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Abstract

Identifying the cell of origin of cancer is important to guide treatment decisions.

However, in patients with ‘cancer of unknown primary’ (CUP), standard diagnostic tools

often fail to identify the primary tumor. As an alternative, machine learning approaches

have been proposed to classify the cell of origin based on somatic mutation profiles in

the genome of solid tissue biopsies. However, solid biopsies can cause complications

and certain tumors are not accessible. A promising alternative would be liquid biopsies,

which contain ctDNA originating from the tumor. Problematically, somatic mutation

profiles of tumors obtained from liquid biopsies are inherently extremely sparse and

current machine learning models fail to perform in this setting.

Here we propose an improved machine learning method to deal with the sparse

nature of liquid biopsy data. Firstly, we downsample the SNVs in the samples in order to

mimic sparse data conditions. Then extensive data augmentation is performed to

artificially increase the number of training samples in order to enhance model

robustness under sparse data conditions. Finally, we employ data integration to merge
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information from i) somatic single nucleotide variant (SNV) density across the genome,

ii) somatic SNVs in driver genes and iii) trinucleotide motifs. Our adapted method

achieves an average accuracy of 0.88 on the data where only 70% of SNVs are

retained, which is comparable to an average accuracy of 0.87 with the original model on

the full SNV data. Even when only 2% of the data is retained, the average accuracy is

0.65 compared to 0.41 with the original model. The method and results presented here

open the way for application of machine learning in the detection of the cell of origin of

cancer from sparse liquid biopsy data.
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Author Summary

The identification of the ‘cell of origin’ of cancer is an important step towards more

personalized cancer care, but this remains a challenge for patients with ‘cancer of

unknown primary’ (CUP) where the source of the malignancy cannot be identified even

after extensive clinical assessment with standard diagnostic methods. Somatic mutation

profile-based ‘cell of origin’ classification has emerged in recent years as a promising

alternative diagnostic tool that could circumvent the issues of standard CUP diagnostic.

In this approach the somatic mutations are obtained from whole genome sequencing

(WGS) of solid tissue biopsies from the tumor. However, needle biopsies from tumor

tissue can be challenging, as accessibility to the tumor can be limited and taking a

biopsy can cause further complications. For these reasons, liquid biopsies have been

proposed as a safer alternative to solid tissue biopsies. Problematically, the circulating

tumor DNA fragments available in e.g. blood typically represent a much scarcer tumor

source than conventional solid tissue biopsies and therefore liquid biopsies give rise to

sparse somatic mutation profiles. Therefore it is crucial to investigate the applicability of

sparse somatic mutation profiles in the identification of ‘cell of origin’ and explore

potential improvements of the data analysis and prediction models to overcome

sparsity.

Introduction
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Identification of the ‘cell of origin’ of cancer - which is representative of its anatomical

origin and histological characteristics - is an important step in effective cancer treatment,

as it has been established that the cell of origin can be a strong predictor of response to

therapy and overall prognosis [1,2]. Importantly, tailoring targeted treatments to the cell

of origin can result in more successful treatment and better prognosis for ‘cancer of

unknown primary’ (CUP) patients, where the cell of origin is often difficult to determine

with standard histopathology techniques [3]. One particularly promising alternative to

identify the cell of origin in CUP patients is based on somatic mutations derived from

whole genome sequencing (WGS) data. Recent studies demonstrate proof of concept

of this, by leveraging machine learning to accurately identify the cell of origin using

somatic mutation density profiles obtained in solid biopsies of primary and metastatic

cancers [4,5]. However, in many cases taking solid tissue biopsies is challenging, as

accessibility to the tumor can be limited. Moreover, conventional needle biopsies are

invasive and may lead to clinical complications in one out of six procedures [6]. Even in

case a biopsy is feasible, solid tissue biopsies cannot be used for early detection and

screening since the location of the tumor is not yet known by definition.

Blood plasma of cancer patients contains circulating tumor DNA (ctDNA) which can

be used to detect somatic mutations [7,8,9]. Liquid biopsies of the blood may, therefore,

provide a valuable alternative to solid biopsies. Moreover, conventional solid tissue

biopsy can only capture tumor heterogeneity to a limited extent as only one spatial

location of the tumor is sampled, while ctDNA originates from the whole tumor and thus

captures more of the tumor heterogeneity [10,11]. A major challenge for ctDNA-based

cancer diagnostics, however, is that ctDNA only represents a small fraction of the total
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cell-free DNA (cfDNA). As a result, the amount of tumor DNA that can be captured in

liquid biopsies is much lower than in conventional solid tissue biopsies. While in patients

with advanced-stage cancers the ctDNA concentration can exceed 10% of the total

cfDNA (thus increasing the chance of detecting comprehensive somatic mutation

profiles), it is significantly lower in patients with cancer types such as glioma,

medulloblastoma, bladder, renal and gastroesophageal cancer [10]. Moreover, ctDNA

levels are likely to be lower in early-stage tumors where the tumor burden is low [12,7].

While ctDNA levels can vary depending on tumor type and disease stage, the generally

limited amount of ctDNA in liquid biopsies results in a much sparser somatic mutation

profile when compared to solid tissue biopsies.

Liquid biopsies are only a viable alternative to solid biopsies if there is a certain level

of concordance between the somatic mutations obtained from ctDNA and the tissue,

which is generally high in case of metastatic tumors. According to a prospective study

on advanced metastatic cancers, 72% of somatic SNV/indel mutations found in solid

tissue biopsy samples were detected by the applied liquid biopsy assay with

high-intensity sequencing [13] and similarly in an earlier study on metastatic prostate

and breast cancers, the average concordance was determined as 88% [14]. However,

in a recent study on stage I-IV non-small lung cell cancer (NSCLC) patients, the

percentage of concordant mutations between cfDNA and tissue biopsy ranged between

only 12.4% (stage I) and 73.8% (stage IV) [15]. This shows that lower ctDNA

concentrations in early stage cancer can result in a more dramatic sparsity which might

complicate the utilization of somatic mutations to identify the cell of origin, while

metastatic cancers with higher tumor load are less affected by this issue. Therefore,

4

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2021. ; https://doi.org/10.1101/2021.03.09.434391doi: bioRxiv preprint 

https://paperpile.com/c/OEZcJy/w3P0+53he
https://doi.org/10.1101/2021.03.09.434391
http://creativecommons.org/licenses/by-nd/4.0/


there is no generally defined concordance level of somatic mutations in a liquid biopsy

when compared to a corresponding solid biopsy sample, but it is clear that the variable

concordance of somatic mutations poses a challenge to diagnostic applications due to

potentially high levels of sparsity.

Despite the sparsity of somatic mutation profiles in liquid biopsies, efforts have

already been made to utilize liquid biopsy data for the identification of the cell of origin of

cancer. The majority of these studies successfully apply targeted approaches [7,16],

which mainly focus on mutation density in cancer driver genes as input features for

cancer type classification. Due to the low abundance of ctDNA, many driver mutations

can be missed due to sampling artifacts in WGS, therefore targeted sequencing is

necessary to ensure detection sensitivity. However, adding genome-wide information

could improve the classification. According to a recent study on genome-wide liquid

biopsies of postoperative early stage residual cancers, the integration of genome-wide

mutation data allowed sensitive residual disease detection by overcoming the limitations

of sparsity [17]. Additionally, previous work on WGS data from solid tissue biopsies have

already established that somatic SNV density at 1 Mb scale is the most prominent

predictor of cancer type as it represents the genomic imprint of the cell of origin

chromatin organization, with passenger somatic SNVs being the most prominent

contributors [4,5]. However, the performance of a support vector machine classifier

based on passenger SNVs was considerably reduced on artificially generated sparse

data [4]. This indicates that current state-of-the-art classifiers might not be robust

enough to reliably predict tumor type from somatic mutation profiles which are extremely

sparse, such as those obtained from liquid biopsies.

5

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2021. ; https://doi.org/10.1101/2021.03.09.434391doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.09.434391
http://creativecommons.org/licenses/by-nd/4.0/


In our work, we explore the utilization of sparse genome-wide somatic mutation data

in the classification of the cell of origin of cancer. High quality genome-wide somatic

mutation data obtained from ctDNA is very scarce [17], and by no means sufficient to

support the training of robust classifiers. Therefore sparse SNV samples are generated

based on WGS of primary cancer samples from the PCAWG dataset [18] to model

ctDNA conditions. Then, in order to address the challenge of sparsity and enable model

robustness, we propose to improve on a state-of-the-art classification approach in two

ways. First of all, we recognize that, in a sparse somatic data setting, massive training

set sizes are required to enable the classifier to become robust against feature sparsity

(i.e. missing somatic mutations), therefore we apply extensive data augmentation.

Secondly, to complement the genome-wide somatic SNV density features, we propose

to leverage data integration of two additional features derived from the SNV data:

trinucleotide counts and mutation density on driver genes. Mutational signatures, which

differ between cancer types and reflect the result of diverse oncogenic processes, are

constructed from the whole mutation spectra that consists of trinucleotide (e.g.:

ACA>AGA) mutation frequencies [19]. These trinucleotide features were utilized for

cancer type classification earlier [5]. Trinucleotide mutational contexts are composite

features and therefore can be less affected by scarcely available SNV mutations.

Additionally, while frequently mutated driver genes can represent one of the major

hallmarks of cancer and are commonly shared between cancer types [20], certain

combinations of affected driver genes can differ between different tissues [21], which

has been used as a basis for cancer type classification before [7] and driver gene
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mutation density features were found to have some predictive power in a few cancer

types (for instance Panc-AdenoCA) [5].

Our results demonstrate that both data augmentation as well as data integration

considerably increase the robustness of the classifier. As a result, when the original

solid tissue biopsy samples are downsampled to retain only 70% of somatic mutations

(an approximation of general sparsity in liquid biopsy of late stage and metastatic

cancers [13,15]), the deep learning model proposed here reaches classification

accuracies similar to previous state-of-the-art classifiers on solid biopsy (i.e.

non-sparse) WGS mutation profiles. These findings raise the possibility that somatic

mutation profiles derived from liquid biopsies can aid the detection of the cell of origin in

CUP patients.

Results
A

B

7

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2021. ; https://doi.org/10.1101/2021.03.09.434391doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.09.434391
http://creativecommons.org/licenses/by-nd/4.0/


C

D

8

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2021. ; https://doi.org/10.1101/2021.03.09.434391doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.09.434391
http://creativecommons.org/licenses/by-nd/4.0/


Fig 1. State-of-the-art model performance on the generated sparse datasets and

overview of proposed model improvements. (A) Schematic overview of sparse

somatic SNV data generation. Sparse samples were generated by retaining 70%, 25%,

10%, 5% and 2% of somatic mutations from each original sample (mutation

downsampling) for the training, validation and test sets. Results were evaluated in 3-fold

stratified shuffle-split cross-validation. (B) Cancer types classification accuracies of

somatic SNV data with different (70%, 25%, 10%, 5%, 2%) mutation downsampling

rates and full somatic SNV data (100%). The axes represent the accuracy for the

cancer types, expressed in average F1 scores (stratified shuffle split cross-validation

with three partitions). Only cancer types with the lowest sparse data accuracies are

shown. (C) Schematic overview of data augmentation. Sparse somatic SNV samples
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(subsamples of each original WGS sample) were generated by retaining 70%, 25%,

10%, 5% and 2% of SNVs from each original sample (mutation downsampling). Data

augmentation was applied solely on the training set, where instead of 1 subsample,

N=(10, 20, 30, 40, 50) different subsamples were generated based on each full somatic

SNV sample (sample upsampling). Results were evaluated in 3-fold shuffle-split

cross-validation. (D) Schematic overview of data integration of trinucleotide motifs and

driver gene mutation densities to tackle sparse somatic SNV data. The integration of the

three feature sets was tested in different deep learning architectures: early integration,

multi-branch integration and consecutive integration.

Assessment of state-of-the-art deep learning model on sparse somatic mutation
data

We first assessed the classification performance of a state-of-the-art deep learning

model proposed in Jiao et al. 2020 in a liquid biopsy setting (Materials and methods).

This model is based on genome-wide SNV density features across 2,897 bins where

each bin represents a 1 Mb region of the genome. Sparse mutation profiles were

artificially generated based on the PCAWG data collection [18], a dataset that consists

of 2,374 primary cancer samples across 16 cancer types with Soft-Messarc having the

smallest sample size of 33 samples and Liver-HCC representing the biggest cancer

type with 304 samples (see S1 Table for tumor type abbreviations). To model the

somatic mutation sparsity of liquid biopsy samples, sparse samples were obtained by

selecting a subset of all somatic SNVs (mutation downsampling) from each PCAWG

sample. Multiple sparse datasets were generated by retaining 70%, 25%, 10%, 5% and
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2% of all somatic SNVs (Fig 1a). The first measurement was designated at 70%, as this

value is an approximation of the reported percentage of somatic mutations that can be

detected in liquid biopsies compared to solid tissue biopsies in most advanced and

metastatic cancers [13,15]. Lower downsampling levels were chosen to mimic lower

ctDNA concentrations, which have been observed in certain cancer types and in case of

low tumor burden [7,10]. The full somatic SNV data of all 2,374 samples was also

classified in order to have baseline accuracies of the original classification setting from

[5] for each cancer type.

As an initial test, predictions were made on the sparse datasets with the original

model trained on the full (100%) somatic SNV data. As expected, accuracy dropped

dramatically in case of each sparse dataset, except at 70% (S1 Fig). When the model is

trained and tested on the full 100% SNV data, our results are in line with previous

findings [5] and show that for all but five cancer types the classification accuracy

exceeds 0.7, and for most cancer types is well above 0.8 (S1-2 Fig, Fig 1b).

Stomach-AdenoCA is the worst performing tumor type and is often misclassified as

Panc-AdenoCA or Eso-AdenoCA due to similar biological origin, as described in the

earlier study [5].

In the next step, we aimed to assess the effect of SNV downsampling on the training

procedure and retrained the original model on each sparse dataset, instead of applying

the model trained on the full data throughout all sparse test datasets. Overall, when the

model is trained and tested on sparse data, a better accuracy trend is appreciable

compared to the results when the model is trained on the full somatic SNV data but

tested on sparse data (S1-2 Fig, Fig 1b). Generally, when the downsampling rate
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increases, classification accuracy decreases, often substantially. When only 2% of

somatic SNVs are retained, an average accuracy below 0.2 in 10 out of 16 tumor types

was observed (S2 Fig). Still, for six of the cancer types a classification accuracy

exceeding 0.5 was retained, suggesting that even at this sparsity level some signal is

retained that can be used by the classifier. Interestingly, for ColoRect-AdenoCA the

classification accuracy improved in the 70% downsampled mutation experiment

compared to the 100% baseline (Fig 1b). This might suggest that downsampling the

mutations has a regularization effect on the model for this particular cancer type.

Similarly, the average prediction accuracy of CNS-nonDiffGBM and Lung-SCC also

slightly improved at 70% (S2 Fig).

In summary, the classification accuracy gradually drops as the number of retained

somatic mutations decreases, with the least but still considerable performance decrease

at 70%, even if the classification model was trained on the corresponding sparse data

set (Fig 1b, S2 Fig). This indicates that the current model is not suitable for liquid

biopsy data that has a sparser somatic profile than conventional solid tissue biopsies.

Data augmentation

A
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Fig 2. Classifier performance with data augmentation. (A) Overall effect of data

augmentation at different mutation downsampling rates (70%, 25%, 10%, 5%, 2%).

Average accuracy (average % of accurately classified samples in 3 folds) is shown at

different downsampling rates with and without applied data augmentation setups (B)

Classifier performance at different mutation downsampling rates with the best data

augmentation setup, expressed in F1-scores per cancer type (average and std is shown

based on 3 folds). The best data augmentation setup was selected based on average

accuracy values: 70% - 20x, 25% - 20x, 10% - 30x, 5% - 50x, 2% - 50x.
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Data augmentation is a technique that was introduced in the field of deep learning to

aid image classification problems where the available training data is limited.

Essentially, data augmentation enhances the available data in terms of size, for

instance through basic sample (image) manipulations (geometrical or color

transformations, random erasing, image mixing etc.) or model-based augmentation

methods (GANs, adversarial training etc.) [22]. Data augmentation addresses the issue

of overfitting during the training process, as the augmented data represents a much

more comprehensive collection of possible data points. Therefore, better model

generalization and robustness can be achieved. By applying different data

augmentation approaches, the error rate of the model can be reduced considerably,

even up to 12.1% [23,24,25,26].

Contrary to traditional machine learning techniques, the performance of deep learning

models keeps improving as the training data size is increasing, according to a

power-law relationship [27]. Hence, we hypothesized that reduced classification

performance due to sparsity of somatic mutation profiles obtained from liquid biopsies

can be mitigated by substantially increasing the training set size. By providing the

classifier with more and diverse training data it should have more information to learn

robust feature patterns under sparse data conditions. However, since genome-wide

somatic mutation data from liquid biopsy of more than a few samples per cancer type is

not yet readily available, we investigated if the concept of ‘in silico’ data augmentation

can be applied. To achieve sufficiently large training set sizes, augmented training

samples were generated based on multiple random downsampling of somatic SNVs in

PCAWG WGS samples (Fig 1c).
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Multiple data augmentation experiments (generating N subsamples from each original

sample, where N∈(10,20,30,40,50); see section ‘Data augmentation’ in Materials and

methods) were performed at each mutation downsampling rate in order to identify a

potential inflexion point after which further data augmentation does not improve the

performance (Fig 1c). The different data augmentation rates were compared based on

average accuracy (average ratio of correctly classified samples in stratified shuffle split

cross-validation with three partitions). For all downsampling rates, 10x data

augmentation greatly improves the performance of the model to an average accuracy of

0.51 compared to 2% baseline with 0.41, 0.66 compared to the 5% baseline with 0.56,

0.73 compared to the 10% baseline with 0.63, 0.81 compared to 25% baseline with 0.75

and 0.87 compared to the 70% baseline with 0.83, respectively (Fig 2a). At the lowest

mutation downsampling rates (when 25% and 70% of all SNVs were retained),

performance tops with using only 20x data augmentation, at an average accuracy of

0.84 compared to 25% baseline with 0.75 and 0.88 compared to the 70% baseline with

0.83, respectively. At the highest mutation downsampling rates (when retaining only 2%

and 5% of all SNVs), the application of 50x data augmentation shows the most

considerable average performance improvement compared to the baseline experiments

using the original model without data augmentation, at an average accuracy of 0.57

compared to 2% baseline with 0.41 and 0.69 compared to the 5% baseline with 0.56,

respectively (Fig 2a).

The model performance was also assessed at cancer type level in all mutation

downsampling experiments (expressed in average F1 scores) (Fig 2b, S3 Fig). When

only 70% and 25% of somatic mutations are retained, data augmentation improves the
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classifier performance for all cancer types, except ColoRect-AdenoCA, while at 10%

mutation downsampling only the accuracy of Head-SCC does not improve. At higher

downsampling rates (retaining only 2% and 5% of SNVs) data augmentation improves

the classifier performance for all cancer types, except for Uterus-AdenoCA,

Lymph-BNHL and Lung-SCC at 5% and Head-AdenoCA and Lung-SCC at 2%. While

Lymph-BNHL and Lung-SCC are both classified with high accuracy across all

downsampling rates even without data augmentation, Uterus-AdenoCA and

Head-AdenoCA show a rather dramatic drop in classification accuracy as the level of

sparsity increases and contrary to other cancer types, data augmentation remained

ineffective at 2% and 5% downsampling for these two types (S2 Fig, Fig 2b). Lower

classification accuracy can also be partially associated with lower sample numbers in a

few cancer types (Fig 2b). When retaining only 2% and 5% of somatic SNVs, all

samples are persistently misclassified from a few cancer types without data

augmentation (Fig 2b). These results clearly show that data augmentation is

fundamental when dealing with classification of the cell of origin of cancer from sparse

genome-wide mutation data and it can considerably improve the classification accuracy

even at higher downsampling rates (2%, 5%, 10%).

Data integration
A
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Fig 3. Classifier performance with data integration. (A) Overall effect of data

integration at different mutation downsampling rates (70%, 25%, 10%, 5%, 2%).

Average accuracy (average % of accurately classified samples in 3 folds) is shown at

different downsampling rates with and without different applied data integration

architectures (B) Classifier performance at different mutation downsampling rates with

the best data integration architecture, expressed in F1-scores per cancer type (average

and std is shown based on 3 folds). The best data integration architecture was selected

based on average accuracy (Fig 3a) values, which was consistently the early data
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integration architecture across all downsampling rates. For comparison we used the

best data augmentation model as the “model without data integration”.

To compensate for the higher data sparsity, integrating additional genomic features

based on the SNV data (i.e. genome-wide SNV density bins, mutation density on driver

genes and genome-wide trinucleotide motifs) may improve classification accuracy even

further. Model design is a crucial element in this process, even more so when multiple

feature types have to be processed in the model. We therefore assessed three main

architecture types for the integration of the three SNV-derived features: early

integration, multi-branch integration and consecutive integration. The aim of testing

these main architecture types was to assess different feature integration approaches,

where consecutive integration represents a hierarchical feature integration approach,

multi-branch integration applies feature integration in the hidden feature space of the

deep learning model, while conversely with early integration we explored feature

integration at the raw input feature level. In early integration, the original feed-forward

deep learning model was applied where all three feature sets were merged together into

one input vector. This architecture is the most simplistic yet it allows the model to extract

hidden features using all input features already in the first layer right after the input

layer. In multi-branch integration, the feature sets were fed into the model through

separated branches and then the final individual dense layers were concatenated

before calculating the final output. In consecutive integration, the feature sets are

processed one after another and when the processing of a feature set is done, the last
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dense layer of that feature branch is concatenated with the next feature set into a new

input layer (Fig 1d).

For all models, hyperparameter tuning was done by Bayesian optimization in the

same fashion as in [5] and the optimization of the number of nodes and layers was

performed after each input entry point (Materials and methods). All data integration

experiments were carried out with the best performing data augmentation setting which

varied across mutation downsampling rates (70% - 20x, 25% - 20x, 10% - 30x, 5% -

50x, 2% - 50x).

We found that including the 96 trinucleotide motifs and driver genes can improve the

classification accuracy on the sparse somatic data. Early integration experiments

resulted in the highest average accuracies overall, with an average accuracy of 0.65

compared to the data augmented baseline with 0.57 at 2%, with an average accuracy of

0.75 compared to the data augmented baseline with 0.69 at 5%, with an average

accuracy of 0.82 compared to the data augmented baseline with 0.74 at 10% and with

an average accuracy of 0.86 compared to the data augmented baseline with 0.84 at

25%, with the 70% sparse data experiment being the only exception where the average

accuracy remained nearly the same at 0.884 compared to the data augmented baseline

with 0.882 (Fig 3a). When assessing the performance of the best data integration model

at cancer type level, for most cancer types a gradual accuracy improvement is apparent

(Fig 3b). At 2% and 5% downsampling rates, the accuracy of the majority of cancer

types shows the most notable improvement, which is especially appreciable in

Kidney-RCC, Stomach-AdenoCA, Panc-Endocrine, Bone-Osteosarc and CNS-Medullo

(Fig 3b). At other downsampling rates, where more SNVs are retained by default,
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certain cancer type accuracies slightly decrease (e.g.: Stomach-AdenoCA at 10% and

Ovary-AdenoCA at 25%). In these cases the data augmentation might be insufficient to

combat the increased dimensionality which moreover introduces additional noise

caused by the additional features (Fig 3b). We conclude that utilizing additional,

compact features derived from the raw SNV data can further aid the cancer type

classification model, especially when only 2% or 5% of the somatic SNVs are retained

in the sparse somatic samples.

Assessment of top 1, 2 and 3 ranked predictions
A

B
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Fig 4. Classifier performance in predicting the top N labels. (A) Average accuracy

(average % of accurately classified samples in 3 folds) when the correct cancer type is

among top 1, 2 and 3 predictions. Average accuracy of the best models is shown at

each mutation downsampling rate when identifying the correct tumour type among its

top N-ranked predictions (N=1,2,3), error bars indicate standard deviation. (B) Classifier

performance on somatic SNV data with 10% of retained mutations when the correct

cancer type is among top 1, 2 and 3 predictions, compared to the baseline model. The

axes represent the accuracy for each cancer type, expressed in average F1 scores

(stratified shuffle split cross-validation with three partitions).

In a diagnostic setting, where the aim of the cancer type classifier is to support the

physician in making treatment decisions, it may be sufficient to provide a ranked list of

predictions, rather than only the top prediction. This is especially true if a few predictions
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are close in terms of ranking based on the predicted cancer type probabilities (i.e. have

very similar classification scores). These tumor types may have similar features, which

could direct treatment decisions as well. We therefore also assessed the classifier

accuracy when considering the top 1, 2 and 3 predictions of the model. When

comparing the average accuracy of top 1 predictions (average ratio of correctly

classified samples in stratified shuffle split cross-validation with three partitions)

between different mutation downsampling rates with and without our model

improvements, the final improved model achieves an average accuracy of 0.65

compared to an average accuracy of 0.41 with the original model at 2%, 0.75 compared

to 0.56 at 5%, 0.82 compared to 0.63 at 10%, 0.86 compared to 0.75 at 25% and 0.88

compared to 0.83 at 70%, respectively (Fig 4a). When the original model trained on full

somatic data is compared to different mutation downsampling rates with our model

improvements in terms of average accuracy of the top 1 predictions, we found that the

classifier performs slightly better at 70% downsampling rate than at 100% (Fig 4a). The

underlying reason is likely that the noise introduced by the missing SNV calls functions

as a regularizer at this rate and it improves on the generalization performance of the

deep learning model during training and validation (at higher downsampling rates, this

benefit clearly diminished since at those rates the lack of data is so severe that it

decreases the overall performance). When the correct cancer type is identified from the

top 3 predictions, the average accuracy is above 0.85 with our improvements, even at

2% downsampling rate (Fig 4a). When considering the top 2 and 3 predictions, the

detection of all cancer types is improved, most prominently in case of

Stomach-AdenoCA (Fig 4b).
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Feature importance assessment
A

B

Fig 5. Feature importance assessment across all sparsity levels. (A) Top features

in each feature type based on feature importance in full solid biopsy data. Top features

were selected based on average feature importance ranking per cancer type in the test

folds, resulting in 41 bins, 13 driver genes and 19 trinucleotides. The color scale

represents negative (blue) and positive (red) feature importance values with zero (white)
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centering. (B) Feature importance patterns per feature type in full solid biopsy SNV data

and sparse SNV data. Heatmaps of overall feature importance patterns were

log-modulus transformed and scaled. Feature attributions were sorted per cancer type

in the full solid biopsy SNV data and then the sparse data matrices were sorted to follow

the same feature order per cancer type.

Interpretability is an important aspect in the application of machine learning, especially

in the clinical field. By understanding why the model has made a certain prediction, the

adoption of the approach in the clinic is facilitated as physicians can, to a certain extent,

manually verify its decisions based on their own knowledge and experience. Model

interpretation is usually done by feature importance assessment (or in other words

feature attribution). However, defining feature importance is inherently problematic with

deep learning models, due to the highly non-linear and complex nature of the models.

As a result, along with the emergence of these models, solutions to assess feature

attributions have also been developed. We aimed to use a straightforward method for

our interpretation task and applied the so-called ‘integrated gradients’ method to obtain

feature attributions [28] (see Materials and methods). In summary, the method takes

the gradient of the output (probability of cancer type) with respect to the input feature

values. In case of positive feature attribution, when the value of the feature was moving

away from the baseline value then the probability of the given cancer type would

increase, while in case of negative feature attribution, if the feature value moved closer

to the baseline value then the target probability would increase [28]. Feature attribution
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is calculated per sample. To attain a feature importance within the context of a specific

cancer type, feature attributions are averaged across the samples within the class.

First, we aimed to assess feature importances on the original, full SNV data and

executed early data integration on it, in order to have feature importances calculated

based on the full somatic profile of the PCAWG samples. The top 1 bin, top 2

trinucleotide and top 2 driver gene features were selected in each cancer type

separately based on the ranked feature importances, and then the union of all top

features across all cancer types (41 bins, 13 driver genes and 19 trinucleotides) were

visualized (Fig 5a). Interestingly, in Skin-Melanoma, five of the positively attributed top

trinucleotide features bear C>T nucleotide transition (CCC>CTC, CCT>CTT, GCA>GTA,

TCC>TTC, TCT>TTT), while other positively attributed substitution types only appear in

one or two trinucleotides. This is in line with the fact that this cancer type is dominated

by C>T nucleotide transitions due to UV-light exposure [29]. BCL2 has a high positive

attribution in Lymph-BNHL and it was found to be frequently mutated in multiple

lymphomas [30]. ERBB4 is among the top attributed driver genes in Liver-HCC, which

also corresponds to previous findings, where ERBB4 was described as a suppressor in

the development of Liver-HCC, suggesting that somatic mutations in ERBB4 can

function as drivers [31]. ERBB4 also positively contributed to the prediction of

Stomach-AdenoCA, Panc-AdenoCA, Eso-AdenoCA, Kidney-RCC and Lymph-CLL.

ERBB4 mutations were found in gastric carcinomas, albeit to a lesser extent than in

colorectal and lung carcinomas [32], however to our knowledge, notable SNVs have not

been reported in Lymph-CLL. Moreover, ERBB4 was proposed as a tumor suppressor

in Kidney-RCC [33], which might correlate with its positive feature attribution driven by
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increased somatic mutation density in ERBB4 in Kidney-RCC. Importantly, we do not

imply to draw direct connections with causality but rather aim to show that certain

feature importances can capture meaningful underlying biological variation.

Overall changes in feature importance were compared between the original, full

somatic data and sparse data settings in early data integration, as this architecture type

resulted in the highest accuracy improvements in general. Our results show that the

feature importance changes considerably in sparse data compared to the full SNV data

(Fig 5b). The effect of SNV downsampling can be clearly seen when comparing feature

importance profiles of the bin features in the baseline experiment with full somatic data

to the experiments with sparse data, where many features have changed signs or have

lessened or completely diminished importance due to sparsity. On the other hand, the

96 trinucleotide feature importances did not change drastically in sparse data, indicating

that these features can still be harnessed more effectively by the classifier. This again

validates our intuition, as we expected to see performance improvement on much

sparser data with the inclusion of more SNV derived features.

Discussion

Diagnosis of CUPs poses an important challenge in clinical practice. Utilizing the

genome-wide somatic mutation profiles of ctDNA could offer a valuable approach to

detect the cell of origin of cancer, but liquid biopsies bring about their own challenges as

the inherently low concentration of ctDNA gives rise to sparse somatic mutation profiles.

Our results show that both data augmentation and data integration can massively

improve classifier performance, but the effect depends on the sparsity of mutational
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profiles. It appears that at less severe 70% and 25% downsampling, where more

information is preserved from the original WGS samples by definition, the classifier

cannot exploit the generated training samples of higher data augmentation levels

(30-50x) and, hence, 20x data augmentation is sufficient to improve classifier

performance. Data integration resulted in performance improvement in all sparse

datasets except 70%, where the average accuracy remained nearly the same in

comparison to the best data augmented model (0.884 and 0.882). When looking at the

top 1 predictions with our improved model compared to the predictions made with the

original model in all sparse datasets, the improved model achieves an average

accuracy of 0.65 compared to an average accuracy of 0.41 with the original model at

2%, 0.75 compared to 0.56 at 5%, 0.82 compared to 0.63 at 10%, 0.86 compared to

0.75 at 25% and 0.88 compared to 0.83 at 70%, respectively, while in case the correct

cancer type is identified from the top 3 predictions, our model reaches an average

accuracy above 0.85, even at 2% and 5% downsampling rate (Fig 4a). This suggests

that in case targeted treatments can be sufficiently selected based on the top 3

predicted cancer types, our classifier can aid treatment decisions even in extremely

sparse data conditions.

In previous studies, the reported percentage of somatic mutations that can be

detected in liquid biopsies compared to solid tissue biopsies in most advanced and

metastatic cancers were 72% and 73.8% [13,15], therefore our 70% sparse dataset was

designated as an approximation of the reported values that can potentially reflect the

sparsity in metastatic/CUP liquid biopsy data. As mentioned above, the final average

accuracy at 70% is 0.88 compared to the baseline 0.83, and might indicate that this
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genome-wide SNV mutation information based approach can perform well in advanced

and metastatic cancers. Interestingly, at 70%, the average accuracy has improved

compared to the baseline model with full somatic SNV data (Fig 4a), which suggests

that mutation downsampling can function as a regularizer at this rate, giving rise to

improved performance. However, while retaining 70% of somatic SNVs provides a

reasonable dataset to get an accuracy estimate for most tumor types in CUP/metastatic

condition, this approximation might only be reliably applied for samples which are deep

sequenced and cannot hold for samples with lower average coverage. Besides, certain

cancer types such as glioma, medulloblastoma, bladder, renal and gastroesophageal

cancer have been reported to have significantly lower ctDNA concentrations even in

advanced disease [10]. For these tumor types, fewer variants will be detected in the

blood and, therefore, lower downsampling rates provide a better estimation of classifier

performance. With the improvements applied on the sparse dataset, a classification

accuracy of 0.87 was achieved at 25% and 0.8 at 10% in CNS-Medullo

(medulloblastoma), 0.97 accuracy was achieved at 25% and 0.95 at 10% in

CNS-DiffGBM (diffuse glioma), 0.84 accuracy was achieved at 25% and 0.78 at 10% in

CNS-DiffGBM (non-diffuse glioma), 0.68 accuracy was achieved at 25% and 0.55 at

10% in Kidney-ChRCC (renal cell carcinoma, distal tubule), 0.92 accuracy was

achieved at 25% and 0.9 at 10% in Kidney-RCC (renal cell carcinoma, proximal tubule)

and a classification accuracy of 0.84 was achieved at 25% and 0.79 at 10% in

Eso-AdenoCA (esophageal adenocarcinoma).

The results presented here indicate that most of the problematic cancer types can still

be classified with a reasonable accuracy even in very sparse somatic SNV data, which
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supports the diagnostic relevance of somatic SNV data derived from liquid biopsies.

Moreover, since variants at low allele frequencies can be missed in solid biopsy

samples at lower tumor purity levels, we hypothesise the applicability of our

improvements to boost predictive performance on tissue biopsy samples, by means of

predicting the cell of origin in tissue biopsy data with a classification model that was

trained on sparse augmented data with data integration. This argument is bolstered by

our finding where we compared the performance of the improved classifier on 70%

downsampled data to the performance of the original model on the 100% SNV data,

and the average accuracy of the 70% model was found to be improved compared to the

baseline model (Fig 4a).

An important caveat in using somatic mutation profiles obtained from liquid biopsies is

the presence of non-cancerous somatic mutations. According to a recent study, most of

the non-cancerous cfDNA originates from white blood cells (WBC), therefore liquid

biopsies contain a significant amount of somatic mutations as a result of clonal

haematopoiesis in WBC [6,13], which are indistinguishable from somatic mutations that

arise in the cancer. This finding emphasises the importance of matched cfDNA WBC

sequencing for accurate somatic variant interpretation in liquid biopsies. In our work, we

only accounted for the sparse profile of somatic mutations that arise from ctDNA and

considered the non-cancerous somatic SNVs and germline mutations to be already

filtered out based on e.g. matched cfDNA WBC sequencing.

Despite the challenge of using sparse somatic data to identify the cell of origin of

cancer, our results demonstrate that a deep learning classification model that uses

multiple feature types and training set augmentation can help to harness the available
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sparse data in an efficient way. We conclude that somatic mutation density profiles

obtained from liquid biopsies are suitable for the detection of the cell of origin of cancer,

in particular for advanced and metastatic patients, and therefore they provide a valuable

alternative to invasive solid tissue biopsies for CUP identification.
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Materials and methods

Sparse data generation

Somatic SNV consensus calls of 2,374 primary tumors based on WGS with an

average coverage of ~30X were downloaded in VCF format from the ICGC Data Portal

(http://dcc.icgc.org/releases/PCAWG/). The 2,374 primary tumor sample set was

constructed from cancer types where at least 30 samples were available (S1 Table).

The list of used PCAWG sample and donor identifiers can be found in S2 Table.

In order to model the sparse somatic mutation profile of ctDNA in liquid biopsy, we

randomly subsampled 2%, 5%, 10%, 25% and 70% of the somatic SNVs from each

primary cancer VCF file. The resulting random samples were then used to generate

genome-wide SNV bin density, genome-wide trinucleotide and driver gene SNV density

data for each sparse sample. A schematic overview of sparse sample generation can

be seen in Fig 1a.

Baseline/original model and model improvements

The original classifier [5] was downloaded from

https://github.com/ICGC-TCGA-PanCancer/TumorType-WGS/tree/master/DNN-Model

and retrained on the available PCAWG samples. In all consecutive steps, this model

was used as a basis and further adjustments were applied on it in the data integration

experiments. All additional models were implemented and trained in Tensorflow 1.10.0

and Keras 2.1.5. All code was written in Python 3.6.
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We used shuffle split cross-validation with three splits, by randomly selecting 60% of

the samples for training and 20-20% for validation and testing in each split round,

respectively. Stratification was applied in each split, in order to distribute the cancer

types according to the relative percentages in the training (60%), validation (20%) and

test sets (20%). Hyperparameters were set by optimizing the performance on the

validation set in each shuffle-split partition. The optimized hyperparameter set was the

following: learning rate for Adam [34], L2-regularisation penalty (otherwise known as

weight decay), dropout rate, the number of hidden layers, the number of neurons per

hidden layer and activation function [5]. We used the same Bayesian method and library

for hyperparameter optimization as in [5], where the ‘gp_minimize’ function from the

scikit-optimise 0.7.4 library was applied [35]. Briefly, the models in each fold were

trained using the Adam optimizer with a batch size of 32 for 50 epochs. Bias values

were initialised as 0 and all other network weights were initialised using a glorot uniform

distribution [36]. Each model was evaluated with 200 hyperparameter combinations that

were obtained from the Bayesian optimization process (i.e., ‘gp_minimize’ function was

called consecutively 200 times).

In the multi-branch and consecutive data integration experiments, the following

hyperparameters were optimized separately for each feature type: weight decay,

number of dense layers, number of dense nodes per layer, dropout and activation

function. This meant that for the multi-branch experiments, hyperparameters were

optimized per branch, while in the consecutive data integration experiments the

hyperparameters were set separately after each input entry point. The final model
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architectures with data integration are shown in S5-S19 Fig. The final hyperparameter

settings of each model are described in S3 Table.

Accuracy calculation

Cancer type classification accuracies were calculated as F1-scores to take class

imbalance into account, and averaged across the three shuffle split runs. This

cross-validation setup was applied in all further experiments when comparing

classification accuracy at cancer type level. Additionally, average model accuracy was

calculated on the basis of correctly classified samples in all cancer types. F1-scores and

confusion matrices were calculated with scikit-learn 0.23.2 [37].

Data augmentation

N subsamples were generated from each sample, where N ∈ (10, 20, 30, 40, 50), N

corresponds to the data augmentation level of the dataset which we refer to as ‘10x’,

‘20x’, ‘30x’, ‘40x’ and ‘50x’ (S4 Table). Sampled mutations were randomly selected for

all N subsamples as described in ‘Sparse data generation’. If a subsampled sample

was present in the training set, none of its other subsamples was part of the

test/validation sets during the classification process.

Data integration

The 96 trinucleotide motif features were generated on a per motif basis where all

occurrences of a motif (e.g.: ACA>AGA) were aggregated, resulting in a summed value

for the whole genome in each patient sample.
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For the construction of driver gene features, we used the driver gene list released in

one of the flagship papers of the latest the Pan-Cancer Atlas release [38]. SNVs were

counted on gene regions from the start position of the first exon until the end position of

the last exon.

Feature importance assessment

The original published code (https://github.com/ankurtaly/Integrated-Gradients) from

[28] was used to calculate the integrated gradients for the early integration models.

Feature attributions were calculated in respect to the top predicted label in each sample.

When calculating integrated gradients, first the gradient of the prediction output is

calculated with respect to the feature values of the input in a range of interpolations

between the original input (a vector containing all input features) and a baseline. In our

case, zero baseline was used for all features. We calculated the feature attributions for

each test split.

As this approach can be applied to explain feature attributions on a single sample

level, the feature attributions were averaged from all test samples in each cancer type in

order to get cancer type specific feature attributions. In order to aid data visualization

when comparing the full sparse feature matrices, log-modulus transformation

was applied on the raw feature importance values,𝐿(𝑓
𝑖
) =  𝑠𝑖𝑔𝑛(𝑓

𝑖
) * 𝑙𝑜𝑔(|𝑓

𝑖
| + 1)

where is the feature attribution value of feature in cancer type . Then we𝑓
𝑖

𝑓 𝑖

averaged the log-modulus transformed attributions of all test samples in each cancer

type in order to get the transformed attributions per cancer type. Finally, scaling was
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applied to each feature matrix individually: if and if𝑓
𝑠𝑐𝑎𝑙𝑒𝑑

=
𝑓

𝑖

𝑓
𝑚𝑎𝑥

𝑓
𝑖

> 0 𝑓
𝑠𝑐𝑎𝑙𝑒𝑑

=
𝑓

𝑖

𝑓
𝑚𝑖𝑛

. For visualization purposes, feature attributions were sorted per cancer type in0 > 𝑓
𝑖

the full solid biopsy SNV data and then the sparse data matrices were sorted based on

the obtained feature order in the full solid biopsy SNV data, in order to follow the same

feature order per cancer type in all matrices of a given feature type. Features that

consistently had 0 attribution across all cancer types were excluded from visualization

and are not displayed in the heatmaps.

Code availability

Scripts that were used for classification, feature importance calculation and sparse

augmented data generation are available at

https://github.com/UMCUGenetics/cancer_type_classification_from_sparse_SNV_data,

trained models are also available upon request. The code is distributed under the

Apache Version 2.0 Open Source license (https://www.apache.org/

licenses/LICENSE-2.0).

Data availability

The used PCAWG (https://doi.org/10.1038/s41586-020-1969-6) sample identifiers are

listed in S2 Table. Aligned sequencing data, somatic and germline variant calls are

available at https://dcc.icgc.org/releases/PCAWG. Further information regarding data

access can be found at https://docs.icgc.org/pcawg/data/.

Supporting information

37

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2021. ; https://doi.org/10.1101/2021.03.09.434391doi: bioRxiv preprint 

https://github.com/UMCUGenetics/cancer_type_classification_from_sparse_SNV_data
https://doi.org/10.1038/s41586-020-1969-6
https://dcc.icgc.org/releases/PCAWG
https://docs.icgc.org/pcawg/data/
https://doi.org/10.1101/2021.03.09.434391
http://creativecommons.org/licenses/by-nd/4.0/


S1 Table. Sample distribution across cancer types in the used PCAWG dataset.
S2 Table. List of used PCAWG samples in the training, validation and test folds
with donor identifiers and DCC project codes.
S3 Table. List of final optimized hyperparameters of all models.
S4 Table. Number of training samples with and without data augmentation in the 3
cross-validation folds.

S1 Fig. Classifier performance at different mutation downsampling rates
(expressed in average F1 score and standard deviation of accuracy in folds) with
the original model trained on the full (100%) data. Test samples were generated by
retaining 70%, 25%, 10%, 5% and 2% of somatic mutations from each original sample
(mutation downsampling) while the training and validation set consisted of only original,
full somatic SNV samples.
S2 Fig. Classifier performance (expressed in average F1 score and standard
deviation of accuracy in folds) at different mutation downsampling rates with
models trained on sparse data sets. Samples were generated by retaining 70%, 25%,
10%, 5% and 2% of somatic mutations from each original sample (mutation
downsampling) for the training, validation and test sets.
S3 Fig. Classifier performance (expressed in average F1 score and standard
deviation of accuracy in folds) at different mutation downsampling rates with all
the data augmentation setups. Samples were generated by retaining 70%, 25%, 10%,
5% and 2% of somatic mutations from each original sample (mutation downsampling).
Different data augmentation levels were assessed, see Data augmentation in Materials
and methods.
S4 Fig. Classifier performance (expressed in average F1 score and standard
deviation of accuracy in folds) at different mutation downsampling rates with all
the data integration setups on the best data augmentation model. Samples were
generated by retaining 70%, 25%, 10%, 5% and 2% of somatic mutations from each
original sample (mutation downsampling). After performing data augmentation
experiments, the best data augmentation setup was selected based on average
accuracy (Supplementary Fig. 2) values: 70% - 20x, 25% - 20x, 10% - 30x, 5% - 50x,
2% - 50x.
S5 Fig. Best model architecture selected based on hyperparameter search in
early data integration on 2% downsampled sparse data. (A) model in
cross-validation fold 1 (B) model in cross-validation fold 2 (C) model in cross-validation
fold 3
S6 Fig. Best model architecture selected based on hyperparameter search in
multi-branch data integration on 2% downsampled sparse data. (A) model in
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cross-validation fold 1 (B) model in cross-validation fold 2 (C) model in cross-validation
fold 3
S7 Fig. Best model architecture selected based on hyperparameter search in
consecutive data integration on 2% downsampled sparse data. (A) model in
cross-validation fold 1 (B) model in cross-validation fold 2 (C) model in cross-validation
fold 3
S8 Fig. Best model architecture selected based on hyperparameter search in
early data integration on 5% downsampled sparse data. (A) model in
cross-validation fold 1 (B) model in cross-validation fold 2 (C) model in cross-validation
fold 3
S9 Fig. Best model architecture selected based on hyperparameter search in
multi-branch data integration on 5% downsampled sparse data. (A) model in
cross-validation fold 1 (B) model in cross-validation fold 2 (C) model in cross-validation
fold 3
S10 Fig. Best model architecture selected based on hyperparameter search in
consecutive data integration on 5% downsampled sparse data. (A) model in
cross-validation fold 1 (B) model in cross-validation fold 2 (C) model in cross-validation
fold 3
S11 Fig. Best model architecture selected based on hyperparameter search in
early data integration on 10% downsampled sparse data. (A) model in
cross-validation fold 1 (B) model in cross-validation fold 2 (C) model in cross-validation
fold 3
S12 Fig. Best model architecture selected based on hyperparameter search in
multi-branch data integration on 10% downsampled sparse data. (A) model in
cross-validation fold 1 (B) model in cross-validation fold 2 (C) model in cross-validation
fold 3
S13 Fig. Best model architecture selected based on hyperparameter search in
consecutive data integration on 10% downsampled sparse data. (A) model in
cross-validation fold 1 (B) model in cross-validation fold 2 (C) model in cross-validation
fold 3
S14 Fig. Best model architecture selected based on hyperparameter search in
early data integration on 25% downsampled sparse data. (A) model in
cross-validation fold 1 (B) model in cross-validation fold 2 (C) model in cross-validation
fold 3
S15 Fig. Best model architecture selected based on hyperparameter search in
multi-branch data integration on 25% downsampled sparse data. (A) model in
cross-validation fold 1 (B) model in cross-validation fold 2 (C) model in cross-validation
fold 3
S16 Fig. Best model architecture selected based on hyperparameter search in
consecutive data integration on 25% downsampled sparse data. (A) model in
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cross-validation fold 1 (B) model in cross-validation fold 2 (C) model in cross-validation
fold 3
S17 Fig. Best model architecture selected based on hyperparameter search in
early data integration on 70% downsampled sparse data. (A) model in
cross-validation fold 1 (B) model in cross-validation fold 2 (C) model in cross-validation
fold 3
S18 Fig. Best model architecture selected based on hyperparameter search in
multi-branch data integration on 70% downsampled sparse data. (A) model in
cross-validation fold 1 (B) model in cross-validation fold 2 (C) model in cross-validation
fold 3
S19 Fig. Best model architecture selected based on hyperparameter search in
consecutive data integration on 70% downsampled sparse data. (A) model in
cross-validation fold 1 (B) model in cross-validation fold 2 (C) model in cross-validation
fold 3
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