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Abstract 
 
Accurate variant effect prediction has broad impacts on protein engineering. Recent machine 
learning approaches toward this end are based on representation learning, by which feature vectors 
are learned and generated from unlabeled sequences. However, it is unclear how to effectively learn 
evolutionary properties of an engineering target protein from homologous sequences, taking into 
account the protein’s sequence-level structure called domain architecture (DA). Additionally, no 
optimal protocols are established for incorporating such properties into Transformer, the neural 
network well-known to perform the best in natural language processing research. This article 
proposes DA-aware evolutionary fine-tuning, or “evotuning”, protocols for Transformer-based 
variant effect prediction, considering various combinations of homology search, fine-tuning, and 
sequence vectorization strategies. We exhaustively evaluated our protocols on diverse proteins with 
different functions and DAs. The results indicated that our protocols achieved significantly better 
performances than previous DA-unaware ones. The visualizations of attention maps suggested that 
the structural information was incorporated by evotuning without direct supervision, possibly 
leading to better prediction accuracy. 
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Introduction 
 

A number of mutagenized proteins obtained by evolutionary engineering methods [1] have been 
reported to demonstrate highly improved functional activity in biomedical research: to name a few, 
fluorescence [2], signal transduction [3], or base editing capability [4]. It is well-known that many 
natural proteins have multiple domains, whose functions are determined by the serial arrangement 
of domains called domain architecture. For example, approximately 65% of eukaryotic proteins are 
considered to be multi-domain [5]. Furthermore, various industrially essential proteins, such as 
artificial antibodies [6] or CRISPR/Cas system-related proteins [7], have multiple domains. In 
protein engineering, a specific domain in a multi-domain protein is often mutagenized (e.g., [8-17]). 

While useful, the mutagenesis experiments are often costly because multiple iterations of 
library construction and selection are necessary and they usually require target-specific human 
knowledge, the latter of which restricts the methods’ generalizability to other proteins. In recent 
years, machine learning techniques are utilized to predict variant effects for tackling the challenges 
[18-20]. Among them, more attentions are paid to an approach called representation learning, in 
which features (or descriptors) are directly learned from primary sequences alone [21-23], inspired 
by natural language processing (NLP) research. The approach is promising because 1) it can exploit 
tens of millions to billions of sequences in public databases without the necessity for mutagenesis 
experiments or human expertise; 2) it automatically generates a “contextualized” feature for each 
amino acid in a given sequence explicitly considering interactions between residues in contrast to 
“static” features that take fixed values depending only on the type of amino acids [24-26]. 

In this direction, a representation learning protocol named “evotuning” (evolutionary fine-
tuning) was proposed to incorporate evolutionary properties of proteins into LSTM [27] based 
representation learning models, whose performances were evaluated through variant effect 
prediction tasks [28]. In the protocol, the models were first trained using a large set of proteins 
across various families (pre-training). Next, homology search was performed with the full-length 
sequences of an engineering target protein as the queries to collect homologs. Then, the hit 
sequences were used for fine-tuning. Lastly, the full-length protein sequences were fed into the 
fine-tuned models to be vectorized (embedding). The evotuned models were demonstrated to 
perform significantly better than the pre-trained ones or models with static features. 

This protocol, however, had been evaluated only on single-domain proteins. Therefore, it 
is still unclear whether the protocol is also successfully applied to proteins with multiple domains. 
For instance, let us consider that a full-length sequence of a multi-domain protein is used as a 
homology search query as conducted for a single-domain protein. This will result in sequences with 
partial homology to the query (i.e., aligned with some, but not all, of the multiple domains in the 
query). It is not obvious whether we should incorporate these sequences into fine-tuning to improve 
variant effect prediction performance. Thus, optimal protocols for multi-domain proteins need to be 
devised, particularly considering the issue of partial homology. Furthermore, to the best of our 
knowledge, none of the previous studies, including the aforementioned one, examined how such 
protocols affect the learned representations by Transformer [29], which is the neural network 
architecture known to achieve state-of-the-art performances in most NLP tasks [30, 31]. Also, 
Transformers explicitly calculate dependencies between residues known as attention map, which 
gives us clues to interpret how a prediction result for a specific variant is obtained. 

Here we propose effective evotuning protocols for Transformer-based variant effect 
predictors, in which we explicitly consider domain architectures by combining homology search, 
fine-tuning, and embedding strategies. For evaluation, we systematically compared the models’ 
performances trained with our protocols on diverse proteins with different functions and domain 
architectures. The results demonstrated that our protocols achieved significantly better prediction 
accuracy compared to the previous one. Moreover, the visualization of attention maps in 
Transformer suggested that evotuning can incorporate structural information of the proteins without 
direct supervision, possibly leading to improved performances. 
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Materials and methods 
 
Experimental pipeline 
 
We outline the 4-stage experimental pipeline used in this study (Figure 1): (a) pre-training. A 
Transformer model was trained from scratch with about 32 million primary sequences in Pfam [32] 
to capture general properties of proteins without reference to the domain annotation data; (b) fine-
tuning the pre-trained model with homologous sequences for each target protein to incorporate 
evolutionary information specific to the target; (c) embedding each wild-type or mutagenized 
sequence through the fine-tuned model to obtain the vectorized feature representation of the whole 
sequence. These vectors were used in the next step; (d) training and evaluating variant effect 
predictors with the measured variant effects to model sequence-function relationships regarding the 
features as the surrogates of protein sequences. Note that a similar experimental pipeline was also 
used in the previous study to evaluate the performance of an LSTM-based representation learning 
model and its evotuning for single-domain proteins [28]. 

Because our primary interest was in elucidating how to utilize evolutionary information 
specific to a mutagenesis target protein effectively, the same pre-trained model was used in (a) for 
all experiments. 
 
Neural network implementation and training 
 
We used a PyTorch [33] implementation of Transformer and a pre-trained weight reported in [21]. 
The model has 12 multi-head attention layers with 12 heads for each. Each fine-tuning was 
performed on 4 NVIDIA V100 GPUs using Adam optimizer [34] with learning rate 0.0001, batch 
size 256, automatic mixed precision [35] enabled, appropriate gradient accumulation steps for the 
whole batch to fit into the GPU memory, and masked language modeling [36] objective. For masked 
language modeling, the token corruption probabilities were set to be the same as in [36]. The special 
tokens ([CLS] and [SEP]) used in masked language modeling were appended to the first and the last 
positions of each input sequence, respectively. A learnable lookup table vectorized every amino 
acid before input into the neural network. Each training process was terminated when no 
improvement in validation loss was seen after ten epochs. We split the input sequences into training 
and validation sets by randomly selecting 90% and 10% sequences. Note that this splitting of 
training and validation sets was applied to homologous sequences used in fine-tuning (Figure 1b); 
the splitting in the evaluation of variant effect predictors (Figure 1d) was separately performed for 
variant sequences as described in the later section. 
 
Homology search 
 
For fine-tuning, each homology search was performed with jackhmmer in HMMER software [37] 
against UniRef50 database [38]. The E-value threshold was set to 0.0001 for hit sequence inclusion 
(both --incE and --incdomE). Each run was stopped when converged or the iteration round reached 
20. The sequences longer than 1.5x of the wild type sequence length were removed. In addition to 
this length-based filtering, other strategies were also considered to remove noisy sequences, which 
will be described in a later section. 
 
Domain annotation 
 
For some of our protocols, we performed domain annotation on the hit sequences from homology 
search. We first run hmmscan in HMMER software using Pfam database as the reference. For each 
sequence, the outputs were parsed and filtered with the conditions [39]: 1) a domain candidate with 
an independent E-value larger than 0.0001 was removed; 2) if two domain candidates overlapped 
each other, the one with a smaller E-value was kept. 
 
Vector representation of protein sequences (embedding) 
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A sequence containing L amino acids was fed into a fine-tuned model to result in a matrix of the 
shape (L+2, 768), where 2 is for [CLS] and [SEP] tokens, and 768 is the embedding dimension. An 
average over the first dimension was taken to obtain a fixed-length vector representing the whole 
sequence, which was used as input to variant effect predictors in the later stage. 
 
Variant effect measurement data sourcing 
 
We sourced the variant effect measurement data (i.e. protein sequence and measured value pairs) 
on ten different proteins [8-10] considering the following typical protein engineering scenarios: (A) 
the mutagenized protein has a single domain; (B) mutations are introduced to a specific domain in 
a multi-domain protein which is known to work independently on other domains; (C) similar to the 
scenario (B), but a specific domain is mutagenized which works cooperatively with other domains 
in a protein. In protein engineering, assay experiments to measure variant effects are often 
performed using a protein’s subsequence rather than the full-length sequence. Thus, we also 
collected the information on the assayed subsequences used in the original studies. Each mutation 
was a single amino acid substitution. The measured values were normalized according to the 
prescription described in [8]. 

In Table 1, the collected proteins, the mutagenized regions, and the assayed subsequences 
are summarized. Here we classified the proteins into four categories considering their domain 
architecture and (non-)existence of intramolecular domain interactions. The single-domain proteins 
(TEM-1 [11] and APH(3’)-II [12]) were classified into the category A; in the category B, the multi-
domain proteins without intramolecular domain interactions were collected (ubiquitin [13], YAP65 
[14], and E3 ligase [15]); the proteins known to have interacting domains fell into the category C 
(PSD95 [16, 40] and Pab1 [17,41,42]). Each of these protein categories corresponded to the 
respective protein engineering scenarios described above. We also prepared the category D for the 
proteins not considered to belong to the other categories: PTEN has two domains in physical contact 
with each other [43], but the mutations were introduced to both of the two interacting domains 
rather than one domain as in the category C [9]. HSP90 [44,45] and GAL4 [10,46] are known to 
work as homodimers, while the proteins in the category from A to C work as monomers. We here 
emphasize that the molecular functions of these proteins altered by the mutagenesis experiments 
are diverse: hydrolysis, substrate binding with distinct specificities, (de)phosphorylation, or 
functions related to protein degradation. 
 
Variant effect prediction 
 
We used LASSO-LARS [47] implemented in scikit-learn Python package [48] as our variant effect 
predictor. LASSO-LARS is a sparse linear regression algorithm that is well-known for automatically 
selecting relevant features in high-dimensional space. In this study, the model was chosen to work 
well, particularly when the available number of measured variants is as small as a hundred or less. 
We note that the LASSO-LARS was also used in the previous study on evotuning for LSTM and 
single-domain proteins [28] for variant effect prediction. A separate predictor was trained for every 
combination of the selected protein and protocol. We examined two different training sizes (0.8 and 
0.1) to emulate “high-N” and “low-N” scenarios, the latter of which is often the case in realistic 
protein engineering. We repeated the experiments using 32 different random seeds for splitting 
training/validation datasets to perform statistical tests for every combination of protein and protocol. 
The penalty coefficient on the L1 regularization term was determined by 10-fold nested cross-
validation. The evaluation metric was Spearman’s correlation coefficient. The performance 
differences between protocols were tested with the one-sided Wilcoxon test using SciPy [49] Python 
package (scipy.stats.wilcoxon). 
 
Construction of the proposed protocols 
 
In this work, we propose to construct the protocols as the combination of the options in the following 
three parts (Figure 2): 
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a) Homology search. We examined three options on what subsequence to use as a query for 
homology search. The first option was to use the full-length sequence of a protein (full 
search); the second one was to extract the mutagenized domain (domain search); the last 
was to extract the assayed subsequence used in each experiment. As described in Table 1, 
for some proteins, the assayed subsequences are identical to the full-length sequences or 
the mutagenized regions; in these cases, the corresponding homology search options become 
equivalent. 

b) Fine-tuning using the hit sequences. We examined whether to use full-length sequences as 
input to the neural network models (full training). When not using full-length sequences, n-
grams (n=1,2,3) were extracted regarding each domain as a unit (n-gram training). For 
example, in the 2-gram fine-tuning protocol, every two contiguous domain subsequences 
and the linker region in between was extracted from a full-length sequence. For n-gram 
generation, we performed domain annotation to each sequence before subsequence 
extraction. Here the annotation data were only used for n-gram generation, not for any 
supervision in the experimental pipeline. 

c) Vector representations (embeddings) of sequences. Similar to the homology search 
strategies (a), we tried to use the full length, mutagenized domain, and assayed subsequence 
of a protein for embedding. Same as explained in (a), the assay embedding coincided with 
the other embedding options in some cases. 
In addition to these major three parts, we also considered several hit sequence filtering 

methods as post-processing of the sequence generation at the step (b) in our pipeline before fine-
tuning: (1) removing sequences not including the mutagenized domain; (2) removing sequences 
including domains not in a query sequence; (3) the combination of (1) and (2). In Results section, 
we report the scores with the best performing filtering strategies, while the full results are reported 
in Supplementary Data 1.  

We hypothesized the suitable domain architecture-aware protocol for each protein category 
from A to C (Table 1) to be as follows (summarized in Table 2): (A) for the protein category A, in 
which each protein has a single domain, we propose to combine full search, full training, and full 
embedding, which were the obvious choices; (B) for the protein category B, which was for the 
multi-domain proteins without intramolecular domain interactions, we hypothesized that to 
incorporate the evolutionary information in the mutagenized domain maximally the best protocol 
would be the combination of domain search, full training, and domain embedding; (C) for the protein 
category C, because it was considered crucial to capture the interplay between domains, we selected 
to perform full search and 3-gram training to cover the interacting sequence parts fully. On 
constructing these protocols, we assumed that the best embedding strategy would be the assay 
embedding because the evolutionary information in the assayed subsequences could directly 
influence the measured variant effects. Since the assay embedding is equivalent to the full 
embedding in the category A and domain embedding in the category B, respectively, we employed 
the corresponding embedding strategies for these categories. We assumed no specific protocols for 
the protein category D, which was prepared for the proteins not falling into other categories. 

We tested these protocol hypotheses by evaluating the variant effect prediction 
performances on every possible combination of the homology search, fine-tuning, and embedding 
strategies including the proposed ones above. For comparison, we also set two other protocols: (1) 
“pre-training” protocol in which the pair of the pre-trained model and full embedding was used 
without homology search and fine-tuning; (2) “Full” protocol which is the combination of full 
search only with the length-based filtering (i.e. without filtering based on domain annotation), full 
training, and full embedding. Note that this protocol was the one evaluated in the previous study 
[28]. 
 

Results and discussion 
 
Evotuning protocols substantially improve Transformer-based variant effect prediction 
accuracy 
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The evaluation results for the proposed protocols are summarized in Table 3. In almost all cases, 
the proposed protocols substantially outperformed the respective pre-trained counterparts. This is 
the first systematically demonstrated results that evotuning can improve Transformer-based 
representation learning on multi-domain as well as single-domain proteins. We also confirmed that 
most of the other protocols not described in Table 2 achieved significantly better accuracy than pre-
training (Supplementary Data 1). Noticeably, the performance gains were more considerable when 
the training size was 0.1 compared to 0.8 for most examined proteins, with the maximum 
improvement of +0.40 in Spearman’s correlation coefficient for YAP65. These results indicate that 
the protocols effectively incorporate evolutionary information required for accurate variant effect 
prediction into the learned representations, especially in “low-N” scenarios where the measured 
values are too scarce to learn evolutionary properties only by supervised learning. 

 
Feature analysis: evotuning can incorporate structural information without supervision 
 
An advantage of Transformer is its interpretability provided by attention maps. An attention map 
quantitatively describes how a residue in a protein affects another residue’s representation, which 
is internally calculated on embedding. To explore how the substantial performance improvement 
was realized by evotuning, we visualized the attention maps of YAP65 models as an example. Figure 
3 shows the attention maps for the wild-type sequence obtained by the pre-training protocol and the 
protocol B. We compared these attention maps with the contact map separately computed from the 
tertiary structure of YAP65. The evotuned model’s attention map displays a contact map-like, 
roughly symmetric pattern with respect to the diagonal, which is in sharp contrast to the absence of 
such a pattern for the pre-trained model. This is quite surprising because an attention map is not 
symmetrized by construction and no explicit knowledge on the tertiary structure was input into the 
model on fine-tuning. Thus, the visualization suggests that the structural information was implicitly 
incorporated into the model from the evolutionarily related sequences in an unsupervised manner, 
possibly leading to the improved variant effect prediction accuracy. 
 
Domain architecture-aware protocols achieve the best performances 
 
For single-domain proteins in the category A, the protocols Full and its modified counterpart A 
improved the prediction accuracies compared to the pre-training (Table 3), which was consistent 
with the previous study on LSTM [28]. Our results demonstrate that these protocols are also useful 
for representation learning based on Transformer. 

Notably, for the multi-domain proteins in the categories B and C (Table 1), the respective 
protocols B and C achieved significantly better performances than the protocols Full and A in which 
evolutionary information was aggregated from the entire sequences across domains. For the proteins 
in the category B, where one of the multiple independently working domains was mutagenized, the 
protocol exploiting the mutagenized domain sequence only (i.e., protocol B) achieved the best 
scores: they were either the largest among all the protocols or at least larger than the protocol Full. 
By contrast, when the protocol C was applied to this protein category, several cases were observed 
to be merely comparable to the protocol Full (Ubiquitin with training size 0.1, YAP65 with 0.1, and 
E3 ligase with 0.8). These results indicate that the careful treatment of the domain architecture and 
the intramolecular domain interactions indeed lead to improved protein representations. 

Next, for the category C proteins with cooperative domains, the protocol aiming to gather 
evolutionary information from sequences covering inter-domain interactions (i.e., protocol C) 
realized the best results. In a rare case (PSD95 with training size 0.8), the performance of the 
protocol B was comparable to the protocol C. A possible reason is that the mutagenesis assay was 
conducted for the isolated PDZ domain, not for the full length [40]. Nonetheless, in the remaining 
cases, the protocol C was better than the protocol B. The result again demonstrates the validity of 
our hypothesis that the representation learning of multi-domain proteins can be improved when 
explicitly considering different domain architectures of proteins. We also tried other training sizes 
(0.9, 0.5, 0.3, and 0.01) and found consistent results (Supplementary Data 2). 

Lastly, no common superior protocol was confirmed for the protein category D in contrast 
to A, B, and C. Because the mutations were introduced to the whole sequence of PTEN [9], we only 
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conducted the protocols Full and A experiments not considering domain architectures, which 
resulted in the improved performances compared with the pre-training. This is consistent with the 
results for the protocols Full and A applied to the other proteins, indicating the partial effectiveness 
of evotuning. For HSP90 with training size 0.1, the protocols Full and A performed the best while 
it was comparable to the protocol C with training size 0.8. This performance mismatch between 
training sizes was also seen for GAL4 with the protocol B but not observed in the other proteins. 
We speculate that the difference stems from the distinct working mechanisms for these HSP90 and 
GAL4 (necessities for homodimer formation) from the other proteins. 

 
Effectiveness of domain architecture-aware sequence filtering for evotuning 

 
The exhaustive evaluation verified that our domain architecture-aware sequence filtering strategies 
effectively improved prediction accuracy: by filtering, comparable or superior performances were 
achieved for all proteins examined (Supplementary Data 1). Our filtering method has the novelty in 
that it is designed for multi-domain proteins considering their domain architectures and 
mutagenized domains (Materials and methods). Recently, in a study [50], sequence filtering based 
on Levenshtein distance was performed to evotune LSTM-based representation models for variant 
effect prediction. However, it is unclear whether it can be successfully applied to multi-domain 
proteins because the study’s evaluations were only performed for single-domain proteins (GFP and 
TEM-1). 
 

Conclusion 
 
In this work, we proposed the domain architecture-aware protocols for Transformer representation 
learning of multi-domain proteins, combining homology search, fine-tuning, and sequence 
vectorization strategies. By systematically evaluating the variant effect prediction performances on 
ten different protein engineering tasks, we confirmed the effectiveness of our protocols: 1) they 
gave substantial performance gains compared with the pre-training, especially in “low-N” scenarios 
where the measured values are scarce; 2) the best-performing protocols were constructed by 
adequately considering the domain architecture and intramolecular domain interactions of the 
engineering target protein. While the evotuning protocols were demonstrated to be crucial for 
variant effect prediction, some protein engineering scenarios were not covered in this study. One 
example is protein engineering focusing on linker regions between domains [51], for which the 
protocols B and C cannot be directly applied. Another example is intramolecular interactions 
between distal domains (e.g., the interaction between N-terminus and C-terminus far apart by 
multiple domains), which can be regarded as an extension of the protein category C. The optimal 
evotuning protocols for these cases should be addressed in a future study. 
 

Key points 
 
- In machine learning-guided protein engineering, it is crucial to incorporate evolutionary 

information specific to a target protein into the feature vectors. However, no protocols are 
established for Transformer-based variant effect prediction, in which features are learned and 
generated from unlabeled homologous sequences. To this end, this study proposes effective 
protocols combining homology search, fine-tuning, and sequence vectorization strategies for 
multi-domain proteins as well as single-domain ones. 

- By systematic performance evaluation on various tasks, we demonstrated the protein 
representations obtained by the proposed protocols significantly outperformed the ones by pre-
training as well as previous protocols. In particular, in “low-N” scenarios where the number of 
labeled training data available is small, the proposed protocols were shown to give substantial 
performance gains. 

- We also confirmed that the best-performing protocols were constructed by adequately 
considering the engineered protein’s domain architecture and intramolecular domain 
interactions. The visualization of the attention maps in Transformer given by the best protocol 
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suggested that structural information was implicitly captured by the model, which was a 
possible reason for the performance improvement. These results indicate that the proposed 
protocols are effective and indispensable for protein engineering. 
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Fig. 1: Overview of our 4-stage pipeline for protein representation model training and evaluation. 
See the main text for the detail explanation of each step. 
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Figure 2. Schematic view of our domain architecture-aware protocols as combinations of 
homology search, fine-tuning and sequence embedding strategies. See the main text for the detail 
explanation of each strategy. 
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Figure 3. Comparison of YAP65 attention maps obtained by Transformer and the contact map 
computed from the tertiary structure. (a, b) attention maps obtained by the pre-training protocol 
(a) and the evotuning protocol B (b). (c) contact map computed from the tertiary structure (PDB: 
1JMQ). The mutagenized region (positions from 170 to 203) is visualized. To obtain the attention 
maps, we computed the max-pooled values over all heads in the last layer. In (a), for comparison 
with (b), the attention map corresponding to the mutagenized region was extracted from the 
attention map of the full-length sequence obtained by full embedding, and normalized so that the 
sum of each row is one.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.05.434175doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.05.434175


 

 14 

 

 
Table 1. Summary of the examined proteins in this study. The domain architectures are based on Pfam [32]. In the “mutagenized region” 
column, the domain name followed by a number means its position in the domain architecture (e.g., PDZ3 in PSD95 means the third PDZ 
domain from the N-terminus). See the main text for the definition of the protein categories A-D. 

Category Protein Domain architecture 
Intramolecular domain 

interaction 
Mutagenized region 

Assayed 

subsequence 

Number of 

variants 
Function 

UniProt 

ID 

A TEM-1 Single domain - Full length [11] Full length 5,199 Substrate hydrolysis P62593 

A APH(3’)-II Single domain - Full length [12] Full length 5,301 Phosphorylation P00552 

B Ubiquitin 

ubiquitin - ubiquitin - 

ubiquitin - ubiquitin - 

ubiquitin 

- ubiquitin1 [13] ubiquitin1 1,140 Protein degradation P0CG63 

B YAP65 WW - WW - WW1 [14] WW1 364 Substrate binding P46937 

B E3 ligase Udf2P_core - U-BOX - U-BOX [15] U-BOX 900 
Ubiquitin-protein 

conjugation 
Q0ES00 

C PSD95 
PDZ - PDZ - PDZassoc - 

PDZ - SH3 - GK 

Supramodule formed by PDZ3, 

SH3 and GK [40] 
PDZ3 [16] PDZ3 1,578 Peptide binding P31016 

C Pab1 
RRM - RRM - RRM - 

RRM - PABP 

Physical contact and allosteric 

regulation between RRM1 and 

RRM2 [41,42] 

RRM2 [17] 
RRM1-RRM3 (1-

343) 
1,189 poly-A binding P04147 

D PTEN DSPc - PTEN_C2 
Physical contact between DSPc 

and PTEN_C2 [43] 
DSPc, PTEN_C2 [9] Full length 4,112 Dephosphorylation P60484 

D HSP90 HATPase_c - HSP90 (Works as homodimer [45]) HATPase_c [44] Full length 4,022 Protein binding P02829 

D GAL4 
Zn_clus - Gal4_dimer - 

Fungal_trans 
(Works as homodimer [46]) Zn_clus [10] 

Zn_clus – 

Gal4_dimer (1-

196) 

1,196 DNA binding P04386 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.05.434175doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.05.434175


 

 15 

 
Protocol 
category 

Protein 
category 

Proteins 
Homology 

search 
Fine-
tuning 

Embedding 

A A 
TEM-1, 

APH(3’)-II 
Full search 

Full 
length 

Full embedding  
(assay embedding) 

B B 
Ubiquitin, 
YAP65, E3 

ligase 
Domain search 

Full 
length 

Domain embedding 
(assay embedding) 

C C PSD95, Pab1 Full search 3-gram Assay embedding 

 
Table 2. Summary of the proposed protocol for each protein category. The protocol categories B 
and C are the ones considering the domain architecture in multi-domain proteins. In the 
“Embedding” column, assay embedding in parentheses means the described option is equivalent to 
assay embedding. 
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Protein category Protein 
Protocols 

Pre-training Full [28] A B C 

A 

TEM-1 
0.70 
0.45 

0.78* 
0.64* 

0.78* 
0.64* 

- - 

APH(3’)-II 
0.67 
0.38 

0.68* 
0.42* 

0.68* 
0.45** 

- - 

B 

Ubiquitin 
0.58 
0.35 

0.58 
0.39* 

0.60** 
0.41** 

0.61** 
0.43*** 

0.60** 
0.40* 

YAP65 
0.62 
0.07 

0.72* 
0.32* 

0.74* 
0.39* 

0.77*** 
0.47*** 

0.70* 
0.40** 

E3 ligase 
0.16 
0.01 

0.39* 
0.15* 

0.44** 
0.17* 

0.48*** 
0.25*** 

0.41* 
0.21** 

C 

PSD95 
0.62 
0.25 

0.65* 
0.40* 

0.67** 
0.47** 

0.69*** 
0.47** 

0.69*** 
0.50*** 

Pab1 
0.66 
0.43 

0.70* 
0.52** 

0.73** 
0.56** 

0.71* 
0.50** 

0.76*** 
0.59*** 

D 

PTEN 
0.54 
0.29 

0.62* 
0.45* 

0.62* 
0.46* 

- - 

HSP90 
0.54 
0.33 

0.56* 
0.43*** 

0.57* 
0.43* 

0.55 
0.39* 

0.56* 
0.41* 

GAL4 
0.61 
0.24 

0.68* 
0.46* 

0.68* 
0.46* 

0.69*** 
0.48* 

0.62 
0.31 

 
Table 3. Summary of variant effect prediction accuracy (Spearman's correlation coefficient). The 
upper and lower values in each cell are for training size 0.8 and 0.1, respectively. *: significantly 
(p<0.05; one-sided Wilcoxon test) better than pre-training. **: significantly better than pre-training 
and protocol “Full”. ***: significantly better than B, C, and either “Full” or A. For the protocols B 
and C, the best performing protocols are shown in bold (i.e., the scores for both training sizes have 
*** marks). 
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