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Abstract 25 

Hematopoietic stem cells (HSCs) must ensure adequate blood cell production following distinct 26 

external stressors. A comprehensive understanding of in vivo heterogeneity and specificity of 27 

HSC responses to external stimuli is currently lacking. We performed single-cell RNA 28 

sequencing (scRNA-Seq) on functionally validated mouse HSCs and LSK (Lin-, c-Kit+, Sca1+) 29 

progenitors after in vivo perturbation of niche signals interferon, granulocyte-colony stimulating 30 

factor (G-CSF), and prostaglandin. We identified six HSC states that are characterized by 31 

enrichment but not exclusive expression of marker genes. Niche perturbations induce novel and 32 

rapid transitions between these HSC states. Differential expression analysis within each state 33 

revealed HSC- and LSK-specific molecular signatures for each perturbation. Chromatin analysis 34 

of unperturbed HSCs and LSKs by scATAC-Seq revealed HSC-specific, cell intrinsic 35 

predispositions to niche signals. We compiled a comprehensive resource of HSC- and 36 

progenitor-specific chromatin and transcriptional features that represent important determinants 37 

of regenerative potential during stress hematopoiesis. 38 

 39 

Introduction 40 

Stem cell therapy holds promises for numerous indications, including blood diseases, 41 

autoimmune diseases, neurodegeneration and cancer (Blau and Daley, 2019). Despite being 42 

used in the clinic for over 30 years, HSC transplants remain a highly risky procedure. To better 43 

understand HSC regeneration, recent efforts have used scRNA-Seq to discover novel markers 44 

to further enrich for functional HSCs (Chen et al., 2016, Cabezas-Wallscheid et al., 2017, 45 

Wilson et al., 2015, Rodriguez-Fraticelli et al., 2020). Yet no consensus exists on the optimal 46 

marker combination to obtain the most purified HSCs in part because extensive functional 47 

heterogeneity within HSCs makes experimental evaluation challenging (Haas et al., 2018). Both 48 

intrinsic and extrinsic factors have been implicated in regulating HSC function (Zon, 2008, 49 

Morrison et al., 1996). The stem cell niche forms an important extrinsic regulator of HSCs as it 50 

anchors stem cells and maintains the balance between self-renewal and differentiation 51 

(Morrison and Spradling, 2008, Morrison and Scadden, 2014). Release of soluble signals from 52 

the niche such as interferons, prostaglandins, and growth factors, including SCF and G-CSF, 53 

have been shown to influence HSC function during homeostasis and upon injury (Pinho and 54 

Frenette, 2019, Pietras et al., 2016, Zhao et al., 2014, Morales-Mantilla and King, 2018). While 55 

known to be affected by a wide variety of extracellular signals, little is known about the 56 

heterogeneity and specificity of HSC responses to these external stimuli, nor is it understood 57 
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how differential responses relate to functional diversity of HSCs. HSCs are also regulated cell 58 

intrinsically (Zon, 2008, Morrison et al., 1996). Chromatin state is a crucial determinant of cell 59 

identity and behavior (Klemm et al., 2019). Hematopoietic differentiation is a prime example of 60 

how cell fate changes associate with massive remodeling of the epigenetic landscape 61 

(Avgustinova and Benitah, 2016). Despite the current knowledge on regulators of HSC fate, few 62 

studies have assessed chromatin states in purified, in vivo derived HSC populations (Yu et al., 63 

2017, Lara-Astiaso et al., 2014) due to technical limitations such as cell numbers. Recent 64 

advancements in single cell chromatin accessibility sequencing (scATAC-Seq) provides a 65 

methodological framework for studying the diversity and uniqueness of HSC chromatin features 66 

at homeostasis and upon external stimulation (Buenrostro et al., 2018, Lareau et al., 2019). 67 

Here, we performed comprehensive scRNA-Seq and scATAC-Seq profiling on functionally 68 

validated mouse HSCs and examined in vivo transcriptional responses to extracellular 69 

stimulation, mimicking signals from the stem cell niche. We found that unperturbed HSCs exist 70 

in distinct transcriptional states. Niche signals can alter the cell distribution between HSC states 71 

to varying degrees depending on the stimulant as well as induce specific changes within cell 72 

states. Comparison of HSCs to multipotent LSK (Lin-, c-Kit+, Sca1+) progenitors allowed us to 73 

determine the specificity of transcriptional responses in HSCs. Finally, analysis of native HSC 74 

chromatin states revealed cell intrinsic heterogeneity that may prime HSC subpopulations for 75 

particular transcriptional responses following exposure to certain signals. The data is provided 76 

as a resource to the broader research community via an easily accessible web interactive 77 

application (https://mouse-hsc.cells.ucsc.edu). Overall, this work provides the first 78 

comprehensive description of the single cell transcriptomic and epigenetic landscape of HSCs 79 

and multipotent LSK progenitors in vivo. 80 

 81 

Results 82 

 83 

In vivo stimulation of functionally validated HSCs and multipotent progenitors (MPPs) for 84 

transcriptomic and epigenetic profiling  85 

To investigate transcriptional responses to external signals, we profiled HSCs after four distinct 86 

in vivo niche perturbations (Fig 1A). Male and female mice were treated with one of three 87 

activators, 16,16-dimethyl Prostaglandin E2 (dmPGE2), Poly(I:C), or G-CSF for two hours or 88 

administered the Cox1/2 inhibitor Indomethacin (here abbreviated to ‘Indo’) for one week to 89 

deplete endogenous prostaglandins (see Methods). After the respective drug treatments, HSC 90 

and MPP populations comprising the entire LSK compartment were isolated via FACS (Sup Fig 91 
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1A). Through limit dilutions transplantation assay (LDTA) and ELDA analysis (Hu and Smyth, 92 

2009), we determined HSC purity to be 1 in 8 (Sup Fig 1B-1D). This confirmed that our isolation 93 

and purification procedure allows for the profiling of functional, highly purified HSCs. Cell cycle 94 

analysis further verified that HSCs were mostly quiescent, in contrast to other MPP populations 95 

(Sup Fig 1E)(Cabezas-Wallscheid et al., 2014). Phenotypic marker composition within LSK cells 96 

remained largely consistent between different stimulations (Sup Fig 1F). An exception was the 97 

reduction of cells within the HSC compartment following dmPGE2 treatment, decreasing from 98 

1.9% in control to 0.85% of LSK cells (p-value = 6.4*10-4, by differential proportion analysis 99 

(DPA)(Farbehi et al., 2019)). To account for a potential phenotypic shift in HSC surface marker 100 

expression due to CD34 externalization, which would move functional HSCs to the MPP1 101 

population, we compared the contribution of the later by scRNA-Seq defined ‘stem cell state’ in 102 

HSCs and MPP1s. We found no increase in the ‘stem cell’ population in dmPGE2 treated 103 

MPP1s, compared to the control (Sup Fig 2G). After cell sorting, we subjected a total of 46,344 104 

cells to scRNA-Seq using the 10x Genomics platform (see Methods). We obtained an average 105 

of 37,121 (SD = 14,308) reads per cell and 2,994 (SD = 480) genes per cell (Sup Table 1), 106 

indicative of a rich dataset that contained functionally validated HSCs. 107 

 108 

Niche signals induce rapid transitions between transcriptional HSC states  109 

To determine how niche stimulants affect HSCs, we analyzed a combination of control and 110 

treated cells. We applied a standard scRNA-Seq pipeline to filter and normalize UMI reads (see 111 

Methods). Separate analysis of male and female HSCs revealed little sexual dimorphism during 112 

both steady state and following activation (Sup Fig 3, Sup Table 2 and 3). We therefore 113 

regressed out any sex specific effects from further downstream analyses (see Methods). In the 114 

aggregated dataset, we detected a total of six clusters (Fig 1B). To ensure optimal choice of 115 

clustering hyper parameters, we used a data driven approach (Silhouette Coefficient and 116 

Davies–Bouldin index) that was validated by comparison of two independent biological scRNA-117 

Seq replicates of control HSCs sorted from different mouse strains (see Methods, Sup Fig 2A-118 

2D, Sup Table 4). The absence of clear separation into highly distinct clusters in UMAP space 119 

(Fig 1B), together with fact that most marker genes were not exclusively expressed but rather 120 

enriched in a given cluster (Fig 1C), suggests that the HSC clusters represent transcriptional 121 

states with continuous transitions as opposed to discrete subtypes of HSCs. Reactome pathway 122 

enrichment analysis (Sup Fig 2E) in combination with manual curation of enriched genes 123 

(Fig1D, Sup Table 4) allowed for assignment of  labels to each state/cluster. Three HSC 124 

clusters equally made up 98% of control cells (Fig 1F) and two minor clusters comprised 2% of 125 
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control HSCs. Consistent with the FACS results (Sup Fig 1E), the proportion of HSCs residing in 126 

a ‘Cell cycle’ cluster marked by genes such as Ki67 was very low (1%, Fig1C and 1F). A 127 

prominent HSC subpopulation contained cells that were defined by various immediate early 128 

genes (IEGs including Nr4a1, Ier2 and Fos (Fig 1B – D). We therefore named this cluster 129 

‘Activated’. We eliminated the possibility that the ‘Activated’ cluster arose due to an unspecific 130 

artifact of the cell isolation procedure since LSKs did not have an ‘Activated’ cluster and the 131 

proportion of Nr4a1 expressing cells was much smaller (Fig 2D and Sup Fig 4B). HSCs have 132 

been tightly linked to dormancy and quiescent states (Foudi et al., 2009, Wilson et al., 2008, Qiu 133 

et al., 2014). The cluster adjacent to the ‘Activated’ state was termed ‘Quiescent’ because cells 134 

within this population showed the highest expression levels of previously described HSC 135 

markers (Cabezas-Wallscheid et al., 2017, Chen et al., 2016, Wilson et al., 2015, Acar et al., 136 

2015, Gazit et al., 2014, Balazs et al., 2006) (Sup Fig 2F). Furthermore, ‘Quiescent’ HSCs did 137 

not express IEGs (Fig 1C) and were located most distal to the ‘Cell cycle’ cluster in UMAP 138 

space (Fig 1B-D). The ‘Metabolism’ cluster was comprised of the most metabolically active 139 

HSCs and showed enrichment of transcripts involved in translation initiation (Eif5a, Eif4a1), 140 

nucleotide metabolism (Nme1, Dctpp1), ribosome assembly (Ncl, Nop56, Nop10, Npm1), 141 

protein chaperones (Hsp90, Hsp60) and was located adjacent to the ‘Cell cycle’ cluster (Fig 1B-142 

D). We next evaluated whether treatment with niche stimulants shifts the distribution of cells 143 

between clusters (Fig 1E). Interferons induced by poly(I:C) treatment increased the proportion of 144 

HSCs within the ‘Interferon’ cluster from 1% to 42% (Fig 1F, p-value (DPA) < 10-5). The 145 

‘Interferon’ cluster was characterized by expression of interferon response genes such as Iigp1, 146 

Isg15, Ifit1, and Oasl2 (Fig 1D). In vivo treatment with dmPGE2 gave rise to a novel cluster 147 

named ‘Acute activation’ (Fig 1B) that contained 55% of dmPGE2-treated HSCs (Fig 1F). The 148 

cluster itself was entirely composed of dmPGE2-treated HSCs (Fig 1G) and marker genes 149 

include known cAMP-response genes such as Fosl2 (Fig 1C and D) and the 150 

phosphodiesterases Pde10a, Pde4b and Pde4d (Fig 1D). G-CSF and indomethacin induced 151 

slight shifts in cell distribution compared to control (Fig 1E) but did not significantly alter cell 152 

proportions between clusters (Fig 1F, p-value (DPA) > 0.05 for all clusters). In conclusion, at 153 

baseline HSCs were equally distributed between three main transcriptional states, here defined 154 

as the ‘Quiescent’, ‘Activated’ and ‘Metabolism’ (Fig 1F) with few HSCs residing in ‘Interferon’ 155 

and ‘Cell cycle’ states. A two-hour in vivo pulse with poly(I:C) or dmPGE2 significantly altered 156 

distributions of HSCs between pre-existing transcriptional states and, in the case of dmPGE2, 157 

allowed for a novel transcriptional state to surface.  158 

 159 
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Evaluation of scRNA-Seq phenotypes in entire LSK compartment to identify HSC specific 160 

cell states 161 

In order to evaluate specificity of transcriptional heterogeneity observed within HSCs and their 162 

response to niche signals, we analyzed the transcriptome of the entire LSK compartment, which 163 

encompasses both HSCs and MPPs (Sup Fig 1A, 1G and Sup Fig 2A). To assess 164 

transcriptional response and cell states in phenotypically defined MPPs (Cabezas-Wallscheid et 165 

al., 2014, Oguro et al., 2013, Pietras et al., 2015) (MPP, MPP1, MPP2, MPP3/4, Sup Fig 1A) a 166 

Hashtag Oligonucleotide (HTO) labelling strategy was used that is part of the Cellular Indexing 167 

of Transcriptomes and Epitopes by Sequencing (CITE-Seq) methodology (Sup Fig 4A, Fig 2B 168 

and Methods (Stoeckius et al., 2018)). CITE-Seq enables tracking of cell surface phenotypes in 169 

scRNA-Seq data through barcoding of cells with antibody conjugated DNA-oligos. ScRNA-Seq 170 

gene expression of marker genes such as Cd34, Cd48 and Cd150 (Slamf1) matched the 171 

surface phenotypes used for sorting of CITE-Seq barcoded MPPs, confirming that our workflow 172 

was successful (Fig 2C, Sup Fig 4B). Similar to the approach used for HSCs, we analyzed 173 

transcriptomic data from LSK cells as an aggregated set consisting of all four niche 174 

perturbations and control. We discovered a total of eight cell states, which similarly to HSCs 175 

displayed enrichment as opposed to exclusive expression of marker genes (Fig 2A). These 176 

clusters were labeled through analysis of enriched genes (Fig 2D, Sup Table 4), their 177 

composition of phenotypically defined cell populations tracked with CITE-Seq (Fig 2B and 2H) 178 

and by comparison to the earlier defined HSC clusters (Sup Fig 4C). LSK clusters most similar 179 

to the ‘Quiescent’ and ‘Activated’ HSC state were named ‘Progenitor’ and ‘Primed’, respectively. 180 

The ‘Progenitor’ cluster encompassed the majority of phenotypic HSCs and was significantly 181 

depleted of MPP3/4s compared to all other clusters (Fig 2H, DPA p-values < 0.02). Conversely, 182 

phenotypic HSCs were almost exclusively composed of ‘Progenitor’ cluster cells (Fig 2F). The 183 

location of HSCs at the edge of the UMAP plot could indicate the origin for differentiation (Fig 184 

2B and Sup Fig 4F). LSK cells in the ‘Primed’ cluster represent a more committed state given 185 

their expression of Cd34 and Flt3. Enrichment of Cd37 and Sox4 suggest priming towards a 186 

lymphoid fate (Fig 2D (Sun et al., 2013, Zou et al., 2018)). The two LSK clusters ‘Cell cycle’ and 187 

‘Metabolism’ contained cells that are mitotically active or are on the verge of entering the cell 188 

cycle, respectively. Comparison of the top 100 enriched genes between clusters indicated a 189 

33% overlap between the LSK ‘Metabolism’ cluster and the HSC ‘Metabolism’ cluster and 41% 190 

common enriched genes between the LSK ‘Metabolism’ cluster and the HSC ‘Cell-cycle’ cluster 191 

(Sup Fig 4B - C and Fig 2D). The myeloid cluster is defined by expression of genes such as 192 

Mpo, Ctsg, Fcer1g and Cebp (Fig 2D). Consistent with previous reports (Pietras et al., 2015), 193 
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MPP2s contained the highest proportion (7.6%) of myeloid cells and comprise 28% of the entire 194 

‘Myeloid’ cell cluster (Fig 2F and 2H). Control-treated LSKs were distributed amongst four main 195 

clusters, those being ‘Primed’, ‘Progenitor’, ‘Metabolism’ and ‘Cell cycle’, that together 196 

encompassed 99% of control LSK cells (Fig 2E). Similar to our observations in HSCs, only G-197 

CSF and indomethacin treatment did not alter cellular distributions between LSK clusters (Fig 198 

2E, Sup Fig 4G). Conversely, dmPGE2 and poly(I:C) gave rise to novel clusters that were 199 

absent in control LSKs (Fig 2E and G). These treatment-induced states displayed transcriptional 200 

profiles that were similar to the HSC equivalents (Sup Fig 4B and C, Fig 2D). Surprisingly, and 201 

in contrast to HSCs, no ‘Interferon’ responsive cell state was present in LSKs at baseline (Fig 202 

2E). Poly(I:C) treatment induced two interferon responsive clusters in LSKs, of which one 203 

showed higher mitotic activity (‘Interferon cell cycle’, Fig 2D and Sup Fig 4C). In summary, 204 

single-cell transcriptome analysis of a CITE-Seq validated LSK compartment revealed an 205 

increased proportion of lineage-committed and mitotically active and an absence of steady-state 206 

interferon responsive cells compared to HSCs. The changes in cell distribution between clusters 207 

upon niche stimulation were highly similar between LSKs and HSCs. Therefore using this 208 

analytic approach we did not uncover any HSC-specific cellular behaviors upon signaling from 209 

the niche. 210 

 211 

Within cluster analysis detects subpopulation specific effects of niche perturbations  212 

To assess niche-induced transcriptional changes in greater detail we used “Model-based 213 

Analysis of Single-cell Transcriptomics” or MAST (see Methods, (Finak et al., 2015)). This 214 

approach allowed us to perform differential expression analysis on stimulants compared to the 215 

control within each cell state cluster. We compiled differentially expressed genes (DEGs) of the 216 

four stimulant conditions at three levels of expression changes across all clusters, that is using a 217 

1.5-fold change, 1.2-fold change, and no fold-change cutoff (FDR < 0.01 see Methods and Sup 218 

Table 5). We then aggregated genes based on common (‘up/down overlap’) or unique 219 

expression (‘up/down HSC/LSK only’) within HSCs or LSKs (Fig 3A-D). G-CSF treatment 220 

perturbed gene expression more strongly within LSKs (green bars, Fig 3A) whereas interferon 221 

stimulation by Poly(I:C) predominantly affected HSCs (purple bars, Fig 3B). Receptor 222 

expression did not completely explain this difference since both the G-CSF receptor Csf3r and 223 

the type I interferon receptors Ifnar1 and Ifnar2 were expressed in a higher proportion of LSK 224 

cells compared to HSCs (Fig 3E and F). Indomethacin was found to selectively affect HSCs but 225 

overall very few genes were differentially expressed (Fig 3C). dmPGE2 led to a balanced effect 226 
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on HSCs and LSKs, with neither compartment dominating the DEGs (Fig 3D). We further 227 

analyzed DEGs that were unique for specific clusters within either HSCs or LSKs. dmPGE2 228 

stimulation decreased expression of genes that promote the cell cycle, such as Aurka, Plk1 and 229 

Ki67, within the LSK ‘Cell cycle’ cluster (Fig 3I, 3G; in red, Sup Fig 6C). As a comparison and to 230 

mimic a dataset that could be obtained by bulk RNA-Seq after sorting of MPPs, we analyzed 231 

DEGs in MPP surface phenotypes that were not split into distinct transcriptional clusters. DEG 232 

analysis within MPP surface phenotypes failed to recover the dmPGE2-mediated regulation of 233 

cell cycle genes (Fig 3H, in red). The differentially expressed cell cycle genes were likely not be 234 

detected in the pseudo-bulk MPP populations since only 6.4% (MPP) to 22% (MPP2, Fig 2F) of 235 

cells belong to the ‘Cell cycle’ cluster. A similar ‘dilution’ of treatment-specific effects within the 236 

‘Cell cycle’ cluster also occurred following G-CSF treatment when comparing pseudo-bulk and 237 

cluster separated LSK cells (Sup Fig 4D and E, in red). These results illustrated that within-238 

cluster-based differential expression analysis is highly sensitive in identifying genes specific to 239 

particular transcriptional states within a cellular compartment. In contrast to between-cluster cell 240 

distribution analysis, the within-cluster approach revealed specific transcriptional responses to 241 

niche signals in HSCs and LSKs.  242 

 243 

Endogenous cell states distinguish TLR- and IFN-specific responses of Poly(I:C) 244 

treatment  245 

To identify distinct patterns of regulation for different stimulations and hematopoietic stages, we 246 

selected genes that were differentially expressed within at least one HSC or LSK cluster. We 247 

then averaged expression of all cells within a cluster and grouped single cell clusters and genes 248 

by hierarchical clustering for HSCs (Sup Fig 5, Sup Table 6) and LSKs (Sup Fig 6, Sup Table 249 

7). Poly(I:C) binds to Toll-like receptor 3 (TLR3) (Alexopoulou et al., 2001) which leads to 250 

expression of Type 1 interferons (IFN and IFN) that in turn signal via IFN/ receptor 1 251 

(Ifnar1) and 2 (Ifnar2) heterodimers, all of which are expressed in HSCs (Fig 3E). We identified 252 

two expression patterns in poly(I:C)-treated HSCs that are consistent with toll-like receptor and 253 

interferon receptor signaling. The first expression pattern is driven by induction of poly(I:C) 254 

responsive genes across all cell states. In addition, these genes were also specifically enriched 255 

in the ‘Interferon’ cluster already prior to poly(I:C) stimulation (Fig 3J; ‘Up Interferon’). Genes 256 

within this group are either directly downstream of type 1 interferon receptors, such as Stat2 and 257 

Irf9, or act as effector proteins involved in viral interferon response such as Apobec3 and 258 

Eif2ak2 (Fig 3J, Sup Fig 4A). The high expression of several interferon-induced viral response 259 

genes (e.g. Bst2, Ifitm3, Ube2l6, and Rnf213) in the control ‘Interferon’ cluster might point to a 260 
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state of general surveillance for viral infection at baseline (Fig 3J, Sup Fig 5A). The second 261 

expression pattern (‘Up Toll-Like Receptor’) results from genes that are induced by Poly(I:C) 262 

treatment, especially in the poly(I:C) ‘Interferon’ cluster, but show low expression at baseline, 263 

even in the control ‘Interferon’ cluster. (Fig 3J, Sup Fig 5A). Genes within this signature include 264 

Nfkbia, Peli1, Map3k8, and Rps6ka3 and are part of TNF and Toll-like signaling pathways. 265 

This expression profile might therefore represent a more direct response of poly(I:C) interaction 266 

with Tlr3. Comparison of differential expression patterns across cell states allowed us to 267 

distinguish between poly(I:C)-mediated TLR- and interferon-based signaling. 268 

 269 

G-CSF triggers changes within a metabolic transcriptional state without changing cell 270 

distribution between HSC and LSK clusters 271 

G-CSF has been identified as a potent enhancer of granulocyte and neutrophil differentiation 272 

(Metcalf and Nicola, 1983). It is widely used as a mobilizing agent for hematopoietic stem cells 273 

in a therapeutic setting (Bendall and Bradstock, 2014). In line with its clinical use, we found 274 

niche adhesion receptors such as ckit and Cd9 (Leung et al., 2011) to be downregulated 275 

following in vivo G-CSF treatment (Sup Fig 5B, purple arrows).  276 

Overall G-CSF induced most DEGs within the HSC ‘Metabolism’ cluster. Hierarchical clustering 277 

revealed that G-CSF treatment alters the expression profile of the HSC ‘Metabolism’ cluster in a 278 

way that makes it more similar to ‘Cell cycle’ states (Sup Fig 5B). This resemblance is driven by 279 

induction of genes related to transcription, such as RNA binding proteins (Hnrnpd, Hnrnpf, 280 

Hnrnpa2b1), as well as splicing factors (Srsf7, Sf3b1, Srsf2) (‘Transcription’, Fig 3K). G-CSF 281 

also increased expression of transcripts involved in translation, including genes involved in 282 

ribosome biogenesis (Nop14, Nip7, Wdr43, Wdr12) and translation initiation (Eif4a1, Eif4ebp1). 283 

These transcripts were not expressed in the ‘Cell cycle’ state at baseline (‘Translation’, Fig 3K) 284 

and might be related to G-CSF-induced fate commitment towards differentiation. Overall, a two-285 

hour pulse of G-CSF pushed HSCs towards a more metabolically active state. Our scRNA-Seq 286 

data are consistent with the original description of G-CSF as a growth factor that regulates 287 

myeloid differentiation and indicates early transcriptional responses leading to HSC 288 

mobilization.  289 

 290 

Endogenous Prostaglandins regulate immediate early genes within ‘Activated’ cell states 291 

To investigate signaling from the niche in a more physiological setting, we orally treated mice for 292 

one week with indomethacin to deplete endogenous prostaglandins. Differential expression 293 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.09.430613doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.09.430613
http://creativecommons.org/licenses/by/4.0/


10 
 

analysis identified only 21 genes (1.2-fold change cutoff) to be differentially expressed 294 

compared to the control (Fig 3A). Of the upregulated genes, 10 out of 12 can be classified as 295 

IEGs (e.g. Fos, Fosb, Jun, Klf4 or Klf6) (Sup Fig 5D). While cell proportions did not change 296 

between the HSC clusters (Fig 1F), distribution of cells shifted slightly towards the periphery 297 

within the UMAP plot (Fig 1E). This change in distribution was seen with individual cluster 298 

marker genes such as Fos and other IEGs (Fig 4A, 4B and Sup Fig7A, 7 B). To further 299 

investigate the influence of endogenous prostaglandin depletion on cell distribution while taking 300 

the entire transcriptional landscape into account, we computed diffusion pseudotime (DPT) 301 

(Haghverdi et al., 2016) between the ‘Activated’ and ‘Quiescent’ cluster in HSCs. The cell with 302 

the combined highest expression of the three top cluster markers for the ‘Activated’ state (Fig 303 

4C, see Methods) was set as root cell and DPT was calculated originating from that root cell 304 

(Fig 4D). Indomethacin-treated cells displayed a significant shift to the left in overall pseudotime 305 

kernel density distribution (KDE), which is indicative of overall lower pseudotime (Fig 4E, p-306 

value = 5.8*10-12 by Mann–Whitney U-test). No shift was observed when comparing the control 307 

to G-CSF treated HSCs (Fig 4F, p-value = 0.18). Ranking cells for each treatment condition 308 

according to pseudotime and averaging gene expression in 10 equally sized bins (quantile rank 309 

1-10) further illustrated the change in expression of Fos and other IEG genes following 310 

indomethacin, especially at lower pseudotimes (Fig 4G and Sup Fig 7C; indicated by asterisks). 311 

Genes that were not part of the activated gene signature, such as Ly6a, did not follow the same 312 

pattern (Fig 4H), nor was a similar trend observed in response to G-CSF treatment (Sup Fig 313 

7D). The pseudotime analysis of the scRNA-Seq data indicated a specific shift in IEG 314 

transcriptional state upon depletion of endogenous prostaglandins. To further confirm the effect 315 

of endogenous prostaglandins on IEGs in an orthogonal assay, we measured single cell protein 316 

levels by intracellular flow cytometry for FOS. Across two independent experiments, a seven 317 

day in vivo indomethacin treatment led on average to a 34% (SD = 8.2%) reduction in FOS 318 

mean fluorescent intensity (MFI) in HSCs (p-value = 6.2 * 10-3, t-test with Welch’s correction) 319 

and a mean 35% (SD = 8.6%) decrease in LSKs (p = 6.6 * 10-3, Fig4I and J). Overall, 320 

endogenous prostaglandin levels impact both the transcriptional state and protein levels of FOS 321 

and potentially other IEGs. 322 

 323 

HSC-specific chromatin architecture is an intrinsic regulator of differential response to 324 

niche signals 325 

To better understand HSC intrinsic factors regulating the transcriptional ‘receptiveness’ to 326 

signals, we assessed chromatin states using single cell ATAC-Seq (scATAC-Seq, see Methods) 327 
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of sorted HSCs and MPPs. We clustered cells based on chromatin accessibility in HSCs (Fig 328 

5B) and LSK cells consisting of MPPs and HSCs (Fig 5E and F, Methods). To gain insight into 329 

the nature of the differentially accessible chromatin regions, we computed a per-cell 330 

transcription factor (TF) motif activity score using ChromVar (Schep et al., 2017) and evaluated 331 

enrichment of these scores across clusters. The motif activities of transcription factors STAT3, 332 

NF-B, and CREB1 that are immediately downstream of G-CSF, Poly(I:C), and Prostaglandins 333 

(Fig 5A), respectively, were homogeneously distributed in both HSCs and LSKs (Sup Fig 8A, 334 

8B, and Sup table 8). This result suggested that all cells have an equally responsive potential to 335 

these niche signals based on their accessible chromatin states. We did detect differential 336 

enrichment of motifs for transcription factors that are further downstream in the response to 337 

niche signals. Specifically, we found differential enrichment of the interferon signaling response 338 

element (ISRE) motif activity score in cluster 1 (Fig 5C) and AP-1 motif score in cluster 0 (Fig 339 

5D). Interferon-regulatory factors (IRFs) that bind ISREs are induced by NF-B signaling as well 340 

as direct targets of Poly(I:C) intracellular binding ((Negishi et al., 2018), Fig 5A). In addition to 341 

IRFs, HSC cluster 1 is characterized by motifs for transcriptional regulators that are important 342 

for cellular metabolism, cell growth, and differentiation such as CTCF, YY1, and NRF1 (Fig 5G 343 

and Sup Fig 8C). Enrichment of a similar set of motifs in LSK cell cluster 5 (Fig 5F and H in light 344 

green, Sup Fig 8G) indicated that this motif combination is not unique for HSCs. The location of 345 

cluster 5, being most distally from phenotypic HSCs on the UMAP plot (Fig 5E), further 346 

suggested that cells in this chromatin state are committing to or undergoing differentiation.  347 

The AP-1 motif which is specifically enriched in HSC cluster 0 can be bound by FOS and JUN, 348 

both downstream effectors of the Prostaglandin/CREB1 signaling pathway ((Luan et al., 2015), 349 

Fig 5A). We furthermore found motif activity enrichment in HSC cluster 0 for several key HSC 350 

lineage-specific master transcription factors including RUNX, GATA, and PU.1 (SPI1) (Fig 5I 351 

and Sup Fig 8D) as well as SMAD, another signal-responsive transcription factor (Sup Fig 8E 352 

and F). In contrast to IRFs, LSK cells did not contain a corresponding cluster where the same 353 

motifs cooccur as in HSC cluster 0 (Fig 5J and Sup Fig 8H). Therefore, the chromatin features 354 

of cluster 0 may be specific for HSCs. We found no indication that differential responsiveness to 355 

the niche stimulants is a result of distinct chromatin states of transcription factor motifs directly 356 

downstream of these signals. Rather, our analysis implicated cell intrinsic heterogeneity of 357 

further downstream effectors, such as AP-1 and IRFs. The specific motif co-occurrence of AP-1 358 

and HSC-lineage specific master factors, combined with their absence in LSKs, indicates an 359 

HSC-specific chromatin state.  360 

 361 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.09.430613doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.09.430613
http://creativecommons.org/licenses/by/4.0/


12 
 

Discussion  362 

Here, we provide the first transcriptional and epigenetic single cell analysis of a highly purified, 363 

functionally validated HSC population. Our work reveals that highly purified HSCs exist in fluent 364 

transcriptional and epigenetic states rather than distinctly separated cell types. Niche 365 

perturbations rapidly shift HSC distribution between HSC states within hours of signaling, 366 

providing evidence that the transcriptional states are highly dynamic and allow HSCs to quickly 367 

transition between states in response to different stimuli. Our single cell chromatin studies 368 

indicate cell intrinsic HSC heterogeneity that predisposes subpopulations for certain 369 

transcriptional responses. We detected an HSC specific co-occurrence of signaling and lineage-370 

specific transcription factor motif activities that is consistent with our previous observation in 371 

human hematopoietic progenitors (Trompouki et al., 2011, Choudhuri et al., 2020)). Absence of 372 

similar chromatin features in LSK progenitors may implicate a link to some of the unique 373 

functional capacities of HSCs, such as self-renewal. Overall, our data indicates that the single 374 

cell landscape of in vivo derived, functional HSCs is made up of a unique chromatin architecture 375 

with fluent transcriptional states, some of which can be rapidly influenced by signals from the 376 

niche. 377 

 378 

Our combined scRNA-Seq and CITE-Seq approach allowed us to gain insights into the 379 

transcriptional landscape of HSCs and phenotypically defined MPP populations within the LSK 380 

compartment at steady state and following niche perturbations. Our results enabled us to 381 

connect the transcriptional profile on a single cell level to the previously described phenotypic 382 

behaviors of these MPP populations (Oguro et al., 2013, Pietras et al., 2015, Cabezas-383 

Wallscheid et al., 2014). In addition, the CITE-Seq approach allowed us to cross-validate our 384 

transcriptional cell state assignments. The HTO CITE-Seq method provided a flexible tool to 385 

evaluate and compare transcriptional profiles within phenotypically defined populations because 386 

the technology used here is not dependent on the availability of specifically conjugated 387 

antibodies against particular surface receptors. In addition, Xist expression was used to 388 

deconvolute pooled male and female cells. While our analysis revealed only a weak sexual 389 

dimorphism that is consistent with previous reports (Nakada et al., 2014, Gal-Oz et al., 2019), 390 

the negligible additional investment to obtain data from both sexes may become the default 391 

experimental design in mammalian scRNA-Seq experiments. Our work presents evidence for 392 

two value-adding pooling strategies that allow for further insights into cell populations analyzed 393 

by scRNA-Seq. 394 

 395 
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We used a two-pronged strategy to assess the specificity of niche perturbations in HSCs or 396 

LSKs. First, we determined changes of cell proportions between cell states. Second, we 397 

evaluated differential expression within particular cell states following stimulation. The strength 398 

of transcriptional perturbation could not solely be estimated based on the distribution of cells 399 

within clusters alone. G-CSF did not change the cell proportions between clusters but rather 400 

elicited strong transcriptional responses within a given cell state. Furthermore, analysis of DEGs 401 

within clusters helped tease apart interferon- versus toll-like receptor response genes induced 402 

by Poly(I:C) treatment. We also uncovered a specific effect of dmPGE2 that only occurs within 403 

the LSK ‘Cell cycle’ cluster. A recent study corroborates our finding that dmPGE2 affects cell 404 

cycle states in the bone marrow (Patterson et al., 2020). Our results show that this within-cluster 405 

differential gene expression analysis was most sensitive to reveal HSC or LSK specific 406 

responses to niche perturbations.  407 

 408 

There is a tradeoff between the strength of a perturbation required for experimental robustness 409 

versus studying signals that are more physiologically relevant but lead to more subtle changes 410 

within and between cells. Here, we evaluated response of HSCs to three different activators 411 

mimicking niche signals that were dosed 2-4 orders of magnitude higher than what an animal 412 

would ever encounter during actual injury or infection (Eyles et al., 2008, Porter et al., 2013, 413 

Hoggatt et al., 2013, Sheehan et al., 2015). To assess niche-derived signals in a more 414 

physiological setting, we administered the Cox1/2 inhibitor indomethacin orally for one week to 415 

deplete endogenous prostaglandins. As expected, the changes in gene expression with 416 

indomethacin were much weaker than those observed after acute injection with dmPGE2, G-417 

CSF, and poly(I:C). ScRNA-Seq analysis offers unique tools to evaluate gene expression 418 

changes in response to weak perturbations. Pseudotime analysis showed that depletion of 419 

endogenous prostaglandins using indomethacin leads to a small but significant shift in the 420 

transcriptional state of HSCs. The effect of indomethacin on IEGs such as Fos was further 421 

validated in independent FACS experiments which showed that the transcriptional programs 422 

implicated through pseudotime were also found to be perturbed using this orthogonal assay. 423 

How exactly the increase in RNA levels of Fos observed in scRNA-Seq can be reconciled with 424 

decreased FOS protein levels determined by FACS analysis will need to be addressed in future 425 

experiments. Another important implication and potential caveat highlighted by our findings is 426 

that RNA and protein levels may not always positively correlate, even on a single cell level. 427 

Regardless, scRNA-Seq technologies provides sensitive tools to interrogate subtle changes in 428 

cellular states.  429 
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 430 

In summary, we showed that single cell approaches provide a rich and sensitive tool to analyze 431 

transcriptional and epigenetic states of HSCs during homeostasis and upon niche perturbation. 432 

We found that HSCs exist in dynamic cell states and niche signals can induce rapid transitions 433 

between, as well as changes within, these HSC states. While our work does not reveal whether 434 

these transcriptional states are associated with specific niches in vivo, novel spatial 435 

transcriptomic approaches provide exciting new opportunities to address such questions 436 

(Rodriques et al., 2019). Additionally, recently developed barcoding strategies enable 437 

assessment of niche-induced transcriptional changes and functional potential of single cells 438 

within the same experiment (Rodriguez-Fraticelli et al., 2020). Understanding endogenous 439 

levels of niche-derived factors and the associated transcriptional and epigenetic responses will 440 

advance our basic understanding of stem cells and their potential applications in the clinic.  441 

  442 
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Materials and Methods 443 

 444 

WET LAB METHODS 445 

 446 

Mice and niche stimulant treatment 447 

For the HSC Replicate 1 experiment we used the following mouse strain (#016617) that was 448 

obtained from Jackson labs but bred in house. For niche stimulant treatments male and female 449 

mice (8–10 weeks) were ordered from Jackson labs (strain CD 45.2 (Ly5.2), #00664). Mice 450 

were kept for at least 1 week in the animal facility before initiating experiments and allocated at 451 

random (by cage) into experimental groups. Indomethacin (Sigma, 6mg/l) was administered for 452 

7 days in acidified drinking water to maintain stability (Curry et al., 1982, Pratico et al., 2001). 453 

Indomethacin supplemented drinking water was changed every other day. Mice were injected 454 

with the following drugs and euthanized after 2 hours: Poly(I:C) HMW (Invivogen), IP injection 455 

10mg/kg (Pietras et al., 2014). G-CSF Recombinant Human Protein (Thermo fisher), IP 456 

injection, 0.25mg/kg (Morrison et al., 1997). DmPGE2 (Cayman), SC injection, 2mg/kg(Hoggatt 457 

et al., 2013). Mice were weighed before injection and injection volume was adjusted to ensure 458 

equal dose between individual mice. The ‘control’ condition from the niche stimulant treatments 459 

was also used as the second independent biological replicate of unperturbed HSCs (HSC 460 

Replicate 2). All animal procedures were approved by the Harvard University Institutional 461 

Animal Care and Use Committee.  462 

 463 

Bone marrow preparation and Fluorescence activated cell sorting (FACS) 464 

Whole Bone marrow was isolated from femur, tibia, hip and vertebrae via gentle crushing using 465 

a mortar and pestle. Stem and progenitor cells were enriched via lineage depletions (Miltenyi 466 

Biotech, 130-090-858). Antibodies, dilutions and vendors are listed in Sup Table 9. Cells were 467 

stained for 1.5 hours based on published best practice protocols for assessing CD34 labelling 468 

(Ema et al., 2006). HSCs (LSK, CD48-, CD150+, CD34-), MPP1s (LSK, CD48-, CD150+, 469 

CD34+), MPPs (LSK, CD48-, CD150-), MPP2s (LSK, CD48+, CD150+), and MPP3/4s (LSK, 470 

CD48+, CD150-) were sorted on a FACSAria (Becton Dickinson) and representative sorting 471 

scheme is shown in Supplemental Fig 1A. Purity of > 80% was ensured by reanalyzing each 472 

sorted population.  473 

 474 

 475 
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Sample size estimation and sample batching 476 

To determine appropriate sample sizes of mice and HSCs we performed an initial experiment 477 

on fresh HSCs (HSC Replicate1) which yielded estimated number of 2382 cells (after filtering), 478 

and which resolved biologically meaningful clusters. In subsequent experiments we therefore 479 

targeted obtaining a similar or higher cell number. For niche stimulant treatment we based our 480 

sample size of 5 male and 5 female mice on this initial experiment. Because of sample 481 

processing times a maximum of two conditions could be performed on the same day, resulting 482 

in three separate days of experiments. To mitigate batch effects resulting from different 483 

experimental days the following precautions were taken. (1) All mice included in the niche 484 

stimulant treatment were ordered from the same batch from JAX. (2) Control mice were 485 

administered acidified water injected with DMSO to control for both unspecific perturbations that 486 

might result from the niche stimulant treatments. (3) All experiments were performed within less 487 

than one week and single cell libraries were prepared together for all samples after the initial 488 

droplet reaction was frozen. (4) FACS gates were set up initially but left constant for each 489 

experiment. Single color controls as well as Fluorescence minus one (FMO) controls ensured 490 

that there was minimal day-to-day technical drift on the FACS instrument.  491 

 492 

Intracellular staining for FACS 493 

BM extraction, lineage depletion and surface marker staining were performed as described 494 

above. Cells were fixed and permeabilized for intracellular staining according to manufacturer’s 495 

instructions (BD biosciences, 554714). Intracellular staining was performed for 30 minutes on 496 

ice. Samples were analyzed on an LSRII FACS analyzer. 497 

 498 

Limit dilution Transplantation assay 499 

Recipient CD45.2 (Jax #00664) mice were gamma-irradiated (Cs-137 source) with a split dose 500 

of 5.5 Gy each one day before transplantation. HSCs were isolated from CD45.1 (Jax #002014) 501 

donors and transplanted with 200 000 whole bone marrow cells (CD45.2) via retro-orbital 502 

injection. Donor cell engraftment was monitored monthly for 16 weeks using a LSRII FACS 503 

analyzer (Becton Dickinson). Flow cytometry data were analyzed with FlowJo (Tree Star). HSC 504 

frequency was calculated using the following website http://bioinf.wehi.edu.au/software/elda/. 505 

 506 

Single-cell RNA and ATAC sequencing library preparation and sequencing 507 

Male and female cells were sorted separately but pooled in equal ratios before further 508 

downstream processing. For CITE-Seq HTO labelling of MPP populations, 0.25ug of TruStain 509 
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FcX™ Blocking reagent (Biolegend) was added for 10 minutes on ice. Each MPP populations 510 

was labelled with 1ug of TotalSeq™ antibody cocktail (Biolegend, see Sup Table 9) and 511 

incubated for 30 minutes on ice. After washing, cells were resuspended in small amounts, 512 

counted and pooled in equal ratios. Each drug treatment condition resulted in one pooled MPP 513 

and one HSC sample that were processed separately for scRNA-Seq according to 514 

manufacturer’s recommendations (10X Genomics, 3’ V2 for HSC Replicate1 experiment and V3 515 

for niche stimulant treatments). Briefly, for pooled MPPs, no more than 10 000 cells were 516 

loaded. For HSCs, all sorted cells (between 2222 sorted events for dmPGE2 and 12017 sorted 517 

events for control) were loaded on the 3’ library chip. For preparation of HTO – surface libraries 518 

manufacturer’s recommendations (Biolegend) were followed. For ATAC-seq HSCs and MPPs 519 

(pooled MPP, MPP1, MPP2 and MPP3/4) were sorted as described above from 5 male and 5 520 

female mice (strain CD 45.2 (Ly5.2), JAX strain #00664). Nuclei were isolated and libraries were 521 

prepared using manufacturers recommendations (10x Chromium Single Cell ATAC). Libraries 522 

were sequenced on a Next-seq 500, 75 cycle kit (‘Replicate 1’, scRNA-Seq) and NOVAseq 523 

6000, 100 cycle kit (‘Replicate 2’ and niche stimulant treatments, scRNA-Seq, sc-ATAC-seq).  524 

 525 

COMPUTATIONAL AND STATISTICAL ANALYSES 526 

All code and a detailed description of the analysis is available in the following Github repository 527 

https://github.com/evafast/scrnaseq_paper). To ensure reproducibility the entire analysis 528 

(except cellranger and Cite-seq count) was entirely performed in Docker containers. Containers 529 

used for the analysis are indicated in the Jupyter notebooks and corresponding images are 530 

available on dockerhub (repository: evafast1). Interactive cell browser web app is available 531 

here: (https://mouse-hsc.cells.ucsc.edu). Raw data are available with GEO accession code 532 

GSE165844. 533 

 534 

Demultiplexing and generation of count matrices  535 

Cellranger (v3.0.1) command ‘mkfastq’ was used to demutliplex raw base call (BCL) files into 536 

individual samples and separate mRNA FASTQ files and HTO surface fastq files. The cellranger 537 

‘count’ command was used with default options to generate gene by cell matrices from mRNA 538 

FASTQ files. CITE-Seq count (version 1.4.3) was used to generate surface count by cell 539 

matrices from the HTO surface FASTQ libraries. For the fresh HSC Replicate1 experiment 540 

cellranger (v2.1.0) was used for demultiplexing and count matrix generation. The mm10 541 

reference genome was used for all alignments. For scATAC-seq cellranger-atac mkfastq and 542 

count (1.2.0) was used for demultiplexing and alignment and generation of the fragment file. To 543 
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generate the count matrix MACS2 was run with default parameters (keeping duplicates) on the 544 

aligned reads. Resulting peak summits were extended to 300 bp and counts were extracted 545 

from Fragment file using a custom script (see Github repository) to generate a count matrix.  546 

 547 

Quality control and Filtering and dimensionality reduction of scRNA-Seq data 548 

The main parts of the bioinformatic analysis of scRNA-Seq data was performed using the 549 

python package scanpy (Wolf et al., 2018). For filtering and quality control best practice 550 

examples were followed (Luecken and Theis, 2019). Count matrices were filtered on a gene and 551 

cell level. Cells were excluded with either less than 3,000 UMIs, less than 1,500 (LT) or 2,000 552 

(MPPs) genes or more than 20,000 (LT) or 30,000 (MPPs) counts. A cutoff of no more than 553 

10% UMIs aligned to mitochondrial genes per cell was applied. Genes expressed in less than 554 

20 cells were excluded from the analysis. Counts were normalized to 10,000 per cell and log 555 

transformed. Features (genes) were scaled to unit variance and zero mean before 556 

dimensionality reduction. To reveal the structure in the data we built a neighborhood graph and 557 

used the leiden community detection algorithm (Traag et al., 2019) to identify communities or 558 

clusters of related cells (see also below). The UMAP algorithm was used to embed the high 559 

dimensional dataset in a low dimensional space (Becht et al., 2018). Differential proportion 560 

analysis (DPA) was used for comparing cell proportions between clusters as previously 561 

described (Farbehi et al., 2019). Interactive visualization app of scRNA-Seq data was prepared 562 

using UCSC Cell Browser package (Speir et al., 2020). 563 

 564 

Demultiplexing of CITE-Seq hashtag data 565 

We used the DemuxEM (Gaublomme et al., 2019) implementation in pegasuspy 566 

(https://github.com/klarman-cell-observatory/pegasus/tree/0.17.1) to assign MPP surface 567 

identities and demultiplex to the pooled MPP sample. First background probabilities 568 

(‘pg.estimate_background_probs’) were estimated using default settings and ‘pg.demultiplex’ 569 

was run adjusting the alpha and the alpha_noise parameter to maximize cell retrieval by singlet 570 

classification. Assignments were validated by plotting count matrix in UMAP space and 571 

observing four distinct clusters indicative for the four HTO labels that were pooled. The 572 

proportion of demultiplexed cells matched the original pooling ratio. Analysis of coexpression of 573 

sex specific genes allowed for further validation of the doublet rate. Proportion of cells classified 574 

by DemuxEM as doublets exceeded doublet rate estimated by co-expression of sex specific 575 

genes.  576 

 577 
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Batch correction 578 

Because of timing required for sort and sample prep it was impossible to sort HSCs from all 579 

conditions on one day (see also ‘Sample size estimation and sample batching’ above). To 580 

correct for potential batch effects we used ComBat (Johnson et al., 2007) with default settings 581 

on the log2 expression matrix, allowing cells to be clustered by cell type or cell state. Batch 582 

correction results were similar when we used Scanorama (Hie et al., 2019). To correct for 583 

potential sex specific differences Xist counts were regressed out. Raw data was used for all 584 

differential expression analysis and plotting of single cell gene expression values. Batch 585 

corrected counts were used for clustering and diffusion pseudotime analysis. 586 

 587 

Optimal cluster parameter selection 588 

Since HSCs and MPPs are highly purified cell populations we did not observe any clearly 589 

separated clusters in UMAP space. To aid the optimal choice of hyperparameters for leiden 590 

clustering we used a combination of Silhouette Coefficient and Davies–Bouldin index. We first 591 

validated this approach using the PBMC3K (from 10x genomics, scanpy.datasets.pbmc3k()) 592 

silver standard dataset. We iterated through a range of KNN nearest neighbors and Leiden 593 

resolution combinations measuring average Silhouette coefficient and Davies-Bouldin index in 594 

PCA space for each combination. Plotting the optimal value for Silhouette score and Davies-595 

Bouldin index versus increasing numbers of clusters allowed for the determination of 596 

appropriate cluster number for the dataset. For the PBMC dataset there was a clear drop-off in 597 

optimal value after 8 clusters, which is corroborated by most single cell tutorials that also report 598 

8 clusters for this dataset. After validation of this approach on PBMCs we used assessed 599 

Silhouette Coefficient and Davies–Bouldin index for different clustering results of our own HSC 600 

and MPP datasets. This allowed us to select the optimal hyper-parameters for each cluster 601 

number. The approach was validated by using data driven parameters to compare two 602 

independent biological replicates of control HSCs (‘Repl_1’ and ‘Repl_2’). 603 

 604 

Differential expression using MAST 605 

Differential expression analysis was performed using MAST (“Model-based Analysis of 606 

Singlecell Transcriptomics, (Finak et al., 2015). This method is based on a Hurdle model that 607 

takes into account both the proportion of cells expressing a given transcript as well as transcript 608 

levels themselves while being able to control for covariates. Based on previous reports 609 

differential expression cutoff was set at 1.2 fold (Smillie et al., 2019) and a more stringent cutoff 610 

of 1.5 fold was also included. Only genes that were expressed in at least 5% of the cells were 611 
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considered for differential expression analysis. FDR (Benjamini & Hochberg) cutoff was set at 612 

1%. For drug treatments differential expression between treatment and control was assessed 613 

within the entire MPP or LT dataset and within each cluster controlling for number of genes per 614 

cell and sex. For differential expression analysis between male and female cells at baseline, 615 

control datasets were analyzed with clusters and number of genes as a co-variates. For sex 616 

specific effects of drug treatments samples were split by sex and analyzed separately. Resulting 617 

differential expression coefficients were compared between male and female cells. To identify 618 

gene signatures with common patterns, for each treatment average expression of differentially 619 

expressed genes was extracted per cluster, scaled (z-score) and grouped together by similarity 620 

using hierarchical clustering (seaborn.clustermap, Euclidian distance, single linkage). 621 

 622 

Diffusion pseudotime analysis 623 

For diffusion pseudotime analysis (Haghverdi et al., 2016) cells from the ‘Quiescent’ and 624 

‘Activated’ cluster were selected for the following treatments: control, indomethacin and G-CSF. 625 

We recalculated PCA and UMAP embeddings in this reduced dataset. Re-clustering using the 626 

Leiden algorithm was used to exclude outlier cells and assess top enriched genes within the 627 

new ‘Activated’ cluster. Raw expression of the three top enriched genes (Nr4a1, Nr4a2, Hes1) 628 

was summed to robustly select the most highly ‘activated’ cell as a root cell. Diffusion 629 

pseudotime was calculated with the following function in scanpy (‘sc.tl.dpt’) using default 630 

settings. Cells were ranked according to pseudotime and kernel density distribution was plotted 631 

using a bandwidth of 0.02. The Mann-Whitney U test was used to assess if cells from different 632 

samples are drawn from the same pseudotime distribution. To analyze gene expression across 633 

pseudotime, for each sample cells were split into ten equally sized bins according to ascending 634 

pseudotime. Bin 1 contained the first 10% of cells with the lowest pseudotime and bin 10 635 

contained the 10% of cells with the highest pseudotime. Average gene expression for 636 

representative genes were plotted for each bin and sample. 637 

 638 

Single cell ATAC-seq 639 

The R package Signac (https://github.com/timoast/signac, version 0.2.5), an extension of Seurat 640 

(Stuart et al., 2019), was used for quality control, filtering of ATAC-seq peaks counts and 641 

plotting. Quality of scATAC dataset was ensured by presence of nucleosomal banding pattern 642 

and enrichment of reads around transcription start sites (TSSs). Cells were removed with a less 643 

than 1 000 or more than 20 000 fragments in peaks. Male and female cells were classified 644 

according to absence or presence of Y-chromosome reads. Since distribution of male and 645 
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female cells appeared uniform across all analyses no downstream correction was taken for sex. 646 

Term frequency-inverse document frequency (TF-IDF) was used for normalization and 647 

dimensionality reduction was performed by singular value decomposition (SVD). Cells were 648 

clustered using the Louvain community finding algorithm after a neighborhood graph was built 649 

with k = 20 (HSCs) or k = 30 (LSK) nearest neighbors. To calculate TF motif scores, ChromVAR 650 

(Schep et al., 2017) was run with default parameters using the JASPAR 2018 motif database. 651 

   652 
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Supplemental Tables 653 

 654 

Supplemental Table 1: Sequencing metrics 655 

Sequencing metric output from cellranger. 656 

Supplemental Table 2: Overlap of differentially regulated genes in male and female HSCs 657 

and LSKs 658 

Table summarizing number of differentially regulated genes within male and female HSCs and 659 

LSKs. Over-representation analysis odds ratio and p-value were calculated using a Fisher’s 660 

exact test.  661 

Supplemental Table 3: Differential expression result (MAST) by sex 662 

Each tab contains a treatment vs. control comparison (dmPGE2, Indo, Poly(I:C), G-CSF). Each 663 

cluster was compared to its respective control cluster separated by sex. Log fold change and 664 

adjusted p-value from the Hurdle model are listed for genes with p-values < 0.01.  665 

Supplemental Table 4: Marker gene enrichments in scRNA-Seq clusters 666 

Marker gene enrichment was calculated using a Wilcoxon-Rank-Sum test. Score (suffix ‘_s’) 667 

indicates the z-score of each gene on which p-value computation is based. Other fields are 668 

logfold change = suffix ‘_l’ and False discovery adjusted p-value – suffix ‘_p’. 669 

Supplemental Table 5: Differential gene expression result (MAST) 670 

Each tab contains a treatment vs. control comparison (dmPGE2, Indo, Poly(I:C), G-CSF). Each 671 

cluster was compared to its respective control cluster. Log fold change and adjusted p-value 672 

from the Hurdle model are listed for genes with p-values < 0.01.  673 

Supplemental Table 6: Average expression per cluster of differentially regulated genes in 674 

HSCs 675 

Count normalized and log transformed UMI counts from were averaged across HSC clusters for 676 

differentially regulated genes from MAST  677 

Supplemental Table 7: Average expression per cluster of differentially regulated genes in 678 

LSKs 679 

Count normalized and log transformed UMI counts from were averaged across LSK clusters 680 

differentially for regulated genes from MAST.  681 

Supplemental Table 8: ChromVar TF motif activity score enrichment in LSK and HSC 682 

scATAC clusters 683 

ChromVar motif activity score enrichment for HSC and LSK scATAC clusters.  684 

Supplemental Table 9: List of antibodies used  685 
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Figure legends 917 

 918 

Figure 1: HSCs are transcriptionally heterogeneous and niche perturbations rapidly shift 919 

cells into different states 920 

(A) Schematic of stimulant treatment before HSC and MPP isolation. (B) UMAP plot of HSC 921 

clusters (n = 15 355 cells) (C) UMAP plot with expression of representative genes for each 922 

cluster. (D) Dot plot of enriched genes for each HSC cluster (scaled expression across 923 

columns). (E) UMAP density graphs of HSC distribution upon each niche stimulant (F) 924 

Proportion of HSCs within clusters for each niche perturbation. (G) Proportion of HSCs from 925 

each niche perturbation within a cluster normalized for total cell number per treatment. 926 

 927 

Figure 2: MPP surface marker validated LSK clusters respond similarly to drug 928 

treatments like HSCs 929 

(A) UMAP plot of LSK clustering (n = 8191 cells). (B) UMAP plot of surface receptor phenotypes 930 

in LSK cells. (C) Stacked violin plots of gene expression for surface markers within MPPs and 931 

HSCs. (D) Dot plot of enriched genes for each LSK cluster (scaled expression across columns). 932 

(E) Proportion of LSK cells within clusters for each niche perturbation. (F) Proportion of LSK 933 

cells belonging to different clusters for each surface phenotype. (G) Proportion of LSK cells from 934 

each niche perturbation within a cluster normalized for total cell number per treatment. (H) 935 

Proportion of surface phenotypes within each LSK cluster. 936 

 937 

Figure 3: LSK and HSC cluster-specific differential gene expression analysis reveals 938 

novel, specific effects on HSC and LSK subpopulations  939 

(A-D) Stacked bar graphs with proportion of differentially expressed genes that are unique for 940 

HSCs (purple) MPPs (green) or overlapping (grey) for G-CSF (A), Poly(I:C) (B), Indo (C) and 941 

dmPGE2 (D) treatment. Below each bar graph the total number of differentially expressed genes 942 

(‘Genes #’) for each fold-change (‘Cutoff’) is listed. (E-F) Violinplots of receptor expression in 943 

control HSCs (E) and LSKs (F) split by cluster. (G) Upsetplot visualizing differentially expressed 944 

genes between dmPGE2 and control for each cluster (horizontal bars) and intersection of gene 945 

sets between clusters (vertical bars) indicated by dots. Red bar and dot indicate specific genes 946 

in the Cell cycle cluster. (H) Upsetplot visualizing differentially expressed genes between 947 

dmPGE2 and control for each MPP surface phenotype. Red bar indicates genes that are absent 948 

from any of the conditions (MPP, MPP1, MPP 2, MPP3/4). (I) Dot plot of representative cell 949 

cycle genes and expression in LSK clusters in control and dmPGE2. (J) Dot plot of 950 
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representative genes from Poly(I:C) treated and control HSC clusters (scaled expression across 951 

columns). (K) Dot plot of representative genes from the G-CSF treated and control HSC clusters 952 

(scaled expression across columns). 953 

 954 

Figure 4: Indomethacin treatment induces change in IEG transcriptional state in HSCs  955 

(A-H) Diffusion pseudotime analysis. UMAP plot of Fos expression in control (A) and upon 956 

indomethacin (B) treatment. Diffusion map embedding with combined expression of activated 957 

genes to select root cell (C) and cells colored by pseudotime (D). Kernel density of cell 958 

pseudotime distribution comparing indomethacin and control (E) and G-CSF and control (F). 959 

Average expression of Fos (G) and Ly6a (H) across cells ranked by pseudotime (cells split into 960 

10 bins to decrease noise), change in transcript levels indicated by asterisk in G. (I) Histogram 961 

of FOS levels via intracellular FACS of HSCs, ‘no stain’ is FACS negative control, ‘control’ is 962 

FOS in untreated mice. (J) Normalized mean fluorescence intensity (MFI) for FOS in control and 963 

indomethacin treated HSCs (p = 6.2 * 10-3, Welch corrected t-test) and LSK cells (p = 6.6 * 10-3, 964 

Welch corrected t-test) across two independent biological replicate experiments. n (mice) = 20.  965 

 966 

Figure 5: Specific transcription factor binding motif cooccurrences in HSCs 967 

(A) Schematic of downstream transcriptional signaling pathways for niche stimulants. (B-D) 968 

UMAP plot of HSC scATAC-Seq clusters (n = 730 cells) (B) and ISRE (C) or AP-1 (D) TF motif 969 

scores. (E-F) UMAP plot of LSKs (n = 10750 cells) colored by surface phenotype (E) and 970 

scATAC-Seq clusters (F). (G-H) Violin plots of TF motif scores enriched in HSC cluster 1 in 971 

HSCs (G) and LSKs (H). (I-J) Violin plots of TF motif scores enriched in HSC cluster 0 in HSCs 972 

(I) and LSKs (J). 973 
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Supplemental Figure legends 975 

 976 

Supplemental Figure 1: Functional characterization of HSC populations confirms high 977 

regenerative capacity 978 

(A) Sorting scheme of MPPs and HSCs. Cells were lineage depleted prior to sort. (B) Schematic 979 

of limit dilution transplant experiment. (C) Chimerism per mouse and lineage distribution 4 980 

months post-transplant. (D) Limit dilution analysis for transplant experiment. (E) Cell cycle 981 

FACS in MPP and HSC populations. (F) Percentage of MPPs and HSCs within LSK cells at 982 

baseline and after niche stimulation. (G) Proportion of each surface phenotype within all five 983 

experimental conditions after computational reassembly of the LSK compartment. 984 

 985 

Supplementary Figure 2: Validation of single cell RNA-Seq clustering with independent 986 

replicates, pathway enrichment and candidate genes  987 

(A-D) Comparison of clustering of control HSCs in two biological replicates. UMAP plots for 988 

replicate 1 (A, n = 2382 cells) and 2 (B, n = 5334 cells) and summarized cell proportions in each 989 

cluster (C). (D) Pairwise comparison of the proportion of overlap of the top 100 enriched genes 990 

for each cluster. (E) Reactome pathway analysis with enriched genes for each HSC cluster. (F) 991 

UMAP plots with expression of previously described HSC markers. (G) Proportion of dmPGE2 992 

and control cells within clusters split by surface phenotype for HSCs and MPP1s. 993 

 994 

Supplementary Figure 3: Little sexual dimorphism in HSCs in steady state and upon 995 

stimulation 996 

(A) Xist expression, classification of male and female cells and male and female cells plotted 997 

separately. (B) Stacked Violin plots of all consistent sexual dimorphic genes (red; female, blue; 998 

male) for two independent biological replicates. (C-D) Proportions of male and female HSCs (C) 999 

and LSK cells (D) within clusters for each drug treatment (p(DPA) > 0.05 for all male vs. female 1000 

comparisons). (E) Heat map of average expression for ‘opposite directionality’ genes in HSCs 1001 

for indomethacin (‘Indo’) and control. (F) Scatter plot of differential expression coefficient 1002 

(converted to log2 scale) induced by stimulants in HSCs (F) and LSKs (G) between male (y-axis) 1003 

and female (x-axis). Solid red line indicates equal expression coefficients (coef female = coef 1004 

male) and dashed line indicates a two-fold deviation (2*coef female = coef male or vice versa). 1005 

Green arrowhead indicates ‘opposite directionality’ genes in indomethacin (shown also in E). 1006 
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Supplemental Figure 4: Gene expression in LSKs enables evaluation of specificity of 1008 

niche stimulation in different cell populations  1009 

(A) Schematic of LSK pooling and CITE-Seq surface hashtag (HTO) methodology. (B) UMAP 1010 

plots with expression of selected genes in LSK cells. (C) Heat map of proportion of overlap 1011 

between the 100 top enriched genes for LSK (rows) and HSC (columns) clusters. (D) Upsetplot 1012 

visualizing differentially expressed genes between G-CSF and control for each cluster 1013 

(horizontal bars) and intersection of gene sets (vertical bars) between clusters indicated by dots. 1014 

Red bar and dot indicate specific genes in the Cell cycle cluster. (E) Upsetplot visualizing 1015 

differentially expressed genes between G-CSF and control for each MPP surface phenotype. 1016 

Red bar indicates genes that are absent from any of the conditions (MPP, MPP1, MPP 2, 1017 

MPP3/4). (F-G) UMAP density graphs visualizing the distribution of cells by surface phenotype 1018 

(F) or by niche stimulation (G). 1019 

 1020 

Supplemental Figure 5: Clustered heat maps of differentially expressed genes in HSCs 1021 

enables identification of genes and single cell clusters with similar expression patterns 1022 

(A-D) Heat map of differentially expressed genes between niche stimulants and control in 1023 

HSCs. Single cell expression is averaged within a single cell cluster, scaled to z-scores and 1024 

similar genes (rows) and clusters (columns) are aggregated by hierarchical clustering. Black row 1025 

label indicates HSC specific genes, grey label marks genes differentially expressed in both 1026 

HSCs and LSKs. (A) poly (I:C) at 1.5-fold cutoff. (B) G-CSF at 1.2-fold cutoff, (C) dmPGE2 at 1027 

1.5-fold cutoff, (D) Indomethacin at 1.2-fold cutoff. 1028 

 1029 

Supplementary Figure 6: Clustered heat maps of differentially expressed genes in LSKs 1030 

enables identification of genes and single cell clusters with similar expression patterns 1031 

(A-D) Heat map of differentially expressed genes between niche stimulants and control in LSKs. 1032 

Single cell expression is averaged within a single cell cluster, scaled to z-scores and similar 1033 

genes (rows) and clusters (columns) are aggregated by hierarchical clustering. Black row label 1034 

indicates LSK specific genes, grey label marks genes differentially expressed in both HSCs and 1035 

LSKs. (A) poly (I:C) at 1.5-fold cutoff. (B) G-CSF at 1.5-fold cutoff, (C) dmPGE2 at 1.5-fold 1036 

cutoff. 1037 

 1038 

Supplemental Figure 7: Indomethacin affects transcriptional state of IEGs  1039 

(A) UMAP plot with expression of selected ‘activated’ genes in control (A) and indomethacin (B). 1040 

Average expression of the same genes across cells ranked by pseudotime (cells split into 10 1041 
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bins to decrease noise) comparing indomethacin and control (C, difference indicated by 1042 

asterisk) or G-CSF and control (D). 1043 

 1044 

Supplementary Figure 8: Uniform distribution of motif activity immediately downstream 1045 

of niche stimulants and differential enrichment for secondary signals in HSCs and LSKs.  1046 

(A-B) UMAP plots (A) and violin plots (B) of TF motif scores immediately downstream of 1047 

Prostaglandin, Poly(I:C) and G-CSF signaling. (C-D) HSC UMAP plots of TF motif scores 1048 

enriched in HSC cluster 1 (C) and in HSC cluster 0 (D). (E-F) UMAP plot (E) and violin plot (F) 1049 

of SMAD TF motif score in HSCs. (G-H) LSK UMAP plots of TF motif scores enriched in HSC 1050 

cluster 1 (G) and in HSC cluster 0 (H). Overlapping motif activities in LSK cluster 5 are indicated 1051 

with a green arrowhead in G.  1052 
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Figure 4: Indomethacin treatment induces change in IEG transcriptional state in HSCs 
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Figure 5: Specific transcription factor binding motif cooccurrences in HSCs
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Supplementary Figure 2:  Validation of single cell RNA-Seq clustering with independent replicates, pathway enrichment and candidate genes
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A

Supplementary Figure 3: Little sexual dimorphism in HSCs in steady state and upon stimulation
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Supplemental Figure 4:  Gene expression in LSKs enables evaluation of speci�city of niche stimulation in di�erent cell populations
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Supplementary Figure 5: Clustered heat maps of di�erentially expressed genes in HSCs enables identi�cation of genes and single cell clusters 
with similar expression patterns 
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Supplementary Figure 6: Clustered heat maps of di�erentially expressed genes in LSKs enables identi�cation of genes and single cell 
clusters with similar expression patterns
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Supplemental Figure 7: Indomethacin a�ects transcriptional state of IEGs  
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Supplementary Figure 8: Uniform distribution of motif activity immediately downstream of niche stimulants and 
di�erential enrichment for secondary signals in HSCs and LSKs.

-2

0

2

-5.0 -2.5 0.0 2.5 5.0
UMAP1

U
M

AP
2

0.5

1.0

1.5

 CRE

-2

0

2

-5.0 -2.5 0.0 2.5 5.0
UMAP1

U
M

AP
2

0.5
1.0
1.5
2.0

  NFKB

-2

0

2

U
M

AP
2

-5.0 -2.5 0.0 2.5 5.0
UMAP1

0.5

1.0

1.5

 STAT

-2

0

2

-5.0 -2.5 0.0 2.5 5.0
UMAP1

U
M

AP
2

0.5
1.0
1.5
2.0

  RUNX

-2

0

2

-5.0 -2.5 0.0 2.5 5.0
UMAP1

U
M

AP
2

0.5
1.0
1.5
2.0

   GATA

-2

0

2

U
M

AP
2

-5.0 -2.5 0.0 2.5 5.0
UMAP1

1

2

3

 SPI1/Pu.1

-2

0

2

-5.0 -2.5 0.0 2.5 5.0
UMAP1

U
M

AP
2

1
2
3
4

  CTCF

-2

0

2

-5.0 -2.5 0.0 2.5 5.0
UMAP1

U
M

AP
2

0.5
1.0
1.5

    YY1

-2

0

2

U
M

AP
2

-5.0 -2.5 0.0 2.5 5.0
UMAP1

0.5
1.0
1.5
2.0

   NRF1

-2

0

2

U
M

AP
2

-5.0 -2.5 0.0 2.5 5.0
UMAP1

0.5

1.0

1.5

SMAD

-5

0

5

-5.0 -2.5 0.0 2.5 5.0
UMAP1

U
M

AP
2

1
2
3
4
5

     AP-1

-5

0

5

-5.0 -2.5 0.0 2.5 5.0
UMAP1

U
M

AP
2

0.5
1.0
1.5
2.0

     RUNX

-5

0

5

-5.0 -2.5 0.0 2.5 5.0
UMAP1

U
M

AP
2

1
2
3
4

     GATA

-5

0

5

U
M

AP
2

-5.0 -2.5 0.0 2.5 5.0
UMAP1

1

2

3

   SPI/Pu.1

C

D

F

A

H

E G

B

-4

-2

0

2

4

0 1
Cluster

  T
F 

m
ot

if 
sc

or
e

0
1

 SMAD

-4

-2

0

2

0 1
Cluster

  T
F 

m
ot

if 
sc

or
e

   CRE

-2.5

0.0

2.5

5.0

0 1
Cluster

  T
F 

m
ot

if 
sc

or
e

  NFKB

-2

0

2

0 1
Cluster

  T
F 

m
ot

if 
sc

or
e

 STAT

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.09.430613doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.09.430613
http://creativecommons.org/licenses/by/4.0/

