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ABSTRACT 19 

1. Understanding long-term trends in marine ecosystems requires accurate and 20 

repeatable counts of fishes and other aquatic organisms on spatial and temporal 21 

scales that are difficult or impossible to achieve with diver-based surveys. Long-22 

term, spatially distributed cameras, like those used in terrestrial camera trapping, 23 

have not been successfully applied in marine systems due to limitations of the 24 

aquatic environment.  25 

2.  Here, we develop methodology for a system of low-cost, long-term camera traps 26 

(Dispersed Environment Aquatic Cameras), deployable over large spatial scales 27 

in remote marine environments. We use machine learning to classify the large 28 

volume of images collected by the cameras. We present a case study of these 29 

combined techniques’ use by addressing fish movement and feeding behavior 30 

related to grazing halos, a well-documented benthic pattern in shallow tropical 31 

reefscapes.  32 

3. Cameras proved able to function continuously underwater at deployed depths (up 33 

to 7 m, with later versions deployed to 40 m) with no maintenance or monitoring 34 

for over five months, and collected time-lapse images during daylight hours for a 35 

total of over 100,000 images. Our ResNet-50-based deep learning model achieved 36 

92.5% overall accuracy in sorting images with and without fish, and diver surveys 37 

revealed that the camera images accurately represented local fish communities.  38 

4. The cameras and machine learning classification represent the first successful 39 

method for broad-scale underwater camera trap deployment, and our case study 40 
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demonstrates the cameras’ potential for addressing questions of marine animal 41 

behavior, distributions, and large-scale spatial patterns.  42 

KEYWORDS: Behavior, camera trap, image classification, long-term, machine learning, 43 

marine, underwater, reefscape, deep learning, landscape of fear 44 

 45 

INTRODUCTION 46 

Terrestrial camera trapping is a growing field and a technique increasingly applied 47 

in global biodiversity monitoring (e.g., Steenweg et al. 2017). Camera traps are remotely 48 

activated cameras that rely on motion and heat sensors to trigger when an animal passes 49 

by. They are used to study species richness (Rowcliffe 2017) and the distribution, 50 

abundance, habitat use, and behavior of wildlife around the world, with many studies 51 

surveying more than one species at a time (Burton et al. 2015). Most camera traps are small, 52 

relatively inexpensive, and often deployed in groups or networks over a wide area for 53 

months at a time. They are typically less invasive and more reliable than comparable 54 

observation techniques (Cutler and Swann 1999). Because they trigger based on the 55 

difference between background radiation and a warm-bodied animal passing through the 56 

sensor’s field, camera traps have typically been used to study mammals and birds, although 57 

the field is now expanding to include some ectotherms (Rowcliffe 2017).  58 

Comparable techniques for monitoring underwater species face several technical 59 

challenges, chiefly the attenuation of infrared radiation in water, which renders a standard 60 

commercial camera trap unlikely to trigger underwater, except at very close range (Giles 61 

and Bankman 2005), and the rigors of operating in the marine environment where water 62 

intrusion and algal and faunal fouling are persistent issues. The fact that most fish are 63 
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ectotherms further complicates use of the traditional heat-triggered infrared sensor 64 

technology used in most terrestrial camera traps. Far-red illumination invisible to most fish 65 

provides one potential alternative to infrared (Williams et al. 2014), although far-red light 66 

still attenuates over short distances underwater. Given the ability of sound to propagate 67 

well underwater, acoustic techniques provide another possible alternative to infrared 68 

sensing (Giles and Bankman 2005). Acoustic cameras have been used in the past to image 69 

sharks and other fish in low-light, turbid environments, replacing light-based imaging 70 

entirely (McCauley et al. 2016). This suggests that acoustic techniques could also be used 71 

to trigger conventional optical cameras.  72 

Due to the power requirements of active triggering (far-red light, sonar) and 73 

recording methods, current underwater fish monitoring and measurement techniques are 74 

either limited by short battery life and operate on the scale of hours, as with baited remote 75 

underwater video (BRUV) and similar short-term recording devices (Cappo et al. 2004, 76 

Colton and Swearer 2010, Brooks et al. 2011, Williams et al. 2014, Boussarie et al. 2016) 77 

or require a tethered, external power source (Boom et al. 2014, Marini et al. 2018). Because 78 

of this, the spatial extent, number of cameras, and duration of monitoring for marine 79 

systems are vastly smaller in scope than terrestrial efforts (compare Williams et al. 2014 80 

and Siddiqui et al. 2018 to the TEAM or Snapshot Serengeti datasets described in Beaudrot 81 

et al. 2016, Norouzzadeh et al. 2018, respectively). Even long-term underwater monitoring 82 

with an external power supply may be limited to recording images or video during daylight 83 

hours (e.g., Boom et al. 2014) due to the difficulties of avoiding reflected particulate matter 84 

in underwater images taken at night with direct illumination. Without a side-mounted or 85 

similarly external flash, both white light and infrared images will be obscured by the 86 
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illumination of biotic and abiotic particulates suspended in the water column, and 87 

continuous illumination may also attract fish and other marine organisms, depending on 88 

the color of the light (Ko et al. 2018). Thus, most long-term underwater observations are 89 

limited with regard to both power and nighttime illumination, and solutions can be costly 90 

and prohibit deployment of underwater cameras in remote locations without access to 91 

external power or consistent upkeep.  92 

A related challenge faced by both terrestrial and marine camera traps is the time 93 

cost related to processing and analyzing large photosets obtained from multiple cameras 94 

over the course of months or years (Norouzzadeh et al. 2018). While computer vision 95 

techniques are not yet widespread in the field of camera trapping, they have the potential 96 

to reduce time cost (Rowcliffe 2017) and have already been successfully applied to the 97 

extensive Snapshot Serengeti camera trap dataset (Norouzzadeh et al. 2018) as well as 98 

video frames from cabled or short-term marine cameras (Boom et al. 2014, Siddiqui et al. 99 

2018, Marini et al. 2018, Villon et al. 2018).  100 

Here we present a simple design for an affordable, long-running, autonomous 101 

underwater camera based on an existing commercially-available terrestrial model. We 102 

outline the deployment of our Dispersed Environment Aquatic Cameras (DEACs) across a 103 

270 km2 tropical reefscape, our testing, and our subsequent analysis of the 100,000+ 104 

images obtained by implementing a deep convolutional neural network (CNN) technique 105 

for image classification. To demonstrate both the efficacy of our design and the value of 106 

long-term unmanned underwater observations to marine ecology research, we present a 107 

case-study in fish feeding behavior as it relates to a well-documented benthic pattern at 108 

Lighthouse Reef Atoll, Belize.  109 
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 110 

METHODS 111 

Design 112 

Camera Selection 113 

Cuddeback Silver Series scouting cameras, model 1231 (Cuddeback, Green Bay, 114 

WI, USA), were chosen for their compact size, their relatively high 20 megapixel (MP) 115 

image resolution, and their time-lapse function, which allows images to be taken at pre-116 

programmed time intervals and certain light levels without requiring the use of additional 117 

video or motion-triggered image settings. This programming flexibility, especially 118 

regarding the time-lapse feature, is not included in multiple similar cameras from other 119 

manufacturers. The cameras were programmed to take 20 MP images every 15 minutes 120 

whenever ambient light levels were high enough to allow for color photography without 121 

flash, using the “Day” setting. Nighttime images and video and all infrared sensor-triggered 122 

images and video were disabled to conserve both power and memory space because initial 123 

field tests showed that few or no additional usable images were captured using the infrared, 124 

low-light “Night” setting.  125 

Cameras were synchronized to record photos on the hour and every 15 minutes 126 

following to ensure that images from different cameras and sites were captured at the same 127 

time of day and under the same local conditions. The 15-minute interval was chosen to 128 

balance the need for regular observations of reef and seagrass communities that may 129 

include transient fish species and the constraints of storing and processing thousands of 130 

high-resolution images collected by multiple cameras over a months-long deployment. The 131 
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ability of this interval to adequately capture the community composition and species 132 

present at a given reef was validated using in-person diver surveys (described below).  133 

Memory cards were 32 GB SanDisk (Western Digital Corporation, Milpitas, CA, 134 

USA) or Kingston (Kingston Technology Corporation, Fountain Valley, CA, USA) 135 

microSD cards with adapters, capable of holding over 25,000 20 MP color images each. 136 

Each camera required eight Energizer Ultimate Lithium AA batteries (Energizer Holdings, 137 

Inc., St. Louis, MO, USA), which provided enough power for over five months of 138 

continuous function under the settings described here.  139 

The total cost of each camera, including the batteries and SD card, came to just 140 

$125 per unit with the housing (discussed below). The use of pre-built commercial trail 141 

cameras, which are designed for energy efficiency over long deployments, significantly 142 

reduced both material and energy costs, relative to constructing a similar camera from 143 

scratch using components like a Raspberry Pi (Raspberry Pi Foundation, Cambridgeshire, 144 

UK) and GoPro (GoPro, Inc., San Mateo, CA, USA), Canon (Canon, Inc., Ota City, Tokyo, 145 

Japan), or Sony (Sony Corporation, Minato City, Tokyo, Japan) cameras, as used in 146 

previous underwater camera applications (e.g., Brooks et al. 2011, Williams et al. 2014, 147 

Boussarie et al. 2016, Siddiqui et al. 2018, Villon et al. 2018).  148 

 149 

Housing Construction 150 

Two different housings were tested in the field, both based on commercially 151 

available junction box enclosures. Housing 1, based on item DS-AT-1217-1 available from 152 

“Saipwell” (Saip Electric Group Co., Ltd, Wenzhou, China), has thinner walls (2.4 - 3.9 153 

mm) made of an unspecified plastic. The top secures with specially-shaped plastic screws 154 
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and it contains an O-ring like insert made of foam. Housing 2, based on model ML-155 

47F*1508 from Polycase, Inc. (Avon, OH, USA), is a thick-walled (3.5 - 4.0 mm) design 156 

made of polycarbonate resin secured with stainless steel screws and a silicon rubber gasket. 157 

Both housings had a 2 inch diameter hole drilled in the faceplate and a 3 inch disk of 1/8 158 

inch thick acrylic epoxied to the opening with MarineWeld (J-B Weld Company, Atlanta, 159 

GA, USA) to act as a window. Since both housings used identical acrylic windows and 160 

contained the same cameras, images collected using each design were indistinguishable; 161 

the chief difference between the housings was their pressure tolerance and leakage at depth. 162 

Each housing cost approximately $30 for all components (included in the total price given 163 

above). Ablative antifouling boat paint was applied to the housing exterior, excluding the 164 

back and acrylic window, of a subset of cameras with Housing 2 to reduce biofouling.  165 

Cameras were programmed, armed, and packed inside their housings with 166 

cardboard spacers. Housings were sealed with Star brite marine silicone sealant (Star brite, 167 

Fort Lauderdale, FL, USA) around the seam of the enclosure lid. Silicone sealant was also 168 

used to reinforce the edges of the epoxy seal around the lens window, both inside and 169 

outside.  170 

 171 

Field Installation 172 

Cameras were secured to four-legged bent rebar stands with plastic cable ties 173 

threaded through mounting holes pre-built into the housings (Fig 1). Due to their buoyancy, 174 

camera housings were placed underneath the crossed rebar forming the top of each stand 175 

and secured laterally to the four legs, which were sunk into the sediment to keep the stands 176 

upright. Lightweight plastic or polystyrene buoys were tethered to a small subset of 177 
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cameras and stands located in particularly shallow water (2 m or less) to prevent collision 178 

by boats.  179 

 180 

 181 

Figure 1. DEACs were deployed on four-legged rebar stands in the field. Plastic cable ties 182 

attached to the camera housing and to the legs were used to secure buoyant cameras in 183 

housings below the crossed rebar at the top of each stand. Bottom left inset: A detailed 184 

front view of a camera in Housing 1 underwater.  185 

 186 

Deployment 187 

Study System and Question 188 

Lighthouse Reef Atoll off the coast of Belize is primarily a shallow (1-8 m depth) 189 

lagoon environment, dominated by scattered patch reefs interspersed with a mosaic of 190 

seagrass, macroalgae, and sand. Although relatively isolated from the mainland, the atoll 191 
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is subject to heavy local fishing pressure for conch, lobster, and certain fish species. A 192 

small no-take marine protected area (MPA) surrounds the island of Half Moon Caye in the 193 

southeastern corner of the atoll. Because of its shallow benthos, wide variety of benthic 194 

cover types, and spatial variation in protected status, Lighthouse Reef provides an ideal 195 

location to test our DEACs under a variety of conditions. The shallow marine grazing 196 

system of Lighthouse Reef and similar Caribbean locations is in many ways analogous to 197 

terrestrial grazing systems like the African savanna (Burkepile 2013), where camera trap 198 

networks have been effectively deployed for years (e.g., Norouzzadeh et al. 2018).  199 

To structure our testing and demonstrate the utility of the DEACs for addressing 200 

ecological questions at large spatial scales, we organized our deployments around a 201 

widespread benthic pattern particularly prominent at Lighthouse Reef: grazing halos. 202 

Grazing halos consist of a bare sand or lightly vegetated border surrounding a coral patch 203 

or similar underwater structure that separates the reef from surrounding dense vegetation 204 

(i.e. seagrass or algae). The heightened grazing observed inside these halos could be due 205 

to a landscape of fear (e.g., Hammerschlag et al. 2015), where herbivores are afraid to 206 

venture past a threshold distance from the reef due to predation risk (Madin et al. 2011). 207 

At Lighthouse Reef, grazers are mostly large parrotfishes (Scaridae) and surgeonfishes 208 

(Acanthuridae). However, this threshold of fish density could also be due simply to the 209 

natural dispersion of grazers as they venture farther from the reef, which serves as a central 210 

aggregating structure for many fish (Sale and Douglas 1984, Bohnsack 1989, Layman et 211 

al. 2013). We proposed that if a strong landscape of fear is in effect, herbivorous species 212 

observed and photographed in the halo will never venture out into the surrounding seagrass, 213 

except perhaps when traveling in schools. However, a simple drop-off in fish density with 214 
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distance would still result in the occasional grazing reef fish being seen by our cameras, 215 

and if reef fishes are food limited rather than predator limited, they should forage widely 216 

in the seagrass, which is a preferred food (Bilodeau 2019). Therefore, regular detection of 217 

reef herbivores out in the seagrass over multiple months could be taken as evidence refuting 218 

the landscape of fear at Lighthouse Reef.  219 

 220 

Spatial Arrangement 221 

Cameras were deployed in pairs at 21 patch reef sites within Lighthouse Reef Atoll. 222 

DEAC sites were distributed evenly inside and outside of the Half Moon Caye Natural 223 

Monument MPA in the southeastern corner of the atoll. Seven sites (3 inside the MPA, 4 224 

outside) featured predominantly algal bottom cover; the rest were in areas surrounded by 225 

seagrass, primarily Thalassia testudinum. Patch reef sites for camera deployment were 226 

chosen via random point placement using satellite imagery and a depth map of the atoll 227 

(courtesy of the Carnegie Airborne Observatory), which allowed sites to be evenly 228 

stratified across depths from 2-7 m.  229 

Sites deeper than 4 m were initially avoided due to leakage of Housing 1 past this 230 

depth, although depths of up to 7 m (maximum depth required in the study) were 231 

successfully achieved with Housing 2, which was used for initial deployments in March 232 

2018 and all deployments from August 2018 onward. Cameras were deployed in sets of 233 

two, one camera located at the edge of the sandy halo surrounding a patch reef and the 234 

other located at least twice the halo’s width away from the edge in the surrounding seagrass 235 

or algal benthic cover (Fig 2). In the case of particularly narrow halos, “control” cameras 236 

were placed a minimum of 15 m from the halo edge. This allowed control cameras a view 237 
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of the same bottom cover (seagrass or macroalgae) as that adjacent to the halo but placed 238 

them well beyond the fish density thresholds observed by Layman et al. (2013), while also 239 

accounting for the possibility that larger halos could represent reefs with larger or farther-240 

ranging fish populations. “Halo” cameras had a relatively wide field of view, as is typical 241 

of terrestrial trail cameras, which included both the halo in front of them and the patch reef 242 

beyond. Both cameras were pointed toward the reef, although the edge of the halo was 243 

beyond the range of view for the grass (“control”) camera at most sites. 244 

 245 

Figure 2. Camera arrangement at a patch reef site. One camera was placed on the edge 246 

of the halo facing in toward the reef (“Halo Cam”), while the second (“Control Cam”) 247 

was placed twice the halo’s width away in the surrounding seagrass or algal cover, in line 248 

with the first camera.   249 
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 250 

Monitoring and Secondary Deployments 251 

Camera deployments occurred in stages, with the first cameras deployed in March 252 

2018 and the last cameras collected in March 2019 (Fig S1). The longest-running DEACs 253 

remained continuously active underwater from August 2018 to January 2019, a five-month 254 

interval, and were still operating at retrieval. Initial deployment of cameras in March 2018 255 

included one camera at the edge of a halo and a second camera pointed at the first in order 256 

to assess whether the presence of the camera and stand had any effect on the presence or 257 

behavior of marine animals. Given that no effects of camera presence were noted in this 258 

initial test, doubling of cameras in this manner was discontinued for future deployments, 259 

with the two cameras at each site positioned to monitor different benthic environments and 260 

unable to see each other. During the summer of 2018 (June to August), cameras were 261 

consistently checked every 1-2 weeks for leakage, algal overgrowth, or stand displacement. 262 

Cameras deployed at longer intervals from March to June 2018, August 2018 to January 263 

2019, and January to March 2019 were unmonitored during these periods in order to test 264 

long-term underwater function and determine the effects of biofouling on housings and 265 

image quality in the absence of cleaning or regular adjustments.  266 

 267 

Diver Observations 268 

In-water observations were conducted by a team of 2-3 divers at each camera site 269 

and at several additional locations in order to validate the camera’s ability to detect fish 270 

and other animals. Observations consisted of all divers sitting directly behind each camera 271 

for 15 minutes and recording the presence and abundance of all fish and other animals 272 
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observed on the reef, in the halo, or in the grass to the genus or species level, when possible. 273 

Divers faced forward toward the reef and recorded all fish observed within the halo or on 274 

the reef itself, as this was the primary field of view of the camera. In the seagrass or 275 

macroalgae, divers again faced toward the reef and recorded only fish that swam in front 276 

of them and the camera. Divers remained stationary for the entire observation period at 277 

each camera, and their presence did not have any observable effects on fish within the 278 

camera’s view, with multiple fish of different species swimming quite close to divers 279 

during the observations. Fish species and counts were determined by a consensus of all the 280 

divers present at each observation. A non-metric multidimensional scaling (NMDS) 281 

analysis was run on species communities inside and outside of the halo using data from 282 

diver observations at 20 camera locations and species counts from 54 additional images 283 

taken in the 15-minute intervals before, during, and after the diver observations at 18 of 284 

those locations. Only images from immediately before, after, and during diver observations 285 

were used for comparison in order to control for natural variation in fish communities over 286 

time, since the main goal of the comparison was to assess the ability of the cameras to 287 

capture known community composition at a given location and time. All fish in this subset 288 

of images were identified to the genus or species level by the same researchers who 289 

conducted the in-water diver observations. To determine whether divers had any effect on 290 

fish presence, counts from images captured before, during, and after diver observations 291 

were compared using a nonparametric Friedman rank sum test and a Wilcoxon signed rank 292 

test for pairwise comparisons. All analyses were conducted using R statistical software 293 

version 4.0.3 (R Core Team 2020) with packages qdap (Rinker 2019), reshape (Wickham 294 

2007), rstatix (Kassambara 2020), and vegan (Oksanen et al. 2018).  295 
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Image Analysis 296 

Image Sorting 297 

Images were initially named and sorted by location, time, and date using the 298 

camtrapR (Niedballa et al. 2016) package in R (R Core Team 2020). A subset of over 299 

13,000 images were sorted by trained undergraduate student volunteers into categories 300 

containing at least one visible fish (“Fish”) and without any visible fish (“NoFish”). To 301 

ensure consistency, all volunteers were initially trained on the same subset of ~300 302 

images drawn from multiple different cameras and their accuracy assessed by the 303 

research team before they were assigned a larger subset of images to sort individually. 304 

Due to the nature of timed rather than motion or heat triggered photos, many images did 305 

not contain fish.  306 

 307 

Model Choice 308 

In order to streamline future analyses of fish photos and identification and avoid 309 

manual redundancy in discriminating fish existence in pictures, we built and trained a 310 

Convolutional Neural Network (CNN) based on ImageNet pretrained ResNet-50 (He et al. 311 

2016), a deep residual network widely used in image classification. We chose ResNet as 312 

our base structure because we wanted conservative results in classifying fish pictures. 313 

ResNet is powerful at preventing overfitting, making it less likely to omit pictures 314 

containing fish. The reproducible code was implemented in Pytorch (He et al. 2016, Paszke 315 

et al. 2017, Howard et al. 2018) to identify images with animals (Fig 3).  316 

 317 
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 318 

Figure 3. Empty (left) and fish-filled (right) images captured at the same camera site within 319 

24 hours. The empty or “NoFish” photo was assigned only a 0.09 probability of containing 320 

a fish by our ResNet-50 model, whereas the model predicted a 0.88 probability of the 321 

second photo containing at least one fish, hence its “Fish” designation. Probabilities like 322 

these were used to sort images into “Fish” and “NoFish” categories to streamline further 323 

analysis.  324 

 325 

Training and Validation 326 

Our model was trained on a sample of 10,727 images sorted by our team of 327 

trained volunteers and then run on 75,470 additional images to sort them into “Fish” and 328 

“NoFish” categories. To augment the training set, we preprocessed the fish images with 329 

spatial transformations, cropping and lightening variation, and used focal loss (Lin et al. 330 

2017) as an objective function to address the problem of imbalanced labels. 331 

 332 

Image Analysis 333 

Images with a “Fish” probability of 0.4 or above were used to determine the relative 334 

presence of fish at camera sites inside and outside of the Half Moon Caye MPA. A cutoff 335 

of 0.4 was chosen based on the model’s reduced ability to correctly identify fish presence, 336 

compared to fish absence. This analysis of fish occupancy was conducted based on the 337 
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relative proportions of the total images classified that did or did not contain fish inside and 338 

outside of the MPA and at patch reef and seagrass/algae locations.  339 

 340 

RESULTS 341 

Camera Performance in the Field 342 

Cameras and Housings 343 

Housing 1 proved vulnerable to flooding at depths exceeding 4 m and prone to 344 

leaking even at shallower depths. This appears to be due primarily to the thin nature of 345 

Housing 1’s walls and lid, which deformed substantially under pressure, breaking the 346 

epoxy seal with the lens and allowing water to enter. Housing 2 proved far more robust to 347 

pressure and had minimal leakage even at a maximum deployed depth of 7 m over 348 

multiple months. Further testing with this housing will be necessary to determine its 349 

maximum functional depth, but preliminary tests with a revised housing design have 350 

reached depths of 40 m.  351 

The cameras themselves proved resilient to flooding and were typically still 352 

armed and taking photos when extracted from partially-flooded housings. However, 353 

many cameras recovered from flooded housings were unable to be redeployed due to 354 

lasting damage to their internal systems. Batteries were sufficient to power the cameras 355 

past the five month extraction date of our longest deployment, with all non-flooded 356 

cameras still displaying the starting battery status of “OK” (not “LOW” or “DEAD”). 357 

Maximum water temperature measured at any of our deployment sites, which could 358 

affect battery life, was 30° C (86° F). Cuddeback advertises that their cameras can 359 

operate up to 12 months continuously with efficient battery usage. Memory cards were 360 
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more than sufficient to store images on the schedule that they were collected during this 361 

period (approximately 8.5 GB of images over 5 months), suggesting that image frequency 362 

could be doubled or tripled in future deployments, assuming that processing of these 363 

additional images is sufficiently streamlined with the use of computer vision or similar 364 

techniques.  365 

 366 

Environmental Variability 367 

 Different benthic environments and camera positioning affected the quality and 368 

interpretability or classification of images. In shallow seagrass and macroalgal 369 

environments, suspended organic matter in the water column reduced visibility, 370 

especially at certain times of day under specific light conditions. Suspended organics may 371 

also have contributed to high biofouling in these benthic environments (discussed below). 372 

Camera orientation with regard to compass direction was varied between sites during 373 

deployment, although both cameras at any given location were oriented in the same 374 

direction. While visibility due to the direction and angle of sunlight varied throughout the 375 

day at all locations, some orientations produced a greater number of poorly-lit images or 376 

images with strong light reflection off of suspended particles in the water column, 377 

reducing the overall image quality or number of usable images for those sites.  378 

 379 

Biofouling 380 

The most significant impediment to long-term camera function at our sites was 381 

biofouling, the growth of marine organisms over the camera housing and stands. Image 382 

quality declined rapidly due to biofouling, making fish identification impractical in as 383 
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little as one month depending on site conditions (Fig S2), with a median value of two 384 

months endurance, although imagery from some cameras remained usable up to four or 385 

five months after deployment. This biofouling decreased both fish detections in images 386 

and the ability of our model to accurately classify images taken by biofouled cameras 387 

(Fig S3, S4). Algal grazing by fish was an important factor reducing fouling on cameras 388 

and stands placed near patch reefs, while cameras placed in seagrass or algae beds away 389 

from patch reefs were overgrown with algae over the same deployment period that halo 390 

cameras remained relatively unobstructed (Fig 4). The addition of antifouling boat paint 391 

to the camera housings before the August 2019 deployment appeared to be only a minor 392 

deterrent to organisms growing on the housing in general and did not prevent the camera 393 

lens window from being almost completely obscured 2-3 months after deployment. In 394 

addition to biofouling, camera function was also limited by reduced visibility at certain 395 

sites, which varied based on local turbidity and light availability, and by depth. 396 

Preliminary tests of a similar camera design in Hawai’i suggest that the extreme 397 

biofouling observed at Lighthouse Reef is not representative of all such reef 398 

environments and may be related to especially high productivity and suspended organic 399 

matter in the water column at this location.  400 

 401 
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 402 
 403 

Figure 4. Comparison of biofouling and algal overgrowth of structures placed at the edge 404 

of the halo, adjacent to seagrass (left), and in middle of the surrounding seagrass (right) 405 

after a month. Similar results seen across all camera sites suggest that reef-based 406 

herbivores help to control algal growth both within and at the edges of the halo but do not 407 

graze heavily, if at all, on algae and related marine organisms in the surrounding algal or 408 

seagrass beds.  409 

 410 

Image Classification and Accuracy 411 

Of the 130,621 images collected, 88,899 were deemed usable (68%) based on a 412 

visual examination, despite some level of biofouling in many of these. Our ResNet-50-413 

based model had an overall accuracy of 92.5% when classifying these images into “Fish” 414 

or “NoFish” categories, with higher accuracy in identifying empty or “NoFish” photos 415 

due to the increased number of these in the training dataset (Table 1).  416 

 417 

  418 
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Table 1. Accuracy of model predictions. Accuracy is determined by comparing the 419 

computer’s prediction for each image with the actual label of “Fish” (image contains at 420 

least one fish or similar animal) or “NoFish” (image is empty) assigned to the photo by a 421 

team of trained volunteers. The model was trained on 10,727 images classified by 422 

volunteers and then validated with an additional 2,702 human-sorted images, the results of 423 

which are shown in this table. Prediction accuracy is higher for “NoFish” (empty) images, 424 

likely due to the higher proportion of this type of image in both the training and validation 425 

datasets.  426 

 427 

True Image 

Designation 

Correct 

Predictions 

Incorrect 

Predictions 

Percent 

Accuracy (%) 

Fish 444 165 72.9 

NoFish 2057 36 98.3 

All images 2501 201 92.5 

 428 

Community Composition 429 

Comparison with Diver Observations 430 

Large compositional differences were identified between the halo/reef and 431 

seagrass/algae fish communities but no obvious difference between the communities 432 

constructed from diver species observations and those from camera images (NMDS; Fig 433 

5), although individual images consistently contained fewer fish than were observed by 434 

divers during a 15-minute period at the same site (Fig S5). An ANOSIM conducted on 435 

the NMDS output showed a significant difference between the halo/reef and 436 

seagrass/algae communities (R=0.66, p<0.001), which was reflected in both the camera 437 

and diver species observations. Overall, there was a small but significant effect of time 438 

(before, during, or after diver presence) on fish counts (Friedman rank sum test p=0.0089, 439 

Kendall’s W = 0.24). Fish counts were significantly higher during diver observations 440 

compared to before (WSRT adj. p=0.021), but there were no significant differences 441 

between the before and after time points (WSRT adj. p=0.83) or during and after (WSRT 442 
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adj. p=0.34), which suggests that divers did not have a consistent measurable effect on 443 

fish presence during these short observational periods. 444 

 445 

Figure 5. Non-metric multidimensional scaling (NMDS) based on 20 diver observations 446 

and an additional 54 camera images from the same sites. Points represent individual site 447 

observations or images and are colored yellow for halo/reef cameras and dark green for 448 

seagrass or algae cameras. ANOSIM of this NMDS output found a significant difference 449 

between halo/reef (yellow) and seagrass/algae (green) communities (R=0.66, p<0.001). 450 

Dots represent diver observations, while triangles represent camera images. Most image-451 

based points fall within the same area as those from diver observations, illustrating that 452 

the cameras accurately captured the two different fish community types.  453 

 454 

Fish Distributions 455 

The fish detection counts based on camera data revealed that the proportion of 456 

images with fish was 4.8 times higher in halos (0.38 ± 0.002) as compared to seagrass or 457 

algae camera locations (0.08 ± 0.002). MPA status also had a significant effect, with an 458 
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18% increase in the proportion of photos with fish within the MPA (0.26 ± 0.002), 459 

compared to outside the MPA (0.22 ± 0.002). Detailed analysis of camera locations 460 

relative to both benthic cover (i.e. reef/halo or algae/seagrass) and protection status 461 

(inside or outside MPA) revealed that fish detection is higher in halos outside of the 462 

MPA, relative to inside, but lower in seagrass communities outside of the MPA, relative 463 

to inside (Fig 6).  464 

 465 

Figure 6. Proportion of images containing fish at halo and grass/algae sites inside and 466 

outside of the Half Moon Caye MPA. Proportions calculated to two significant figures are 467 

indicated above each bar. Error bars represent ± 1 standard error of the mean from the 468 

binomial distribution (≤ 0.004).  469 

 470 

A preliminary analysis of diver observations from 20 camera locations as well as 471 

an additional 60 images from those sites did not contain a single instance of an 472 

herbivorous reef fish (surgeonfish and all adult parrotfish except for Sparisoma radians) 473 

outside of a halo.  474 
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 475 

DISCUSSION 476 

Camera Performance 477 

Deployment Duration and Function 478 

Underwater camera traps proved to be energy-efficient, durable, and capable of 479 

producing large volumes of quality images representative of the fish communities at their 480 

locations. The DEAC camera trap design is a reliable, cost-effective, and easy-to-481 

implement solution allowing the expansion of terrestrial camera trapping techniques to 482 

shallow marine environments. The set-up can easily be used to vastly expand the 483 

capability of BRUVs and associated techniques (Cappo, Speare, & De’ath, 2004; Colton 484 

& Swearer, 2010; Brooks, Sloman, Sims, & Danylchuk, 2011), and can also provide 485 

marine observations over periods of months. In addition to being long-term and more 486 

scalable, un-baited camera traps such as these may be more accurate than BRUVs in their 487 

estimation of population and community composition (Mccoy et al. 2011) and allow the 488 

use of random encounter models for occupancy that are widely used with terrestrial 489 

camera traps (Rowcliffe et al. 2014). 490 

Camera placement and orientation is an important consideration when deploying 491 

DEACs in the field, and the ideal placement may vary with geographic location, season, 492 

target time of day, water quality, and shading from local structures like patch reefs or 493 

docks. The cameras have no observable effect on the behavior of marine animals and 494 

may therefore be used to document species that typically evade divers. Even cameras that 495 

are “cleaned” by herbivorous fish in the halo do not appear to attract any more attention 496 

than natural patches of algae or coral rubble. They are also capable of remaining 497 
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underwater at depth for long periods and recording high volumes of photo or video 498 

observations—our longest running cameras were deployed for 5 months, captured over 499 

7,500 images each, and still had battery life to extend to a year. The exceptional duration 500 

and the ability to capture vast numbers of images, and to automatically recognize photos 501 

with fish (see below) gives the capability to not only provide a continuous record of rare 502 

species behaviors or visits by transient species that divers would miss or only observe by 503 

chance, but to also, for the first time, to record changes in behavior, relative abundance, 504 

and migrations across seasons and lunar phases.  505 

 506 

Comparison to Existing Methods 507 

DEACs offer significant advantages over existing underwater camera options, as 508 

well as surveys by divers. These underwater camera traps record similar data to that 509 

gathered by in-person observations, with a few notable exceptions. While the longer time 510 

interval chosen for our extended duration field tests did not capture as many individual 511 

fish in each image as divers recorded during the same 15-minute period corresponding to 512 

a single photo, the cameras did accurately capture the composition of the community 513 

during that time, with regard to both species presence and abundance (Fig 5). Analysis of 514 

synchronous diver and camera observations at different sites reflected obvious 515 

differences in community composition between different benthic environments. These 516 

compositional differences also support the placement of the halo and control cameras at 517 

each site, suggesting that the cameras were separated enough to capture these different 518 

adjacent community types while remaining close enough to control for local site 519 

conditions. The only group of animals observed by divers that were not well captured by 520 
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DEAC images were schools of roving juvenile fish and small parrotfish that camouflage 521 

well within seagrass and algal environments and are best detected through movement. 522 

The inability of the camera images and corresponding CNN to identify these fish may be 523 

due to a combination of more limited image quality in these turbid environments and the 524 

inability of human sorters (on whose data the CNN was trained) to distinguish these small 525 

fish later in a static image. Since these species are neither significant grazers (in terms of 526 

biomass consumed) nor threatening predators, their detection or inclusion in fish 527 

community composition was relatively unimportant for addressing the question used here 528 

to assess DEAC utility. However, for applications where detection of these species or 529 

similarly small or cryptic organisms is important, use of short video clips in place of still 530 

images (an option readily enabled with the DEAC design) could increase the ability of 531 

both humans and machines to detect these animals through motion.  532 

The current duration of camera operation is over an order of magnitude longer 533 

than the operational duration achieved by other non-tethered underwater cameras (e.g. 534 

Williams et al., 2014; Siddiqui et al., 2018), even with biofouling seriously impairing 535 

image quality after 1-2 months (Fig S2). To the best of our knowledge, these are the first 536 

underwater camera traps to be affordable, power-efficient (therefore deployable over the 537 

span of months) and also self-contained, without the challenges imposed by a surface-538 

tethered external power source, which typically limits deployment in remote regions and 539 

at multiple sites over large areas.  540 

 541 
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Future Improvements 542 

The greatest immediate limitation to the camera design was the inability to 543 

prevent or seriously reduce biofouling without periodic manual cleaning of the cameras, 544 

although the magnitude of this challenge may be location-specific. Biofouling is a 545 

common problem with unsupervised underwater monitoring equipment (Delauney & 546 

Compère, 2009), with multiple solutions proposed to control it, including local 547 

chlorination (Delauney & Compère, 2009; Xue et al., 2015), copper sheeting and mesh, 548 

and UV radiation (Patil, Kimoto, Kimoto, & Saino, 2007). Ongoing tests of camera and 549 

housing design are incorporating these methods to reduce biofouling by marine 550 

organisms and extend the functional life of the lens window to better reflect the power 551 

and storage capabilities of the camera.  552 

While both the batteries and memory cards we employed were sufficient for the 553 

deployment duration and image capture frequency tested, the inability to utilize memory 554 

cards with greater than 32GB of storage in Cuddeback cameras is problematic with a 555 

more frequent time lapse interval or in the case of short videos collected in place of single 556 

images. Therefore, optimizing and expanding both power and data storage capacity of 557 

these cameras via commercial means (cameras with larger SD storage capability) or 558 

noncommercial modifications is another potentially valuable direction for future research. 559 

For example, SD Ultra Capacity (SDUC) storage media currently affords 2 TB of 560 

storage, vastly expanding the capability of underwater camera traps for either smaller 561 

time intervals between images or multi-year deployments. Indeed, large storage capacity 562 

may obviate the need for camera triggering, making time-lapse or video with on-board 563 
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object recognition a superior alternative, giving the ability to capture even rare or 564 

transient species while effectively using the millions of potential images generated. 565 

Design improvements currently in progress focus on reducing biofouling, 566 

extending the depth range of the camera housings to over 50 m, and implementing an 567 

external flash or other nighttime illumination. 568 

 569 

Image Analysis 570 

The success of our initial image sorting using the CNN ResNet-50 illustrates the 571 

power of machine learning and computer vision techniques to drastically reduce time and 572 

cost when dealing with large image sets. Our ability to use this trained model to pre-sort 573 

images with high accuracy before attempting further analysis via manual or autonomous 574 

machine-learning based methods also reduces the cost of the most disadvantageous 575 

aspect of our timed image capture method: the number of frames with no objects of 576 

interest to the current study. Now that datasets obtained from this and similar shallow 577 

marine environments can be easily sorted to exclude non-target images, future 578 

underwater camera trap projects using a similar time-lapse method will be able to quickly 579 

remove the majority of empty frames, while retaining the ability to measure frequency of 580 

detection events and variations in fish presence by time of day, season, or other 581 

environmental variables by comparison of occupied and empty images. Expansion of the 582 

deep neural network model to focus on identification of individual species, functional 583 

groups, and/or the sizes of different individuals, as has been done in similar image 584 

analyses (Boom et al. 2014, Boussarie et al. 2016, Siddiqui et al. 2018, Norouzzadeh et 585 

al. 2018), will further streamline the analysis of this and related large image datasets.  586 
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Our community composition analysis also demonstrates that the 15 minute photo 587 

interval of our cameras was sufficient to capture species representative of the same fish 588 

community observed by divers in the water. This suggests that while a single image does 589 

not capture every fish active in the area during the 15 minute period it represents, the 590 

collection of images from any given site are representative of the community at that 591 

location and are likely to accurately reflect changes in species behavior, abundance, or 592 

diversity at the site over a range of time scales (e.g. daily vs. seasonal changes). Further 593 

study of camera captures vs. diver observations regarding species known to be wary of 594 

divers, either those using traditional open-circuit SCUBA or closed-circuit rebreathers, is 595 

an important line of future investigation to understand true reef fish occupancy and 596 

abundance.  597 

Our analysis of the number of images with fish collected at different groups of 598 

cameras revealed a difference undetected by the fish counts from our diver observations, 599 

showing that fish were detected by cameras more frequently (and are therefore likely to 600 

have higher occupancy) in halos outside of the MPA, while fish were detected in seagrass 601 

or algal habitats more frequently inside of the MPA. The results of this apparent 602 

interaction between benthic cover and protected status illustrate the complexity of 603 

patterns and variation within the benthos and the fish communities at Lighthouse Reef. 604 

Further image analysis and modeling may help to distinguish the underlying causes of 605 

such variation. The inability of traditional diver surveys alone to detect these differences 606 

at all reinforces the value of spatially-distributed, long-term datasets like the images 607 

collected from our cameras. The observed differences in fish detection between halo and 608 

grass/algae control sites also reinforce diver observations of both less fish and a different 609 
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fish community in the algae or seagrass beds away from the reef and support the results 610 

of the community composition analysis (Fig 5).  611 

 612 

Case-Study and Future Applications 613 

We obtained a large volume of usable images from sites with a variety of depths 614 

and benthic cover types, subjected to different fishing pressures inside and outside of a 615 

local MPA, and monitored over the course different seasons. This allows us to reasonably 616 

conclude that our observations are likely representative of fish presence and behavior at 617 

patch reef sites within Lighthouse Reef Atoll as a whole. The complete lack of grazing 618 

reef fish observed outside of the halo region by cameras located in surrounding sea grass 619 

within 30 m or less of the halo supports the idea that a predator modification of prey fish 620 

behavior imposes real constraints on fish movement and that heightened grazing pressure 621 

adjacent to reef structures is not simply the result of fish randomly dispersing with 622 

distance from the reef. If the latter were true, the pattern would be a simple exponential 623 

decrease in fish as distance from the patch reef increased, which would likely be reflected 624 

in a lower (but nonzero) number of grazing fish detected at seagrass and algae camera 625 

locations, compared to those at the halo edge. An alternative hypothesis is that the lack of 626 

grazing fish appearing in images taken outside of the halo is due to unequal detection of 627 

fish between the two environments, possibly the result of faster or more furtive 628 

movements outside the relative safety of the halo. However, this explanation is refuted by 629 

two pieces of evidence: First, diver observation also showed no herbivorous reef fish at 630 

grass or algal camera sites, and, second, other fish species that were observed by divers to 631 

move quickly through the seagrass or algal environment (e.g. bar jacks, Caranx ruber) 632 
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appear in both halo and control camera images, indicating that cameras placed in the 633 

grass are very capable of photographing fish moving through that environment. It is 634 

therefore more likely that the complete lack of detection of reef-based grazers outside of 635 

the halo, even though their food is in much higher supply there, is due to their total or 636 

near-total absence from this environment because of the combined lack of shelter and 637 

exposure to predators.  638 

This study demonstrates the value of long-term, spatially-distributed underwater 639 

camera trap observations for addressing a subtle difference in fish communities and 640 

benthic pattern generation. DEACs can be easily deployed alone or in large spatial arrays 641 

for short or extended time periods, and they are capable of recording periodic still images 642 

for long-term studies or short videos for detailed behavioral observations. Most 643 

importantly, these cameras are highly energy-efficient and require little-to-no 644 

maintenance while deployed, making them ideal for remote locations or extended 645 

observations that surface-anchored systems or commercial underwater cameras with 646 

limited battery life are not suitable for. Multiple networks of camera traps like TEAM 647 

(Beaudrot et al. 2016) and Snapshot Serengheti (Norouzzadeh et al. 2018) have been 648 

successfully deployed over large regions in terrestrial environments, and DEACs offer 649 

the option to now expand such long-term, spatially-extensive monitoring efforts to the 650 

marine realm. The use of a CNN makes processing the volume of images collected over 651 

such a long-term study a practical option, and continuing advancements in machine 652 

learning and computer vision are likely to enable further processing of similar large 653 

visual datasets in the future.  654 

 655 

  656 
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