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Molecular self-assembly plays vital role in various biological functions. However, when aberrant
molecules self-assemble to form large aggregates, it can give rise to various diseases. For example,
the sickle cell disease and Alzheimer’s disease are caused by self-assembled hemoglobin fibers and
amyloid plaques, respectively. Here we study the assembly kinetics of such fibers using kinetic Monte-
Carlo simulation. We focus on the initial lag time of these highly stochastic processes, during which
self-assembly is very slow. The lag time distributions turn out to be similar for two very different
regimes of polymerization, namely, a) when polymerization is slow and depolymerization is fast, and
b) the opposite case, when polymerization is fast and depolymerization is slow. Using temperature
dependent on- and off-rates for hemoglobin fiber growth, reported in recent in-vitro experiments,
we show that the mean lag time can exhibit non-monotonic behaviour with respect to change of
temperature.

INTRODUCTION

Self-assembly of different types of protein filaments is
essential for the structural organization and function-
ing of the cell. Important examples are actin and mi-
crotubule in eukaryotes and FtsZ filaments in bacteria.
However, abnormal self-assembly or aggregation of cer-
tain proteins are known to cause various diseases such
as Parkinson’s disease, Huntington’s disease, prion dis-
eases, Sickle cell disease (SCD) [1–3] etc. Abnormal self-
assembly typically leads to the formation of stiff protein
fibers, fiber bundles, and branched structures that can
deform the cell. For example, red blood cells deform
into a sickle-like shape [4, 5] in SCD when abnormal
hemoglobin (HbS) proteins, in an oxygen-deficient envi-
ronment, polymerize to form long rigid fibers. The sick-
led RBC loses its elasticity and fails to pass through the
narrow capillaries, resulting in vaso-occlusion. Although
we will primarily focus on the kinetics of self-assembly
of HbS proteins, some of our findings may be universal
across other fibrillating proteins.

A significant delay or a lag time in the formation of
the polymerized mass has been one of the widely studied
features of this kinetics. Longer lag time is beneficial for
SCD as it allows the deoxygenated RBC to return from
the capillary before it sickles. In vitro experiments moni-
tor the growth of polymerized protein mass ∆(t) after ar-
tificially triggering the fibrillation at time t = 0. Beyond
the initial lag time, ∆(t) shoots up exponentially and sat-
urates after that. This delay, of the order of few minutes,
has been identified as the nucleation time of HbS ag-
gregates/oligomers, which thereafter grows/polymerizes
rapidly at the rate of a few µm per seconds [6] and de-
form the RBC. Interestingly, the lag time shows wide
stochastic variation. Both the mean lag time and its
stochasticity show systematic dependence on monomer
concentration and temperature [7], which is the focus of
our simulation study here.

Stochasticity has been attributed to small reaction vol-
ume and low HbS concentration of the fibrillating pro-
teins. Classic experiments with RBC [8], and recent in
vitro microdroplet experiments on bovine insulin fibril-
lation [9, 10], also support this point. Ref.[10] suggested
that lag-time varies inversely with the volume of the sys-
tem. In fact, Ref[11] has suggested that artificial vol-
ume expansion of RBC (causing a decrease in the HbS
concentration) could be an effective therapeutic tool for
extending lag time.

Nucleation events are always stochastic; it is a ther-
mally activated barrier crossing process. How does reac-
tion volume affect the stochasticity of the lag time? Small
reaction volume has a proportionately small number of
available monomers as well as nucleation events. Once
the first nucleus forms, its rapid growth/polymerization
depletes monomers in the medium, making further nu-
cleation events difficult. On the other hand, in a large
reaction volume, since the monomer pool is large, multi-
ple nuclei can form at different spatial points and grow,
making the lag time less stochastic.

The main focus of this article is the dependence of
the lag time on temperature and monomer concentra-
tion. Early experiments [6, 12] have highlighted this
and estimated how monomer association kon and disso-
ciation koff rates may vary with temperature, influenc-
ing the lag time. A recent experiment by Castle et al.
[13] have claimed that these kinetic coefficients had been
critically underestimated before (by order of magnitude).
The temperature dependence they found is quite coun-
terintuitive: kon increases with temperature while koff
decreases with temperature. Naively one would expect
that koff must increase with temperature as breaking a
bond is easier at higher temperatures. Here we show that
if these rates are assumed to be valid during the nucle-
ation process, then the lag time can show non-monotonic
behavior with increasing temperature. It is well known
that both lag time and its stochasticity increases drasti-
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cally at low (< 20oC) temperatures [12]. However, there
are no reliable data at higher than room temperature
[11].

Two new aspects of the HbS fibrillation process dic-
tate the choice of our model here. a) Recent experiments
on both amyloid fibrillation and RBC sickling showed
that nucleation is always preceded by the formation of a
dense liquid-gel-like droplet from the monomers [14, 15],
beyond a specific concentration. These dense droplets
are known to promote protein fibrillation [14–16], which
naturally enforces small reaction volume (size of the
droplets) and high local concentration of monomers.
Therefore, models which ignore the spatial extent of the
system (i.e., role of diffusion) and assume that all reac-
tions take place at one point, are reasonable choice for
quantitative description.

b) The 2nd point is that most theories [10, 12, 17, 18]
assume a given rate (α1) for primary nucleation and a
critical nucleus size nc = 2. Since lag time is defined as
the time taken to build up a certain fraction of the fi-
nal polymerized mass (eg, 1/10), its stochasticity mainly
arises from the stochasticity of the early growth, sec-
ondary nucleation via fragmentation of the fibrils and
their subsequent autocatalytic growth [10, 12, 17, 18].
In contrast, experimental measurements by Galkin et
al [6] estimate, for HbS in RBC, nc ' 11 − 12. For
such a large nc we cannot assume the process to be an
one-step assembly reaction leading to a nucleation rate
α1 = dcnc

/dt ∝ cnc
1 where c1 and cnc

are the concen-
trations of monomers and nucleus, respectively. If nu-
cleation occurs by a sequential polymerization process as
described in Ref[4] this could contribute large stochastic-
ity to the lag time. This is one of the questions we explore
here using kinetic Monte-Carlo (KMC) simulations. We
take the KMC approach used by Yuvinec et al. [19, 20]
who studied nucleation time, defined as the time it takes
to form a critical nucleus, a cluster of specific size nc, for
the first time, starting at time t = 0 with a state which
has only monomers.

The paper is organized in the following way. In section-
2, we discuss experimental data on the statistics of RBC
sickling time, mostly from the literature and some of our
data from in vitro studies of RBC sickling. In section-3,
we introduce our simulation model for nucleation. Since
much of our focus is on the mean lag time from our
stochastic simulations, in section-4, we compare data
from our stochastic model with the results from the deter-
ministic Becker-Döring (BD) model. Section-5 describes
our Kinetic Monte Carlo (KMC) scheme. Our main re-
sults are discussed in section-6. We conclude with a dis-
cussion section.
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FIG. 1. Measured sickling times for about 550 RBC collected
from four patients. (a) shows the corresponding distribution,
and (b) shows the distribution from a much bigger study from
Ref[11] where sickling was induced by laser pulse.

EXPERIMENTAL DATA

In fig1, we show our experimental data for the sickling
time (τs) measured for 526 RBCs, collected from four dif-
ferent sickle cell disease patients, at room temperature.
The experimental conditions have been described in de-
tail in ref[21]. Dashed vertical lines separate these four
sets of data on the x-axis. These patients’ blood differs
in their HbF, HbA0, HbA2, and HbS content; their sick-
ling time variance was also different. However, as shown
in the figure, the most frequently occurring sickling time
(mode) was close in all the patients except the 1st one.
In order to plot the distribution of P (τs), shown in fig1-a,
we shifted the data of the 1st patient up by 0.35 min to
bring its mode at the same level as the other patients.
P (τs) shows a tail although we have truncated the distri-
bution for large τs due to lack of sufficient data. In our
experiment, the chemical oxygen scavenger (0.1% sodium
metabisulphite) was added to these four blood samples
at time t = 0, and the subsequent time evolution of a
large number of RBCs in the sample was recorded at 30
fps under a microscope. The sickling time was defined
as the onset of RBC deformation, which was detected
visually. After the onset, it took about 5 seconds for
the full deformation to complete [5]. The uncertainty
in visually detecting the onset was therefore small com-
pared to the typical deformation time, which ranges from
1/2 a minute to 4 minutes. We assumed that the onset
of RBC deformation takes approximately the same time
as the nucleation since exponentially fast polymerization
occurs post nucleation, as mentioned earlier. The defor-
mation occurs when the growing HbS polymers hit the
RBC surface. Similar sickling times were reported for in
vitro experiments, at room temperatures, and at a phys-
iological concentration of HbS [4, 8, 22].
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In fig1inset-b we show a distribution obtained in ref[11]
using a much larger data set. However, in this in vitro
experiment, sickling was induced via laser polymerization
in sickle trait RBCs, which leads to much more rapid sick-
ling (note the time scales for insets-a and b). This bench-
mark distribution shows an exponential behavior. In this
experiment, the sickling time was determined by quanti-
tatively measuring three geometric markers of RBC de-
formation as functions of time.

OUR STOCHASTIC MODEL AND SIMULATION
SCHEME

FIG. 2. A schematic for the nucleation time for the formation
of critical nucleus. The first panel shows the initial state
(t = 0) where there are only monomers. The middle panel is
the intermediate state (0 < t∗ < τs), where there are filaments
of different sizes, but no nucleus. The third panel is the final
state (t = τs) where a single nucleus of size 7 has formed.
For nucleus with multiple filaments we record the time when
multiple disjoint filaments cross the threshold length.

Figure2 shows the schematics of our nucleation model.
Starting from a population of free monomers at t = 0,
the system goes through the polymerization process to
form intermediate aggregates. The simulation is stopped
when an oligomer of a predefined size (the nucleus) forms
for the 1st time and the corresponding time is recorded
as the nucleation time τs .

The nucleation events in a small volume (≈ 10−10cm3)
is stochastic in nature[12], which is the reason behind
the broad sickling-time distributions observed in ex-
periments (see fig.1, and ref [12, 22]). We use Gille-
spie algorithm[23] to simulate the homogeneous nucle-
ation. Our model is similar to the models discussed in
ref.[19, 20]. As observed earlier[5], the HbS polymers
grow(shrink) by association(dissociation) of monomers
and not oligomers. So, in our model, we consider a sin-
gle association/dissociation of monomers at a time. We
consider the following reactions to the formation of the
critical nucleus.

M1 +M1
kon−−−⇀↽−−−
koff

M2;

M2 +M1
kon−−−⇀↽−−−
koff

M3;

...

MN−1 +M1
kon−−−⇀↽−−−
koff

MN . (1)

Where, M1 is the number of monomers, M2 is the num-
ber of dimers and so on. N is the nucleus size which we
fix in each simulation. kon is the on-rate and koff is the
off-rate of the polymers. The simulation stops when the
first nucleus forms. So, koff = 0 for last reaction i.e.,
there is no detachment from MN .

For the simulation of eq.1, we use the Gillespie
algorithm[23]. First, we define propensity(α) for each
of the 2N − 2 reactions. The propensity of each reac-
tion is proportional to the number of reactants. Then
the total propensities of the reactions is given by, α0 =
kon
2 M1(M1− 1) +kon

∑N−1
i=2 M1Mi +koff

∑N
i=2Mi. The

time step at which the next reaction will occur is drawn
from a distribution, τ = 1

α log(1/r1), where r1 ∈ (0, 1)
is a computer-generated random number. Then for the
N th reaction to occur, we draw another random num-
ber r2 ∈ (0, 1) which has to satisfy

∑N−1
i=1 αi ≤ r2α0 <∑N

i=1 αi , where αi’s are the propensities of each reaction.
Fig.2 shows the schematics of our model. Starting from
all monomers at t = 0, the system forms the nucleus
at t = τs. The model discussed in ref.[19] has studied
the off-rate dependencies in the distribution of nucleation
time, keeping the on-rate fixed. We use the same model,
but we vary both on-rate and off-rate as a function of
temperature. Our model was motivated by the recent
experimental study[13], where the authors observed that
the on-rate and off-rate depend on the initial monomer
concentration and temperature. Also, we will study the
case when multiple nuclei form. This could be a proxy for
forming a single nucleus with multiple strands, provided
the multiple strands in a single nucleus are assumed to
grow/shrink independently of each other.

Before presenting our results on the distributions (fluc-
tuations) of nucleation times, from our stochastic simula-
tions, it is useful to know how the mean nucleation time
behave. For this, we will compare our mean observables
with the predictions of the standard Becker-Döring the-
ory of homogeneous nucleation.

MEAN NUCLEATION TIME : BECKER-DÖRING
MODEL

When adapted for nucleation, the BD equations are a
set of differential equations describing the population dy-
namics of clusters/polymers of all sizes, up to the nucleus
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size. When monomer addition or subtraction is the only
allowed processes responsible for growth or shrinkage of
the clusters, the relevant equations are [19, 24],

dc1(t)

dt
= −konc21 − c1

N−1∑
k=2

ck + 2koffc2 − koff
N∑
k=3

ck,

dc2(t)

dt
= −konc1c2 +

kon
2
c21 − koffc2 + koffc3

dck(t)

dt
= jk−1(t)− jk(t), k ≥ 3 (2)

where, jk(t) = konc1(t)ck(t)− koffck+1(t). Here, ck is
the number of clusters of size k, and c1 is the number
of monomers. Here, kon and koff are on-rate and off-
rate respectively. For simulation of critical nucleus, we
start with monomers and set other polymer population
to zero, i.e., c1(0) = 1000 and ck(0) = 0 for k ≥ 2. Here,
for simplicity we set the on and off rates, as well as the
volume to 1. This makes ck the number density. As
we consider the growth of polymers upto critical nucleus
size, we restrict the growth at critical nucleus size N i.e.
the simulation stops when cN (t) = 1. The simulation
results for eq.2 is given in fig.3.
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FIG. 3. Distribution of filament lengths m = k/N when the
first nucleus forms. The distribution Qm = N2ck/NT is suit-
ably scaled by nucleus size N and total number of monomers
in the system NT , such that mQm is normalised. Data for five
different nucleus lengths are shown, for BD model in (a), and
from KMC simulations in (b). Results from both the models
are similar, but the KMC results show a better data collapse.

Figure 3a shows the average mass distribution in var-
ious sized clusters when the 1st nucleation occurs. The
total number of monomers stored in a cluster of size k is
kck, while the nucleus is defined as a cluster of size N .
The simulation is stopped when cN reaches 1 for the 1st
time. Note that ck is a continuous variable in Becker-
Döring (BD) model, while in the stochastic simulations
ck are integers. N was varied for different runs (see leg-
ends in 3). In stochastic simulations, for each N , the
data was averaged over 104 runs. Both BD equations and

stochastic simulation conserve mass, i.e., the total num-
ber of monomers involved. For all runs, which may differ
in nucleus size N (see the legends), the systems had the
same total mass NT = 1000. This is achieved by setting
the number of monomers at the beginning of the simula-
tion c1(t = 0) = NT . From mass conservation, we have∫ N
0
k.ckdk = NT . To represent the data from runs with

different nucleus size N on the same footing, we define
rescaled variables m = k/N and Qm = N2ck/NT , such

that
∫ 1

0
m.Qmdm = 1, i.e., the area under all the curves

are same, irrespective of the nucleus size N . Although
at nucleation cN = 1 for all the cases, due to rescaling,
the corresponding Qm=1 = N2/NT , differs with N . Note
that due to rescaling and averaging over many runs, m
and Qm both are now continuous variables. The data
differing in nucleus size shows a reasonable collapse. The
stochastic simulation shows a better data collapse com-
pared to the results from the BD model. Interestingly
both simulations reveal that, at nucleation, the maxi-
mum number of monomers are engaged in clusters of size
about 0.4N . We do not have any theoretical explanation
for this finding.

Being a deterministic model the BD equations cannot
describe the sickling time distribution observed in exper-
iments (see fig.1). But so far as the mean nucleation time
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FIG. 4. Mean nucleation time 〈τs〉 as a function of koff .
(a) Shows that 〈τs〉 decrease monotonically if both kon, koff
are increased. This is because a jammed state due to rapid
polymerization is avoided by increasing koff . Note that since
the two rates do not have the same dimension, the effective
polymerization slows down due to depletion of monomer con-
centration as time progresses. (b) Non-monotonic dependence
of 〈τs〉 at relatively high koff . High 〈τs〉 on the left side of
the minima correspond to jammed states when koff is rel-
atively low, whereas the right side corresponds to relatively
slow polymerization (i.e., smaller kon/koff ). Our distribu-
tions of P (τs), later, will mostly focus on the left side, i.e., on
jammed states.

〈τs〉 is concerned, results from the BD model match with
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those from the stochastic model. An example is shown
in fig.4-a. We found similar match between BD and our
stochastic models for the results in fig.4-b as well. So BD
model can be conveniently used to study how 〈τs〉 would
change if the on and off rates (kon and koff ) are made
to vary with temperature [13]. Our results in fig.4 shows
that, 〈τs〉 depends separately on both on and off rates,
kon and koff . Fig.4-b shows a non-monotonic behav-
ior in 〈τs〉 with respect to varying koff , with kon fixed.
We varied the ratio in two different ways, a) by varying
both kon and koff , but keeping their ratio fixed, and b)
by increasing koff , keeping kon fixed, i.e., increasing the
ratio. The results differ for the two cases, and we find
non-monotonic behavior for the latter case.

This non-monotonic dependence has been reported be-
fore [19]: at low-koff , the system quickly gets into a
jammed state when all the monomers are used up in
forming sub-critical oligomers (of size k < N). Further
growth of these oligomers, towards critical size, depends
on effective monomer exchange among these oligomers,
i.e., when a monomer released by one oligomer is cap-
tured by another oligomer. Because of low off-rate (i.e.,
slow release) this process slows down. On the other hand,
at relatively high off-rate, the sub-critical oligomers are
highly unstable and cannot grow further easily.

Going beyond 〈τs〉 we now discuss the temporal fluc-
tuations using our stochastic KMC simulation. As men-
tioned earlier [12], in vitro sicking in small volumes are
found to be stochastic. Since these volumes are com-
parable to a actual RBC volume, stochasticity in τs is
expected inside RBC also.

SIMULATION RESULTS

Sickling time distribution

Although the nucleation model which we study here
[19] is different from the generic theoretical models of
fiber nucleation and growth [10], the lag time distribu-
tions of these models turn out to be very similar. In the
generic models large stochasticity of lag times arise when,
a) number of nuclei are small, and b) they are sparsely
spaced in time. The model pioneered by Szabo [17] yield
the following distribution for lag times

P (τs) =
BΓ(nc + ζ/B)

Γ(nc)Γ(ζ/B)
e−ζτs(1− e−Bτs)nc−1 (3)

Here ζ is the nucleation rate, nc is proportional to the
total polymerized mass at saturation (in fact 1/10-th of
that) and B is the net rate of mass addition via poly-
merization/dissociation/splitting of oligomers. This ex-
pression has successfully fitted experimental data, which
show a rapid rise at small τs and a long exponential tail
at large τs. The time scale ζ−1 is responsible for the tail,
while B−1 and nc are responsible for the rapid initial

rise. The lag time distributions P (τs) from our model
fits very well with this expression, as shown in fig.5, pro-
vided we interpret nc to be the nucleus size N in our
model. As nc increases P (τs) becomes more skewed and
develops long exponential tails (see fig.5c). As in Szabo’s
model [17], our P (τs) is more skewed for larger nucleus
size (nc) and yields larger values of the time scales B−1

and ζ−1, which are fit parameters. An increase of both
these time scales increases both the standard deviation
(σN ) and the most probable values (τNp ) of the lag times.
In the inset of fig.6, we show these features. In fact σN
shows a clear exponential rise with nucleus size N . In
fig.6, we show the normalized and rescaled P (τs) for dif-
ferent nucleus size N . Maxima of the distributions, for
the different nucleus sizes (N) are shifted to zero and the
spreads around the maximum are rescaled by respective
σN , by using the variable (τs − τN )/σN . A moderate
collapse is obtained this way, although it is evident that
P (τs) is more pointed near the peak at larger Nc.

The apparent similarity between these models, we be-
lieve, result from the long waiting times encountered at
large N . In our model, it is due to the depletion in the
number of available monomers, which slows down the
growth of the long polymers leading to a trapped state.
Whereas in Szabo’s model [17], the low nucleation rate ζ
and low polymerization rate B (at low monomer concen-
tration) causes large waiting times. Even in our simula-
tion model, larger the N larger the depletion of monomer
concentration, leading to the lowering of B.

Concentration dependence

Our simulations show that high initial monomer con-
centration can significantly lower the waiting times. That
occurs when monomers concentration is not significantly
depleted by the time the threshold length of N is reached.
We show this effect in fig.8 for fixed N = 30 and for dif-
ferent initial monomer concentrations (M). A near col-
lapse of P (τs) is achieved for higher values of M . The
exponential tail is visible only for the lowest M value.
Interestingly, the skewness shows a change of sign as M
is varied.

In fig.9, we show another result from our model, which
is qualitatively similar to the experimental results. The
average lag time 〈τs〉 in experiments[8] vary over few or-
ders of magnitudes when the initial monomer concentra-
tion is varied by 20%. In our model, the 〈τs〉 reduces
by 20 times due to a ten-fold increase in the monomer
concentration. Also, the standard deviation of the distri-
butions increases 2.6 times with a decrease in monomer
concentration by ten times. A qualitatively similar trend
was observed in ref.[25].
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FIG. 5. The distribution P (τs) of nucleation times τs, for
various nucleus sizes N (see legends). For each case initial
number of monomers was M = 500, with kon = 4600 and
koff = 35000. Each distribution was obtained from 104 nu-
cleation events. In the lower panels the same data was plotted
using regular and semilog scale to highlight the exponential
tails. P (τs) grew more skewed for larger N and were fitted to
Szabo’s formula Eq.3. With nc = N , both the fit parameters
ζ−1 and B−1 got smaller for larger N .

Bundle formation

We also considered the case of HbS bundle formation
during nucleation. Cryo-em studies [26] have confirmed
the existence of HbS bundles which form via inhomo-
geneous nucleation. In inhomogeneous nucleation, an
existing oligomer’s surface serves as the nucleation site
for more oligomers, which grow parallel to the original
oligomer and eventually form a bundle. We mimicked
this situation by stopping the simulation when multiple
polymers of specific length N has formed. For example,
when three polymers cross this threshold length N (not
necessarily simultaneously), we call it a nucleus. Since
we do not have the notion of space in our simulation, it
does not matter whether these three polymers are grow-
ing side by side or not. However, if there is any coop-
erative effect in bundle formation, our simulation does
not capture that. As expected, we find that the lag time
gets extended, and P (τs) becomes more skewed with a
longer exponential tail (figure not shown here). This is
because when the 3rd longest polymer reaches length N ,
the longest polymer has reached a length N ′ > N , which
is equivalent to the lag time of a mono-filament nucleus
of size N ′.

Temperature dependency

As reported earlier[13], the monomer on- and off-rates
are both temperature-dependent. As the temperature
is increased, the on rate increases, and the off-rate de-
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tributions correspond to the jammed states where kon is high
and koff is low.
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FIG. 7. Distributions P (τs), similar to fig.6, but corresponds
to the slow polymerization regime, i.e., low kon and high koff .

creases. As a result, how does the mean nucleation time
〈τs〉 respond to increasing temperature? Equivalently,
within our KMC simulation, we study how 〈τs〉 respond
to change of on-rate (and corresponding off-rate).

Figure10 shows the variation of 〈τs〉 with the on-rate.
In ref[13], it has been observed that the on-rate varies
from kon = 3000µM−1s−1 to kon = 4600µM−1s−1, as
the temperature increases from 25◦C to 35◦C and ac-
cordingly the off-rate decreases from koff = 52000s−1 to
koff = 35000s−1. The units in our KMC simulation are
not same as in the real experiment because in our simula-
tion all the reactions occur essentially at the same point.
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FIG. 8. Distributions P (τs) for different initial monomer pop-
ulations M , and for fixed N = 30. The parameters correspond
to the jammed state regime where kon is high and koff is low.
At higher M , the skewness changes sign. At lower M , the
PDFs are similar to those in the jammed regime.
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FIG. 9. Rapid variation of mean sickling time 〈τs〉 as a
function of initial monomer population M , for nucleus size
N = 30. The two curves, with squares and circles, belong
to the low off-rate and high off-rate regimes, respectively, i.e.,
they correspond to the jammed state and slow-polymerization
state. The solid lines are a guide to the eye. Our results are
qualitatively similar to the experimental observations in ref[4],
where the t1/10(similar to lag time) decreases by six orders of
magnitude due to a 2-fold increase in monomer concentration.

However, we implement the same percentage of variation
in our on/off rates. So, we varied the on-rate from 3000
to 4600 and off-rate from 52000 to 35000 (linearly) to get
〈τs〉. Each of the points on each curve is obtained by
the averaging over 104 nucleation events. As the on-rate
increases (simultaneously decreasing the off-rate) we see
a decrease in nucleation time at first, but then for higher
values of on-rates (and correspondingly lower values of
off-rates), we observe an increase in the mean sickling
time (see fig.10.b,c).
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(a)N=20

3.0 3.5 4.0 4.5
kon ×10+3

3.75

4.00

4.25

4.50
×10−3

(c) N=40
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(b)N=30

3.0 3.5 4.0 4.5
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1.50
×10−2

(d) N=50

FIG. 10. Non-monotonic behavior of the mean nucleation
time 〈τs〉 with increasing on-rate. The off-rate was decreased
simultaneously from 52000 to 35000, linearly. The minimum
shifts to the right as we increase the nucleus size (see legends).

This unexpected non-monotonic behavior is due to the
low on-rate (and high off-rate) at low temperatures, re-
sulting in slow polymerization, making the mean nucle-
ation time longer for lower temperatures. Whereas, at a
higher temperature, the on-rate being high (and off-rate
being low), the monomers quickly polymerize to form
the critical nucleus. At a further increase of tempera-
ture, the monomer pool is exhausted very fast by forming
many short oligomers, and an accompanying low off-rate
makes these oligomers very stable. As a result, the sys-
tem gets trapped in a jammed state where no significant
monomer addition/dissociation can occur. However, un-
less a monomer can dissociate from one oligomer and re-
associate with another oligomer (an effective monomer
exchange), the oligomers cannot grow further. This ef-
fect delays the nucleation time.

In between these two extreme cases of large 〈τs〉, owing
to two different mechanisms, occurs a minimum where
the nucleation, time is short. As we increase the nucleus
size (see fig.10 fig.11), the minimum shifts towards higher
on-rate. This is because, for the stability of larger poly-
mers (which is a precursor to the nucleus), a high on-rate
and low off-rate are preferable. However, with a decrease
in monomer number, the minimum shifts towards the
left, i.e., towards lower on-rate (result not shown here).
This is because the monomer pool is exhausted faster
due to the formation of trapped states. Hence, for low
monomer concentration, a slow polymerization (low on-
rate) will be suitable for nucleus formation.

Figure11 shows the mean first-assembly time for the
case of 3-filament nucleus with N = 20 and 30. In
these cases, the minimum shifts to the right and ap-
pears at a higher on-rate value than the correspond-
ing mono-filament cases of the same N (compare fig.10b
and fig.11b). This is because a larger number of stable
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FIG. 11. Non-monotonic behavior of the mean nucleation
time 〈τs〉 with increasing on-rate for the multi-filament case.
The off-rate was decreased simultaneously from 52000 to
35000, linearly. The shifting of the minimum to the right
is similar to that of the single-filament case.

oligomers must form to produce three oligomers of size N
or larger. Note that here we defined the nucleation time
as the earliest time when the system has three oligomers
of size ≥ N . So, a relatively higher on-rate is suitable for
stable oligomers than the mono-filament case. It should
be noted that the non-monotonic dependency obtained
in fig.10 and fig.11 are possible only if we take the on-
rate and off-rate to be temperature-dependent. For a
constant off-rate, as claimed in ref.[5], one does not find
any minimum in the mean sickling-time curve. However,
a constant on-rate and a temperature-dependent off-rate
can yield a similar minimum as in fig10, 11.

DISCUSSION

Our KMC simulations, also supported by the BD
model, show that large lag times could occur in two dis-
tinct scenarios : a) when monomer association rate kon is
low and dissociation rate koff is high, and b) when kon is
high and koff is low. In the first case, both primary nu-
cleation and polymer growth rates are low, which is cen-
tral to Szabo’s [17] model. This regime occurs when the
temperature is low or when the initial monomer concen-
tration is low. In practice, this can occur in microdroplet
experiments or even inside the small volume of RBC.
However, we focused on case b, which can occur when
the temperature is high and as a result, kon is high and
koff is low. In this regime, the system quickly reaches
the jammed state leading to similar long-tailed skewed
distribution. However, we also showed that the jamming
effect gets neutralized if the initial monomer concentra-
tion is high.

It is interesting that the lag time distributions, ob-
tained in our simulations, are very similar in these two
regimes of high and low polymerization rates. Further,
they also agree qualitatively with the trends observed in

experiments [11, 25].

Note that the long tails in both the polymerization
regimes (high and low) results from stochasticity of rare
events. For the low polymerization rate, it is established
[17] that it is the low copy number of nuclei, which leads
to stochasticity. For rapid polymerization (and slow dis-
sociation), it is the rare dissociation events that lead to
stochasticity. In our model, we ignored the branching
of polymers and the cooperative growth of the HbS fil-
aments. Inclusion of these additional features are chal-
lenging, but we do not think these effects will change our
results qualitatively, except making the overall polymer-
ization process even faster.

The emergence of a minimum, although a shallow one,
in our mean sickling time versus kon (equivalently tem-
perature) plot is interesting, but it is difficult to speculate
if this could be useful for therapeutic purposes. Treat-
ments against RBC sickling aim to prevent the polymer-
ization of HbS or delay its polymerization, i.e., extend-
ing the lag time. Ref[11] has proposed that the lag time
can be extended by lowering HbS concentration via dila-
tion of the RBC. Our simulations show that raising the
temperature (and thereby the polymerization rate) can
also extend the lag time, although it could be imprac-
tical to raise the patient’s body temperature artificially.
Also, we have assumed that the observed in vitro poly-
/depolymerization rates will be valid for in vivo situation
also, which needs to be checked experimentally.

In general, experiments on temperature-dependent
sickling can help us understand the pathophysiology of
RBC sickling. While the increase of lag/sickling time
at a low temperature has been reported before [12], how
lag/sickling time behaves at a higher temperature, to the
best of our knowledge, is not known and calls for new
controlled experiments. In practice, patients with sickle
cell disease are advised to avoid sudden exposure to cold
or low temperatures, which triggers sickling. But how
this cold stress induce sickling is unclear because naive
generalization from in vitro experiments at low tempera-
ture would imply a delay of the lag times and hence slow
sickling rate.
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