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Abstract 23 
 24 
Genome-wide association studies (GWAS) are primarily conducted in single-ancestry settings. 25 
The low transferability of results has limited our understanding of human genetic architecture 26 
across a range of complex traits. In contrast to homogeneous populations, admixed populations 27 
provide an opportunity to capture genetic architecture contributed from multiple source 28 
populations and thus improve statistical power. Here, we provide a mechanistic simulation 29 
framework to investigate the statistical power and transferability of GWAS under directional 30 
polygenic selection or varying divergence. We focus on a two-way admixed population and 31 
show that GWAS in admixed populations can be enriched for power in discovery by up to 2-fold 32 
compared to the ancestral populations under similar sample size. Moreover, higher accuracy of 33 
cross-population polygenic score estimates is also observed if variants and weights are trained in 34 
the admixed group rather than in the ancestral groups. Common variant associations are also 35 
more likely to replicate if first discovered in the admixed group and then transferred to an 36 
ancestral population, than the other way around (across 50 iterations with 1,000 causal SNPs, 37 
training on 10,000 individuals, testing on 1,000 in each population, p=3.78e-6, 6.19e-101, ~0 for 38 
FST = 0.2, 0.5, 0.8, respectively). While some of these FST values may appear extreme, we 39 
demonstrate that they are found across the entire phenome in the GWAS catalog. This 40 
framework demonstrates that investigation of admixed populations harbors significant 41 
advantages over GWAS in single-ancestry cohorts for uncovering the genetic architecture of 42 
traits and will improve downstream applications such as personalized medicine across diverse 43 
populations. 44 
 45 
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 49 
Introduction 50 
 51 
Genome-wide association studies (GWAS) have allowed for significant progress in the field of 52 
human complex traits. However, groups with multiple ancestral origins have seldom been a 53 
primary focus in large scale genetic studies because: (1) admixed groups, along with other non-54 
European populations, have largely been underrepresented in GWAS designs in the past 55 
(Bustamante et al., 2011; Popejoy and Fullerton, 2016; Martin et al., 2017a), and (2) the 56 
population structure from heterogeneous ancestries in an admixed group, if not properly 57 
corrected, can result in spurious correlation signals and thus greater false positive rates 58 
(Rosenberg et al., 2010). However this mixture of ancestries present in admixed populations 59 
provides opportunities for novel discovery. Recent advancements in methodologies tailored for 60 
genetic mapping in admixed populations include disentangling of ancestry principal components 61 
and relatedness in the presence of admixture (Thornton et al., 2012; Conomos et al., 2015, 2016), 62 
combining local ancestry and allelic information to improve quantitative trait locus (QTL) 63 
mapping (Pasaniuc et al., 2011; Shriner et al., 2011; Atkinson et al., 2021), leveraging local 64 
ancestries for detection of epistasis (Aschard et al., 2015), and better fine mapping from linkage 65 
disequilibrium (LD) variability in diverse groups (Zaitlen et al., 2010; Asimit et al., 2016; 66 
Wojcik et al., 2019; Shi et al., 2020). Despite the fast development and practicality of these 67 
methods, they have not often been applied to sample sizes of hundreds of thousands to millions 68 
because study design and data collection in mega-scale cohorts routinely prioritize recruitment of 69 
participants of single ancestry (Atkinson et al., 2021).This greatly impedes downstream progress, 70 
such as polygenic risk score application across populations, where much lower accuracy is 71 
observed in non-European populations for many traits (Duncan et al., 2019; Martin et al., 2019; 72 
Cavazos and Witte, 2021). 73 
 74 
In addition, complex traits in admixed groups potentially harbor differing genetic architectures 75 
and varying environmental exposures compared to most widely studied groups such as 76 
Europeans. Some biomedical traits have higher risk prevalence in admixed groups, such as 77 
prostate cancer in African Americans (Bhardwaj et al., 2017; Conti et al., 2021), asthma in 78 
Puerto Ricans (Lara et al., 2006; Pino-Yanes et al., 2015), obesity and type II diabetes in Native 79 
Hawaiians (Maskarinec et al., 2009), and active tuberculosis in a South African admixed 80 
population (Chimusa et al., 2014), which are likely attributed to elevated ancestry-specific risk 81 
allele frequency. Among anthropometric traits, skin pigmentation in groups with admixed 82 
ancestry harbor greater phenotypic variance than those with single ancestries (Martin et al., 83 
2017b). Here, the larger phenotypic variance is likely caused by increased polygenicity in 84 
admixed groups, where in contrast some causal variants are nearly fixed in the single ancestry 85 
groups due strong directional selection of skin pigmentation (e.g., rs1426654 in SLC24A5 (Lin et 86 
al., 2018)). The increase in minor allele frequencies in admixed populations compared to the 87 
populations of ancestral origin could be ubiquitous in traits that have been under differential 88 
processes of selection among ancestral populations or simply among populations that are deeply 89 
diverged. This would theoretically result in greater power of discovery in GWAS, as the analysis 90 
is most powerful for variants with higher minor allele frequency.  91 
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 92 
While genetic epidemiologists have typically focused on homogeneous populations, there are 93 
clear opportunities to improve discovery in admixed populations. For example, local ancestry 94 
can be leveraged to improve power in certain scenarios (e.g. (Pasaniuc et al., 2011)). In addition, 95 
Zhang and Stram observed a power gain in admixed individuals in dichotomous traits compared 96 
to pooled ancestral populations with stratification without environmental confounding (Zhang 97 
and Stram, 2014). Here, we extend a similar framework using a flexible mechanistic model to 98 
address the question of power compared to a similar-sized each ancestral population on its own, 99 
across a range of allelic differentiation (as measured by FST (Weir and Cockerham, 1984))with 100 
varying narrow-sense heritability, and across a range of ancestry–phenotype associations, 101 
whether driven by genetics or environment. We further extend these insights to look at power for 102 
replication, whether from admixed populations to ancestral populations or vice versa, as well as 103 
opportunities to derive trans-ethnic polygenic scores.  104 
 105 
 106 
Methods 107 
 108 
Simulation-based power estimate between a trait and global ancestry 109 
 110 
The first simulator we provide in this study builds phenotypes in admixed populations using only 111 
global ancestries, without involving genotype. The aim is to assess if the sample size is adequate 112 
for observing a dichotomous trait by ancestry correlation. The details are described in 113 
Supplementary Notes. 114 
 115 
Genotype-mediated simulation framework 116 
 117 
The general simulation framework consists of two steps: first, we model ancestries and simulate 118 
genotypes based on ancestry specific frequencies and phenotypes (Fig. 1); then, we test 119 
associations between the phenotype and causal variants via a linear model for a quantitative trait, 120 
or a logistic regression for a dichotomous trait, and summarize the statistical power. If the 121 
population is admixed, global ancestry is supplied as a fixed effect to correct for population 122 
structure.  123 
 124 

1) Ancestry modeling 125 
 126 
Global ancestry in a 2-way admixed population is modeled as a beta distribution. The ith 127 
individual’s ancestry 𝜃 is characterized as  128 
 129 

𝜃"~𝐵𝑒𝑡𝑎 (𝑚* (
1 − 𝑚
𝑣 −

1
𝑚. ,

1 − 𝑚
𝑚 𝛼	. 130 

 131 
where 𝑚 and 𝑣 are the mean and variance of the global ancestry (from a presumptive population 132 
1 in this framework) in an admixed population of interest.  133 
 134 
The local ancestries, i.e. the source of ancestry of both the maternal and paternal copies of 135 
haplotypes at any genomic position, can be obtained from a binomial sampling with the 136 
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probability equaling the global ancestry. The process is repeated independently for diploid 137 
chromosomes over a presumptive number (𝑛) of LD-independent loci to form a 𝑛 × 𝑁 local 138 
ancestry matrix, where N is the proposed sample size. 139 
 140 

2) Genotype simulation 141 
 142 
We first draw allele frequencies in the two ancestries (Population 1 and 2) from a beta 143 
distribution under the Balding–Nichols model (Balding and Nichols, 1995) with a given FST  144 
 145 
 146 

𝑝67, 𝑝*7~𝐵𝑒𝑡𝑎 (
𝑝7(1 − 𝐹:;)

𝐹:;
,
(1 − 𝑝7)(1 − 𝐹:;)

𝐹:;
. 147 

 148 
 149 
where 𝑝7 is the allele frequency at an independent locus s in an ancestral population prior to the 150 
divergence and drawn from a uniform distribution 𝑢𝑛𝑖𝑓(0.001, 0.999). Within the model we 151 
additionally provide additional distributions if the focus is not on common variants as it is here. 152 
We set FST as a flexible value to increase from a baseline genome-wide FST when the ancestral 153 
allele becomes rare. This is to reflect that a rarer variant in the ancestral population is easier to 154 
drift to different frequencies in diverged populations, especially if one population has undergone 155 
a severe bottleneck (as would be expected to increase FST).  156 
 157 

𝐹:; = 𝐹:;D + (1 −𝑀𝐴𝐹H)𝛿 158 
 159 
where 𝐹:;D is the genome-wide background FST between the two populations of ancestral origin 160 
and is considered lower than the FST between trait-causal loci because of the difference in 161 
directional selection. 𝑀𝐴𝐹H is the minor allele frequency of the variant in ancestral populations 162 
and 𝛿 is the increment with regard to minor allele frequency (MAF) decrease, set as 0.3 in this 163 
study. Alternatively, we also test for fixed 𝐹:; under the genome-wide background value when 164 
exploring the effect on power from various FST values ranging from 0.1 to 0.9. The genotypes are 165 
then drawn from binomial sampling using the allele frequency corresponding to the local 166 
ancestry assigned at the locus (i.e., 𝑝67 or 𝑝*7) across all loci.  167 
 168 

3) Genetic contribution to trait 169 
 170 
We randomly assign 𝑤 out of the total 𝑛 loci to be causal variants, where 𝑤 is the proposed 171 
polygenicity of the trait. The weights for the causal variants are drawn from a standard normal 172 
distribution 𝑁(0,1), and the signs of the weights are tied to the prevalence of the allele in the two 173 
populations of ancestral origin: the direction of the weight, positive or negative, at a locus is 174 
decided by the binary outcome of trial with probability KLM

KNM
. In this way, a difference in 175 

directional selection of the complex trait in the two populations is introduced to facilitate a 176 
correlation between the trait and ancestry in the admixed group. Then, polygenic risk scores 177 
(PRS) in samples can be calculated based on the weights and the genotypes at causal loci. 178 
 179 

4) Non-genetic contribution to trait 180 
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 181 
The non-genetic component is treated as the sum of two parts in admixed populations: (1) 182 
random environmental variation modeled as Gaussian noise and (2) environmental confounders 183 
correlated with ancestry, such as socioeconomic status and education, modeled as ancestry by 184 
environment interaction. Details are described in Supplementary Notes.   185 
 186 

5) Phenotype  187 
 188 
For quantitative traits, the phenotype is the direct sum of the genetic component (i.e. PRS) and 189 
the non-genetic score. For dichotomous traits, the phenotype is converted from the sum of 190 
genetic and non-genetic scores to binary case and control status based on the given liability 191 
threshold of the case prevalence. 192 
 193 

6) Association testing 194 
 195 
Association between the trait and a variant is tested via a linear regression for a quantitative trait, 196 
or a logistic regression for a dichotomous trait in all three populations. The global ancestry is 197 
corrected in the admixed group. Power is defined as the proportions of causal variants with a 198 
significant p value above a given stringency threshold.  199 
 200 
Estimation of false positives 201 
 202 
A false positive rate in associations is empirically verified against the association stringency by 203 
calculating the proportions of non-causal variants being discovered with significant association p 204 
values. This is calculated separately in each population.  205 
 206 
PRS estimation 207 
 208 
For training purposes, we obtained the “estimated” weights of causal variants by conducting 209 
association analyses in 10,000 individuals in each population. We then used these weights to 210 
estimate PRS in another 1,000 individuals in each population as a test. We tested the PRS 211 
construction in two ways: firstly, we only used significant (p<0.05) causal-variants from the 212 
training set (true positives); secondly, we included all significant variants (all positives) over a 213 
range of different stringency (p=0.05, 5e-4, 5e-6, 5e-8, respectively). The true PRS of the 214 
individuals in the test set were available through an intermediate step in the simulations (Fig. 1) 215 
and were used to test the accuracy of the estimated PRS via correlation coefficients.  216 
 217 
Calculation of FST  for traits from the GWAS catalog 218 
 219 
We used the full NHGRI-EBI GWAS catalog “All associations v1.0” (Buniello et al., 2018) to 220 
extract variants that are significant genome-wide (< 5e-8). We restricted traits to 899 that have 221 
more than 10 significantly associated variants that can be found in the 1000 Genome Project 222 
Phase 3 (Consortium et al., 2015), and computed Weir and Cockerham’s FST (Weir and 223 
Cockerham, 1984) between 99 Utah Residents (CEPH) with Northern and Western European 224 
Ancestry (CEU) and 108 Yorubans in Ibadan, Nigeria (YRI) samples using PLINK v1.9 225 
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(www.cog-genomics.org/plink/1.9/) (Chang et al., 2015). The genomic background weighted FST 226 
was calculated on common variants (MAF >5%) only.  227 
 228 
Results 229 
 230 
Correlation between a trait and ancestry is common   231 
 232 
Complex trait studies in groups with heterogeneous ancestries usually require a correction for 233 
population structure. The implicit assumption is often a correlation between global ancestry and 234 
the trait that is commonly observed a priori.  The estimated ancestries, or typically ancestry 235 
informative principal components, are included as a fixed effect to adjust for phenotypic variance 236 
from non-genetic confounders (e.g., social and cultural factors correlated with population 237 
structure), and to avoid spurious associations (Price et al., 2006). The correlations between 238 
ancestries and complex traits can also be due to changes in genetic architectures among ancestral 239 
groups either due to differential selection or deep divergence among populations. This in turn 240 
forms one of the basic motivations of multi-ancestry genetic studies, including admixture 241 
mapping (loci with ancestry deviating from genome-wide expectation), and cross-population 242 
transferability of genetic predictors. Therefore, we provide a power estimate for whether a 243 
significant correlation with ancestries can be observed, within a given incidence rate and 244 
ancestry distributions (Methods, Fig. S1). 245 
 246 
The power of genetic discovery in an admixed population is higher than in ancestral populations 247 
 248 
We primarily focused on a genotype-mediated simulation framework to investigate the GWAS 249 
setting in an admixed group. We started by modeling global ancestries, then generating LD-250 
independent genotypes based on population divergence, and subsequently the corresponding 251 
phenotypes under an additive model (Methods, Fig. 1).  We set up the model in a 2-way admixed 252 
group with similar proportions to African Americans, here an average of ~75% West African 253 
ancestry (denoted as Population 1 in simulations) and ~25% European ancestry (denoted as 254 
Population 2) (Bryc et al., 2015; Baharian et al., 2016). We simulated a complex trait assuming 255 
50% narrow sense heritability with 100 causal variants, either as a quantitative or a dichotomous 256 
trait with a liability threshold of 5%, in both the admixed population of interest and the 257 
homogenous populations of ancestral origin (N=1,000 each). To induce a difference between 258 
ancestral phenotypic distributions and a correlation between a trait and global ancestries, we tied 259 
the direction of effect sizes to the minor allele frequencies in the two populations of ancestral 260 
origin (Methods, Fig. 2). In this study, each independent setting was repeated in 50 runs. 261 
 262 
In the standard setting, we modeled the parameters described above, and FST across the 100 263 
causal variants between Population 1 and 2 as a flexible value with a baseline equaling the 264 
genome-wide FST of 0.2 and an increment associated with the rarity of the ancestral MAF. This is 265 
referred to as Fst=0.2+ in the text. The aim of this is to mirror the larger stochasticity in the 266 
frequency change of an ancestrally-rare variant in diverged populations, especially when one of 267 
the derived populations has experienced the severe out-of-Africa bottleneck. We then tested 268 
associations between the phenotype and each locus while correcting for global ancestries over 269 
various sample sizes ranging from 1,000 to 1,000,000. We found the power to discover a causal 270 
variant at a canonical threshold of p ≤ 0.05 significantly higher in an admixed population than 271 
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the average in either of the populations of ancestral origin (Wilcoxon p=1.23e-20 and 5.79e-10 272 
across the range of sample sizes for quantitative and dichotomous traits described in Fig. 2, 273 
respectively).  274 
 275 
In addition to the standard setting where an environment by ancestry effect (Env × Anc) is 276 
modeled as ancestry-weighted Gaussian noise, we explored an alternative where we model Env 277 
× Anc as linearly dependent on the ancestry percentages, which would explain a range of 278 
proportions of phenotypic variance from 0% to 1-h2 (Fig. S2). The power advantage in admixed 279 
populations remains consistent between the default Gaussian Env × Anc and linear modeling, 280 
where the latter was set as up to 10% of non-genetic components (Fig. S3).  281 
 282 
The comparatively high power in admixed populations is more pronounced when the trait 283 
distributions have greater distance between Population 1 and 2, or the two populations are more 284 
deeply diverged, reflected by the larger FST at causal variants (Fig. 3). To relate to real-world 285 
GWAS, we compared our levels of differentiation to the NHGRI-EBI GWAS catalog (Buniello 286 
et al., 2018). Among the 899 traits that have more than 10 genome-wide significant hits found in 287 
1000 Genomes Project, the majority (N=877) have at least one associated variant beyond the 288 
background FST of 0.155 (Fig. 3), we provide a list of the most-differentiated traits between CEU 289 
and YRI in Table S1. In contrast to the response to varying FST, the statistical power does not 290 
obviously change when the narrow sense heritability of the trait differs (Fig. S4). When 291 
increasing the overall stringency of the type I error rate up to a conventional genome-wide 292 
significance of 5e-8, the power advantage remains very similar across different thresholds, 293 
despite the expected decrease in power value on the absolute scale in all populations (Fig. S5, 294 
S6). Thus we picked the canonical threshold of p ≤ 0.05 for the remaining analyses, as it can 295 
represent all stringency levels when this study focuses on the relative power comparison, and this 296 
more relaxed cutoff would include a larger number of causal variants for further discussion. The 297 
actual false positive rate of associations, as calculated from the 900 non-causal variants from the 298 
simulation, remained at approximately 5% in admixed samples across the full FST and h2 range, 299 
though it was lower in Population 1 and 2 as FST increases high enough to drive minor allele 300 
frequencies towards zero (Fig. S7).  301 
 302 
Cross-population replication and transferability is asymmetric between the admixed group and 303 
homogenous groups 304 
 305 
As GWAS is conventionally focused on common variants, to investigate replication and 306 
transferability we then increased the polygenicity of a trait to 1,000 causal variants, and set MAF 307 
filtering at 5% for each population’s genotypes prior to testing associations. We compare 308 
discovery in the major ancestral population (Population 1) relative to the admixed population. 309 
The proportion of significant signals that replicate in the reciprocal group is asymmetric between 310 
the two populations. Discovery in the admixed samples was more likely to replicate in 311 
Population 1 than the other way around, and this trend becomes more exaggerated as trait FST 312 
increases (one-way Wilcoxon p=3.78e-6, <2.2e-16, and <2.2e-16 for FST = 0.2, 0.5, and 0.8, 313 
respectively; Fig. 4).   314 
 315 
We tested the cross-population transferability of polygenic scores (or polygenic risk scores, PRS) 316 
constructed from discovered loci with MAF > 5% in each population by increasing the sample 317 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2021. ; https://doi.org/10.1101/2021.03.09.434643doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.09.434643
http://creativecommons.org/licenses/by/4.0/


 8 

sizes of the training set to 10,000 per population and separately estimating the GWAS-based 318 
PRS in an additional testing set of 1,000 samples in each population. We measured the PRS 319 
accuracy as the correlation coefficient r between the estimated values and the true value in each 320 
test group across 50 repeats of simulations. Interestingly, the prediction accuracy is also 321 
asymmetric between admixed and homogenous samples. When we constructed PRS using only 322 
true positive signals at an alpha of 0.05, the accuracy of estimating PRS in Population 1 or 2 323 
using weights and loci trained from the admixed population is significantly higher than the other 324 
way around. This holds true when using all (both true and false) positive signals at various 325 
stringency levels (Fig. 4; Figure S8; Table S2), suggesting another advantage in conducting 326 
GWAS in admixed populations. 327 
 328 
Discussion 329 
 330 
Our simulation framework, APRICOT, Admixed Population poweR Inference Computed for 331 
phenOtypic Traits, demonstrated that GWAS in admixed populations has greater power for 332 
discovery than in the homogenous populations of ancestral origin, given the same sample sizes. 333 
The difference in power increases when the trait is under more differentiated polygenic selection 334 
in the two populations of ancestral origin, reflected by FST. This is because when a trait is driven 335 
by more-differentiated variants, its causal variants are likely to be pushed to more extreme allele 336 
frequencies, thus weakening the statistical power of discovery in that population. In contrast, the 337 
frequency of the same causal loci in admixed populations likely have become more intermediate 338 
due to variation in ancestries, making them much easier to detect. An extreme yet classic 339 
example that echoes with the observation would be skin pigmentation, where selection is in the 340 
opposite direction in populations at high latitude and those living near the equator. A non-341 
synonymous, skin-lightening mutation at rs1426654 is fixed in European descendants, with a 342 
high FST of 0.985 between CEU and YRI. This mutation would never have been discovered 343 
through GWAS if analyses were only conducted in European populations, but it is highly 344 
detectable through association analyses in admixed populations (Martin et al., 2017b).  345 
 346 
Additionally, the power advantage in admixed populations may persist even for traits that have 347 
not been under such strong differentiation: for almost all the 899 traits we examined from the 348 
GWAS catalog, some associated SNPs can have a much larger than background FST between 349 
CEU and YRI, even when the traits themselves on average show limited differentiation (Fig. 3). 350 
We note however that the high FST across these trait-associated variants could partially be 351 
attributed to ascertainment bias, where the “tagging SNPs” by design are common in Europeans, 352 
making the corresponding genetic component of these traits seemingly more differentiated across 353 
populations (Novembre and Barton, 2018). The true causal variants that were tagged by these 354 
signals could have moderately attenuated FST, yet the differences in allele frequency likely 355 
remain larger than expected, as previously observed from GWAS on simulated whole genome 356 
sequences between Africans and Europeans (Kim et al., 2018). Therefore, attempts to discover 357 
variants similar to these “FST outlier” signals would benefit from GWAS designed in admixed 358 
samples.  359 
 360 
In this study, we provide a mechanistic framework to explore the relationship between power 361 
gain in single variant associations and variation in ancestries, mediated by the nature of 362 
intermediate allele frequencies in admixed populations. A similar hypothesis of power increase 363 
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was also explored via simulations in Zhang and Stram (Zhang and Stram, 2014), though the 364 
focus of their study was to explore the role of local ancestry in genetic associations; therefore, 365 
the assumptions of architecture for comparison between admixed and ancestral populations were 366 
simplified, where non-genetic components (such as environmental effect and environment by 367 
ancestry interactions) and heritability were not considered in the model, and a constant effect 368 
size was assumed for all causal variants. Under this model, Zhang and Stram observed a power 369 
increase in admixed groups when compared to stratified analyses in the ancestral populations 370 
pooled with a proportion identical to the mean global ancestry percentage. Our simulations 371 
extended this framework to dive deeper into more-realistic scenarios across various ranges of 372 
environmental effect, trait divergence, and heritability. Moreover, we modeled the ancestry-373 
phenotype association observed in many real-world traits under various different distributions. 374 
With a more adjustable genetic architecture in the model, we were able to quantify power 375 
advantage in admixed populations within different circumstances in order to investigate practical 376 
applications as replication portability and PRS.    377 
 378 
In realistic practice, some confounders and restrictions beyond the model assumptions exist: first, 379 
some non-additive genetic components, such as genetic by environment interactions (G × E) and 380 
epistasis (Park et al., 2018; Rau et al., 2020), could potentially induce effect size heterogeneity at 381 
causal loci with or among populations (Rosenberg et al., 2019), thus obscuring the prediction of 382 
power advantage in admixed populations because the power of discovery would be variant-383 
specific and balanced by the gain vs. loss from the increase in frequency and change in effect 384 
size. However, the increase in power is still expected to be substantial from additive components 385 
that are usually considered major in a genetic architecture, with effect sizes highly similar across 386 
populations (Wojcik et al., 2019). Additionally, currently the contribution from epistasis or G × 387 
E components to most trait variability is estimated to be relatively small (Wang et al., 2019; Dahl 388 
et al., 2020; Hivert et al., 2020). For variants with heterogeneous effect sizes per ancestry, other 389 
local ancestry-aware regression methods could potentially improve the power of detection in 390 
admixed populations (Atkinson et al., 2021). Second, the observations in this study that admixed 391 
populations harbor a greater power of discovery in GWAS than the ancestral populations is 392 
credited to the existence of ancestry variance, independent of specific demographic history of 393 
either the admixed or the ancestral population. It is possible that the demographic details or 394 
specific assumptions of the genetic architecture would affect the absolute value of power 395 
estimate on a finer scale, which has not been the focus of this study, yet is worth being further 396 
explored through forward or coalescent simulations with additional details (including modeling 397 
differential linkage disequilibrium patterns) in the future. Third, we focused on a single 398 
admixture scenario, albeit one reflecting a realistic scenario. We would anticipate our observed 399 
patterns to be exaggerated in populations with even contributions from Populations 1 and 2. 400 
Further our framework could be extended to k-way admixed populations, but the interpretation 401 
and degree of population-specific interpretation become far more complex to be described here. 402 
 403 
Despite the underrepresentation of admixed groups in large GWAS, recent research has 404 
highlighted the importance of conducting genetic research with more diversity. Our work joins 405 
burgeoning efforts to quantify the statistical benefits of complex trait studies in diverse 406 
populations, especially populations of mixed ancestry. Our work suggests another advantage for 407 
conducting genetic studies in admixed populations, which comes from elevated allele 408 
frequencies when traits are moderately to highly differentiated. Moreover, discoveries from such 409 
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studies aid improvement in cross-population PRS, which is critical in clinical prediction in 410 
personalized medicine yet presently has suboptimal performance for many biomedical traits in 411 
non-European populations (Martin et al., 2019; Rosenberg et al., 2019; Cavazos and Witte, 412 
2021). We therefore highlight that insights gained from admixed populations provide improved 413 
and appealing generalizable properties compared to homogeneous populations. As the field 414 
increasingly moves towards personalized medicine applications we must be mindful of 415 
opportunities to incentivize novel studies and analyses in diverse and, particularly as we 416 
highlight here, populations of mixed ancestry. 417 
 418 
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 569 
Figure 1. Flow chart of the genotype-mediated simulation framework (prior to association 570 
testing).  571 
  572 
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 573 
 574 
Figure 2. Genotype mediated simulation under an example condition. The simulated trait has 575 
100 causal variants with a narrow sense h2=0.5, FST at causal variants 0.2+ (explained in Result), 576 
and environment by ancestry effect modeled as the sum of ancestral Gaussian environmental 577 
noise proportional to global ancestry. (A) Simulated quantitative phenotype distribution of 578 
populations of ancestral origin (Pop1, Pop2, blue and green respectively) and admixed 579 
population (ADX, red) of 1,000 samples each. (B) Correlation between simulated phenotype in 580 
admixed population and the global ancestry from Population 1. (C) Power to discover a causal 581 
variant over a range of sample sizes in a quantitative and dichotomous trait. Data point and error 582 
bars represent the mean and standard deviation across 50 repeats, respectively.  583 
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Figure 3. Varying FST at trait associated loci. Ratio of power in admixed population over the 586 
average in the two populations of ancestral origin, with different FST at causal loci in (A) a 587 
quantitative trait and (B) a dichotomous trait. FST was set to constant during simulations per a 588 
specified value. The trait was assumed to have 100 causal loci and a narrow sense heritability of 589 
0.5, with environment by ancestry effect modeled as a sum of ancestral Gaussian noise 590 
proportional to the global ancestry. Data points and error bars represent the mean and standard 591 
deviation across 50 repeats, respectively.  (C) FST at genome-wide significant hits for 899 traits 592 
from the GWAS catalog, between CEU and YRI from the 1000 Genomes Project Phase 3. Traits 593 
are spread along the radian (x-axis), with variant FST shown along the radius (y-axis). The dashed 594 
line represents the genomic background FST.    595 
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Figure 4. Transferability of GWAS variants across populations. (A) Replication of 599 
individual signals that are common in both ancestral Population 1 and the admixed group. 600 
Direction of replication is shown as a solid or dashed line: the former indicates loci are 601 
discovered in an admixed population and replicated in Population 1; the latter loci are discovered 602 
in Population 1 and replicated in the admixed population. Data point and error bars represent the 603 
mean and standard deviation across 50 repetitions.  (B), (C), (D), and (E) Heat map of accuracy 604 
of PRS using signals above different stringency of significance level at 0.05, 5e-4, 5e-6, and 5e-605 
8, respectively. The accuracy is measured as the correlation coefficient between the estimated 606 
PRS against the true PRS. The training population where the weights and variants were 607 
identified, and the test population in which to construct PRS, are specified on the x- and y-axes. 608 
Central numbers in black within each cell are the average correlation coefficient across 50 609 
independent simulations, with the 95% confidence interval of the mean acquired from 610 
bootstrapping (n=1,000). 611 
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