cell 

type fractions 

Next, we compare the performance of deconvolution tools when the optimal reference 

profile is used. We utilize two metrics to evaluate the accuracy of predicted fractions compared 

to actual fractions: correlation and absolute error. As performed in the previous section, we 

compute the Pearson correlation between true cell type fractions and tool output. These 

outputs can represent either estimated cell type fractions or enrichment scores. 

Based on correlation analysis, CIBERSORT and GEDIT produce the most accurate results 

across all datasets, though both are outperformed by DeconRNASeq and EPIC when applied to 
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the Framingham dataset. For each mixture tested, multiple tools produce highly accurate 

results (correlation greater than .9), though no single tool is able to maintain the highest 

performance across all datasets. 
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Figure 2. Comparisons between tool outputs and true cell type fractions, as evaluated by gold 

standard techniques. a) Pearson correlations between tool output and true fractions for each 

combination of tool and dataset; here, the optimal reference is used for each dataset (see 

Figure 1). b-l) Scatter plots visualizing the output of each deconvolution tool (y-axis) versus cell 

type fractions as evaluated by automated cell counting (x-axis). Three cell types were 

evaluated, with lymphocytes, monocytes, and neutrophils shown in red, green and blue, 

respectively. The y=x line is shown in black. For tools that accept custom reference data, the 

reference data that resulted in the highest correlation is shown here (see Figure 1d). Equivalent 

graphs for the other three datasets are included in supplementary materials (Supplementary 

Figures 4-6). 

 
CIBERSORT and GEDIT produce the lowest absolute errors across all datasets 

We compare the ability of each tool to specifically predict cell type fractions, rather than 

scores. In order to produce predicted fractions using tools that are not designed to do so, we 

perform a simple transformation to convert the output into predicted fractions. For each 

sample, we divide each cell-type score by the sum of scores for all cell types. Therefore, the 

resulting sum is 1.0, and can be treated as fractions. Though this approach falls outside of the 

intended usage of certain tools (specifically, DCQ, MCP-Counter, and SaVaNT), it is capable of 

producing accurate results in some circumstances (Figure 3). 
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Figure 3. Error values of predictions for each tool and dataset. a) Absolute error values, 
averaged across all predictions, for each tool and dataset. b-e) distribution of absolute error for 
all predictions in each dataset. Predictions are considered accurate (y-axis) if error is less than 
allowed error rate (x-axis).  Legend is sorted by decreasing area under the curve 
(Supplementary Table 3). For each combination of tool and dataset, the reference producing the 
highest correlation value was used (Figure 1). 
 

The error of predicted fractions varies greatly depending on the exact combination of 

tool and mixture. CIBERSORT and GEDIT are able to maintain high accuracy across the majority 

of datasets. For all datasets, the ‘absolute’ mode of CIBERSORT produces slightly higher error 

than the default mode. This is likely because the default CIBERSORT is designed to predict 

fractions, whereas the absolute version is not. xCell performs best on the in silico simulated 

mixtures, but produces high error for some cell types in the in vitro mixture (e.g. B Cells). 

For all tools, we observe some of the highest errors when applied to the Framingham 

data. This is likely due to complexities of biological samples, including varying sub-states for 

many cell types that are not adequately reproduced in simulated data (whether in vitro or in 

silico ).  

 
 

Runtime varies substantially depending on tools and references 

We evaluate the scalability of deconvolution by varying the size of inputs and recording 

the CPU time required by each tool. Specifically,  we randomly subsample the Framingham 

Cohort data into batches varying in size from 10 to 5052 samples. We then record CPU time 

required to run each tool as a function of input size. We exclude xCell from this analysis, since it 

does not support an easily accessible command line interface. 
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Further, we explore the effect of reference choice on resource requirements (for the 

tools that support custom references). Specifically, two separate references are applied and 

runtime recorded in each case; these references are the larger HPCA reference containing 

19,715 genes, and the smaller LM22 reference containing only 547 genes. We find that the size 

of the reference matrix has a substantial effect on the running time of certain tools, in 

particular CIBERSORT (both absolute and default moudes). When the smaller reference is used 

all tasks complete relatively quickly, with the slowest run taking 1.1 hours. However, when the 

larger HPCA reference is used, runtimes for some tools (specifically, both modes of CIBERSORT) 

can reach over 24 hours for large numbers of samples.

 

Figure 4. Time requirements for each tool for varying numbers of samples. Subsamples of 
varying size were randomly selected from the Framingham dataset. Each tool was run twice 
using LM22 (a) and the Human Primary Cell Atlas (b) as reference data; the larger HPCA 
produces longer runtimes in most cases.  Each point represents the average of 20, 10, 10, 5, 5, 2 
runs for input sizes of 10, 50, 100, 500, 1000, 2526, respectively. A single sample of size 5052 
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was also run for all tools using LM22 as the reference input. In both cases, the default settings 
for MCP-Counter and quanTIseq were used, as they do not support external references. 
 
 

 

Discussion 

Transcriptomics-based cell type deconvolution is an increasingly popular approach for 

estimating the cell type composition of heterogeneous samples. However, current tools and 

reference profiles are numerous, and it is important that researchers have a clear way of 

determining the best choices for their needs. Here, we perform a comprehensive benchmarking 

study to systematically evaluate the performance of various computational deconvolution tools 

across 4,040 transcriptomics samples using accurate molecularly defined gold standard. 

We explore the effects of reference profiles and demonstrate that choice of reference 

can have a substantial impact on performance of the tool. Some tools demonstrate increased 

sensitivity to the choice of reference compared to other tools. For example, dtangle can 

produce accurate predictions when the correct reference is used, but performs poorly with 

other reference choices.  

Moreover, the best choice of reference varies between tools, even when applied to the 

same mixture. Utilizing GEDIT combined with the EPIC ‘Blood Circulating Immune Cells’ 

reference produces the most accurate results for the in vitro mixtures dataset. However, this 

same reference produces highly inaccurate predictions when combined with the DeconRNASeq 

tool. The best results for DeconRNAseq are obtained when the LM22 reference is used. Several 

other tools produce their best results when utilizing the LM22 or Skin Signatures references. 

LM22 is perhaps the most robust reference, as it is the least likely to produce poor correlations 
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or high error between predicted and actual cell type proportions. When applying deconvolution 

to stromal data, the EPIC Tumor Infiltrating Cells reference yields the best average performance 

across tools. However, the best overall results come from GEDIT while using the HPCA-Stromal 

reference. 

Most tools return results within 30 minutes, even on datasets larger than 5,000 

samples.. However, DeconRNASeq and CIBERSORT (both modes) have potential for long 

runtimes, potentially taking hours or even days to return results. For reference based tools, 

runtimes can often be reduced by supplying reference matrices containing a small number of 

signature genes, rather than the complete transcriptome. 

While no single tool produces the best results across all types of datasets, CIBERSORT 

(both modes), DeconRNASeq, and GEDIT are able to produce reliable results (average error less 

than 0.15, correlation greater than 0.6) across all four datasets. However, proper reference 

selection is critical, with EPIC-BCIC, HPCA-blood and LM22 returning accurate results for blood 

samples, and EPIC-TCIC or HPCA-stromal performing well for samples containing stromal cells. 

For the Framingham dataset, the largest dataset in the study, DeconRNASeq, EPIC, quaNTiseq 

and GEDIT all produce very high correlations between predicted and actual fractions, with 

DeconRNASeq and GEDIT producing the lowest errors. 

Taking all datasets into account, GEDIT and CIBERSORT are able to acheive high accuracy 

across all datasets. By the metrics used in this study, the default mode of CIBERSORT 

outperforms the “absolute” mode by a small margin. Interestingly, the relatively simple linear 

regression algorithm of DeconRNASeq outperforms several more complex methods, provided 
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that the proper reference is used. Remarkably, several tools perform poorly on the Framingham 

dataset, producing high errors and even negative correlations. 

Several regression based tools (CIBERSORT, DeconRNASeq, GEDIT) and reference data 

sources (LM22, EPIC, HPCA) produce reliable accurate results for all datasets. For many tools, 

however, prediction quality varies dramatically depending on both the provided dataset and 

reference source. As such, researchers applying deconvolution to novel datasets (and especially 

novel cell types) may wish to run deconvolution using multiple tools and/or references. By 

examining the consistency of results across multiple conditions, one can differentiate between 

real biological patterns and technical artefacts. 

Methods  

PBMC and Stromal Single Cell Mixtures 

We obtained 2 datasets from 10x Genomics 

( https://www.10xgenomics.com/resources/datasets/) and 1 from GEO 21. 

The PBMC mixtures were created in two batches, each producing 100 mixtures. For the first set, 

we used 1000 cells for each sorted cell type (monocytes, CD8 and CD4 T cells, B cells, natural 

killer cells). For each cell type, we randomly selected 1-1000 cells, then we sum the expression 

of all the selected cells to create a synthetic mixture. The process was repeated 100 times, thus 

100 mixtures were created. For PBMC2, we firsted clustered the cells and identified the cell 

types for the dataset. Then we used the same five cell types in PBMC2 and created the 100 

mixtures the same way as we did from PBMC1. For stromal cells, we created 100 mixtures the 

same way as we did for PBMC2 except for that we included two additional cell types not 

typically found in blood (Fibroblasts and Mast cells), and exclude monocytes and natural killer 
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cells. For each mixture, the true fraction for each cell type is calculated as the number of cells of 

that cell type selected, divided by the total number of cells across all cell types. 

Framingham Data 

The Framingham Heart Study (FHS) is a population-based study, predominantly of           

European ancestry, consisting of an ongoing series of primarily family-based cohorts first            

developed in 1948 and based in Framingham, MA, USA; it comprises the Original 18, Offspring 19,                

and Third Generation 20 cohorts. FHS gene expression, blood cell counts, subject and sample              

metadata was obtained from dbGap (phs000007). Gene expression data was processed (filtered            

and normalized) as in 28, resulting in 5,058 available FHS samples, of which 3,728 had available                

blood cell counts. Blood cell counts were obtained through a Complete Blood Count using the               

Coulter HmX Hematology Analyzer (Beckman Coulter, Inc.) 29,30. 

The "gold standard" is cell counts and cell percent. The cell counting was performed on 

a Beckman Coulter HmX hematology analyzer. The following metrics from whole blood were 

obtained - HbA1c, basophil count and percent, eosinophil count and percent, hematocrit, 

hemoglobin, lymphocyte count and percent, MCH, MCHC, MCV, monocyte count and percent, 

MPV, neutrophil count and percent, platelet count, RBC, RDW, and WBC. Further information is 

available here: 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/GetPdf.cgi?id=phd004086.1. 

Selected tools 

We have selected available deconvolution tools able to infer the relative abundances of 

immune cell types based on the gene expression profiles. In total, we have identified 9 
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deconvolution tools which either predict cell type fractions or produce scores. xCell was run 

using the online interface at https://xcell.ucsf.edu/, but all other tools were installed on the 

Hoffman2 Cluster at UCLA. Each deconvolution task was provided 16Gb of RAM and 48 hours of 

runtime. 

 

CIBERSORT. We requested the CIBERSORT code from the author’s website 

https://cibersort.stanford.edu/download.php and have installed CIBERSORT version 1.04 on the 

UCLA Hoffman2 cluster (R version 3.6.0). We ran all deconvolution tasks using both the default 

CIBERSORT mode, and the absolute mode, and reported both results. As the statistical outputs 

of CIBERSORT (e.g. p-values) are not considered in our analysis, we ran with 0 permutations to 

reduce resource usage. Quantile normalization was used for the Cell Mixtures and Framingham 

datasets, but disabled for the PBMC and Stromal datasets; this follows the author 

recommendations regarding application to microarray and RNA-seq data, respectively. Several 

tasks involving the large Framingham data failed to complete due to high resource usage. In 

these cases, we split this 5053 sample dataset into three smaller datasets, each with 1684 

samples, and ran three deconvolution tasks separately. 

 

DCQ. DCQ was installed as part of the ComICS package in R. For each reference matrix used, we 

designated all genes present in that matrix as marker genes.  

 

DeconRNASeq. The DeconRNASeq R package was installed from Bioconductor, and run using 

default settings.  
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dtangle. The dtangle R package (version 2.0.9) was obtained from CRAN and installed on the 

Hoffman2. As part of the wrapper to run the function, genes not shared between the mixture 

and reference matrices were excluded (otherwise this caused a crash). All observed values X in 

both matrices were then transformed to log2(1+x), as dtangle takes log transformed data as 

input. The dtangle() function was used with default settings. 

 

EPIC. We downloaded EPIC from the author’s GitHub repository 

(https://github.com/GfellerLab/EPIC) and installed it on the Hoffman2 Cluster. The tool 

provides two built in reference datasets (Tumor Infiltrating Cells and Blood Circulating Immune 

Cells). When running the tool using these datasets, we use the default mode that utilizes 

additional data regarding reference profile variability and amount of mRNA per cell. For the 

other eight reference datasets used in this study, these additional data are not available and 

thus were not included as inputs. The cell fractions outputs are taken as cell type estimates. 

 

GEDIT. GEDIT version 1.6 was obtained from the GitHub repository 

https://github.com/BNadel/GEDIT. Necessary packages were installed, specifically random, 

numpy, glmnet, RColorBrewer, and gplots. It was run using default settings. 

 

Microenvironment Cell Populations-counter (MCPcounter). The MCP-Counter code was 

obtained from the github (https://github.com/ebecht/MCPcounter) and installed on Hoffman2 

along with its dependencies devtools and curl. The MCPcounter.estimate() function was used to 
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produce predictions. “HUGO_symbols'' was designated, and otherwise default settings were 

used. We contacted the authors regarding use of external references, but this appears to 

require direct modification of the MCP-Counter code, and was therefore not performed in this 

study. 

 

quanTIseq. The quanTIseq code was obtained from the GitHub 

https://github.com/icbi-lab/quanTIseq and run on the Hoffman2 Cluster; installation via docker 

or singularity both failed on the cluster. Specifically, the quantiseq_pipeline.sh script was called 

using the command of the form “./quanTIseq_pipeline.sh --inputfile=$MIXTUREFILE 

--outputdir=$OUTPUTFILE --pipelinestart=decon”. 

 

SaVanT. The code for SaVanT was obtained from it’s authors and run using 50 signature genes 

per cell type. 

 

xCell. xCell was run using the online tool found at http://xcell.ucsf.edu/. The bulk expression 

data is submitted under “upload gene expression data” and the default gene signatures were 

used (xCell, n=64). The RNASeq option was selected for PBMC and Stromal datasets but not for 

CellMixtures or Framingham data. 

Reference Data 

Reference data was obtained from a variety of sources, as described in Supplementary 

Table 2. The HPCA reference matrix contained a wide variety of cells that were not present in 

any of our mixtures. As such, we subsetted this reference matrix in order to produce two 
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versions more appropriate for the data used in the present study. These two versions contain 7 

blood cell types (B, CD14+ monocytes, CD16+ monocytes, NK, neutrophils, CD4+ T and CD8+ T) 

and 6 blood and stromal cell types (B, CD4+ T, CD8+ T, endothelial, fibroblast, macrophage), 

respectively. 

 

Cell Type Matching 

Depending on the exact tool and reference matrix used, prediction outputs could be 

labelled as any one of 219 cell types and subtypes (Supplementary Table 4). For each output, 

we either match the output with a cell type quantified in the mixture, or note that it does not 

match any. In some cases this matching is trivial (e.g. B_cells, B-Cells, and BCells are all noted as 

“B Cells”), and in other cases the outputs represent cell subtypes (e.g. “naive B-Cells” and 

“memory B Cells” were also noted as “B Cells”). The final output for each cell type in the 

mixtures was calculated as the sum of outputs matched with that cell type; thus predictions for 

a general cell type are computed as the sum of the subtypes for that cell. The table of output 

interpretation is included as a supplementary file. 

 

Supplementary Table 1. Overview of the gold standard datasets. Each mixture comes from one 
of three platforms, and consists of 12-3728 samples of varying sets of cell types. Mixtures were 
either created in silico , mixed in vitro via titration, or taken directly from clinical patients. 
Underlying cell type fractions are either known naturally by nature of mixture generation, or 
evaluated by electrical impedance counting. 

 
Supplementary Table 2. The set of reference matrices used in this study. These come from a 
variety of different platforms and publication sources, and each spans a different set of cells. 
Some references have been filtered to contain only a small set of signature genes 24,31. Others 
contain a larger set of tens of thousands of genes captured by the respective technology. 
 
Supplementary Table 3. Area under curve values referenced in Figure 3. 
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Supplementary Table 4. Cell types present in each reference matrix used in this study. 
 
Supplementary Figure 1. Single cell data used for generation of PBMC in silico mixtures. a) 
Cluster visualization using UMAP. b) Marker genes used for cluster identification. 
  
Supplementary Figure 2. Cell type composition of 12 cell type mixtures created in vitro . Purified 
cell types were titrated and mixed in known proportions, followed by expression profiling on an 
Illumina HT12 BeadChip microarray 
 
Supplementary Figure 3. Averaged absolute error values when eight deconvolution tools are 
executed using each of ten reference matrices. 
 
Supplementary Figures 4. Scatter plots of predicted vs actual cell type fractions when eleven 
deconvolution tools are applied to in vitro cell mixtures. 
 
Supplementary Figures 5. Scatter plots of predicted vs actual cell type fractions when eleven 
deconvolution tools are applied to in silico PBMC mixtures. 
 
Supplementary Figures 6. Scatter plots of predicted vs actual cell type fractions when eleven 
deconvolution tools are applied to in silico Stromal mixtures 
 
Supplementary Figure 7. Distribution of absolute error when deconvolution tools are applied to 
3,728 samples from the Framingham cohort. True fractions of each cell type are evaluated by 
impedance-based electronic cell counting. For each tool requiring a reference, we selected the 
reference that produced the highest correlation between actual fractions and tool output. 
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