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Abstract 

 

Introduction: Dimensional psychopathology strives to associate different domains of cognitive 

dysfunction with brain circuitry. Connectivity patterns as measured by functional magnetic resonance 

imaging (fMRI) exist at multiple scales, with global networks of connectivity composed of microscale 

interactions between individual nodes. It remains unclear how separate dimensions of psychopathology 

might differentially impact these different scales of organization. 

 

Methods: Patients experiencing anxious misery symptomology (depression, anxiety and trauma; n = 192) 

were assessed for symptomology and received resting-state fMRI scans. Three modeling approaches 

(seed-based correlation analysis [SCA], support vector regression [SVR] and Brain Basis Set Modeling 

[BSS]), each relying on increasingly dense representations of functional connectivity patterns, were used 

to associate connectivity patterns with six different dimensions of psychopathology: anxiety sensitivity, 

anxious arousal, rumination, anhedonia, insomnia and negative affect. Importantly, a full 50 patients were 

held-out in a testing dataset, leaving 142 patients as training data. 

 

Results: Different symptom dimensions were best modeled by different scales of brain connectivity: 

anhedonia and anxiety sensitivity were best modeled with single connections (SCA), insomnia and 

anxious arousal by mesoscale patterns (SVR) and negative affect and ruminative thought by broad, 

cortex-spanning patterns (BBS). Dysfunction within the default mode network was implicated in all 

symptom dimensions that were best modeled by multivariate models.  

 

Conclusion: These results suggest that symptom dimensions differ in the degree to which they impact 

different scales of brain organization. In addition to advancing our basic understanding of transdiagnostic 

psychopathology, this has implications for the translation of basic research paradigms to human disorders.  

 

Word count: 245 
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Introduction  

 

Traditionally, mental illnesses have been conceptualized as disorder classes diagnosed based on the types, 

numbers and severity of symptoms reported by patients, as embodied in the Diagnostic and Statistical 

Manual of Mental Disorders (DSM). The DSM’s observational taxonomy persists in part due to a lack of 

reliable biomarkers for psychiatric disorders and remains the standard of practice for clinicians today. 

However, notable issues with the DSM system such as heterogeneity within disorder classes, high 

comorbidity between disorders and a lack of understanding of underlying mechanisms have motivated the 

development of an alternative framework: the National Institute of Mental Health’s (NIMH) Research 

Domain Criteria framework (RDoC;[1]). Whereas the DSM grouped diverse symptoms together based on 

common co-occurrence, RDoC delineates these symptoms into distinct dimensions of behavioral and 

cognitive (dys)function, with the goal of mapping these dimensions onto genetic, molecular, cellular and 

circuit mechanisms. The current study applies this dimensional approach to a class of disorders termed 

disorders of “anxious misery” [2, 3],  which includes DSM diagnoses like generalized anxiety disorder 

(GAD), major depressive disorder (MDD), dysthymic disorder, and post-traumatic stress disorder 

(PTSD). Combined, these disorders affect over 800 million people worldwide and constitute the leading 

cause of disability [4]. Patients with these disorders exhibit dysfunction along various dimensions of 

neurocognitive functioning (constructs in the RDoC) such as fear, anxiety, frustrative nonreward, sleep-

wakefulness and loss.  

 

A key element for investigating these dimensions is the identification of their underlying neural circuits, 

part of NIMH’s goal to “map the connectomes for mental illness” (NIMH Strategic Plan, Strategy 1.3, 

Objective 1). Resting-state networks [5, 6] can be probed using noninvasive brain imaging to visualize the 

functional coactivation of specific regions of the brain, and previous work has implicated various patterns 

of hypo- and hyperconnectivity to anxious misery etiology [7]. Importantly, functional brain connectivity 

patterns exist at multiple scales [8-10], with large-scale patterns of connectivity composed of microscale 

interactions between individual functional nodes of the brain and mesoscale interactions between coherent 

communities of nodes. Different dimensions of symptomology may be best represented at different scales 

of brain connectivity; dysfunction in a single circuit may underlie the etiology of some dimensions of 

psychopathology while broader, global patterns of connectivity may best model other dimensions. 

Previous work on multiscale brain connectomics in psychiatry has focused on single-diagnosis, DSM-

derived cohorts of patients [11, 12], and it remains unclear how transdiagnostic dimensions of 

psychopathology might differentially impact different scales of connectomics [12].  

 

Different modeling approaches utilize information at different scales of functional connectomics. At one 

extreme are univariate seed-based correlation (SCA) approaches, which examine associations between 

behavioral variables and connectivity between just two regions, the selection of which is often determined 

a priori. In contrast, data-driven models such as support vector regression (SVR; [13]) and connectome-

based predictive modeling (CPM; [14]) typically select a small subset of functional connections across the 

brain to generate multivariate symptom-brain associations. Finally, recent methods like brain basis set 

modeling (BBS; [15]) capitalize on connectivity patterns that span the entire brain, utilizing 

dimensionality reduction approaches like principal component analysis (PCA) to efficiently summarize 

large-scale patterns. It remains an open question which modeling approaches are best suited for particular 

dimensions of anxious misery symptomology.  

 

An important consideration in assessing the generalizability of symptom-brain associations is the ability 

to replicate performance in a held-out testing dataset [16]. Systematic examinations of univariate and 

multivariate brain-behavior associations have revealed that samples far larger than those typically used in 

neuroimaging studies of psychopathology may be required to generate stable associations [17]. Further, 

notable examples of failed replications [18, 19] have revealed the perils of fitting and interpreting 

multivariate models, particularly when models rely on a small subset of functional connections selected 
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through data-driven methods. Many of these attempts at replication stemmed from findings that 

incorrectly applied cross-validation, which requires complete encapsulation of information between folds 

in order to generate a reasonable estimate of out-of-sample performance [20]. Direct validation of model 

performance in a held-out sample is therefore an important step to assessing the potential generalizability 

of any symptom-brain association.  

 

To this end, the present work examined transdiagnostic associations between six different dimensions of 

anxious misery symptomology (anxiety sensitivity, anxious arousal, ruminative thought, anhedonia, 

insomnia and negative affect) and functional connectivity, using three different modeling approaches.  

Importantly, the data were randomly divided into a training set and a held-out testing set to validate model 

performance. 
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Materials and methods 

 

Sample characteristics 

 

% Total 
 

Category 
 

Total 
(N = 240) 

Control 
(N = 48) 

Anxious Misery 
(N = 192) 

Sex 

70.0% Female 168 34 134 

30.0% Male 72 14 58 

Age (median = 26) 

28.3% 18-23 y/o 68 11 57 

37.9% 24-29 y/o 91 23 68 

17.5% 30-35 y/o 42 9 33 

12.5% 36-41 y/o 30 4 26 

1.3% 42-47 y/o 3 1 2 

0.8% 48-53 y/o 2 0 2 

1.7% 54-59 y/o 4 0 4 

Race 

10.4% Asian 25 6 19 

18.8% Black 45 9 36 

5.4% Multiracial 13 2 11 

2.1% Other 5 2 3 

3.3% Undisclosed 8 0 8 

60.0% White 144 29 115 

Ethnicity 

7.1% Hispanic 17 3 14 

91.2% Not Hispanic 219 45 174 

1.7% Undisclosed 4 0 4 

Medication status 

25.6% Medicated - - 51 

73.4% Unmedicated - - 141 

Primary DSM-5 Diagnosis 

47.4% Major Depressive Disorder - - 91 

21.9% Generalized Anxiety Disorder - - 42 

20.3% Posttraumatic Stress Disorder - - 39 

6.77% Persistent Depressive Disorder - - 13 

3.12% Social Anxiety Disorder - - 6 

0.52% Cyclothymic Disorder - - 1 

Table 1. Participant characteristics. Additional demographic information can be found in Supplemental Table 1.  

 

For a complete description of sample characteristics, screening procedures and participant assessment, 

readers are directed to the reference publication for this dataset [21].  
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194 participants experiencing symptoms of anxious misery (AM) and 48 healthy comparators (HC) were 

recruited through the community. Demographic information is summarized in Table 1, with additional 

demographic information in Supplemental Table 1. Two AM participants were removed from analyses 

due to excessive in-scanner motion, so we present demographics for 192 AM and 48 HC participants. 

 

To ensure a truly transdiagnostic dataset, instead of using diagnosis from the Structure Clinical Interview 

for DSM-5 (SCID-5) as an inclusion criterion, participants were deemed eligible if their Neuroticism 

score on the Neuroticism-Extraversion-Openness Five-Factor Inventory (NEO FFI) was greater than one 

standard deviation above the population mean [22].  

 

We did not require participants to cease taking psychotropic medication that they were currently taking. 

The majority of our study participants (73.4%) were unmedicated.  

 

Participant assessment 

 

In order to assess participants’ symptom profiles, seven clinician-administered and self-report scales 

measuring a broad range of depressive and anxious symptomology were administered to all participants 

(see full list of assessments in Supplemental Methods and [21]).  

 

Hierarchical clustering of symptoms 

 

To derive data-driven symptom communities from our assessment data, we applied a hierarchical 

clustering algorithm [23] on the Pearson correlation matrix of the 113 constituent items of our seven 

instruments, using only data from the AM group. After selecting an appropriate resolution (see 

Supplemental Methods for details), we derived symptom dimension scores for each participant by 

computing the mean across items belonging to each symptom community, after z-scoring.  

 

Imaging acquisition 

 

Participants received T1w and four resting state fMRI scans (total acquisition time = 23:01) after their 

symptom assessments. Full imaging parameters and image acquisition protocols are detailed elsewhere 

[21]. 

 

Image preprocessing 

 

For full preprocessing details, readers are directed to the reference publication for this dataset [21]. 2 

participants, both of whom were AM participants (0.83% of all participants) were removed from resting 

state analyses due to excessive in-scanner movement.  

 

Overview of modeling approaches 

 

We tested the ability of three different modeling approaches, each relying on increasingly dense 

representations of functional connectomics, to generate robust, generalizable associations between 

imaging data and symptom dimensions. An overview of each of these modeling approaches is provided 

with complete details provided in the Supplemental Methods. 

 

Modeling Approach 1: Seed-based correlation analysis 

 

Seed-based correlation analysis (SCA) associates behavioral variables (in our case, symptom dimension 

scores) with connectivity between a seed region and another region. Each symptom dimension was 

assigned specific seeds and masks based on extant literature (Table 2). Exploratory whole-brain analyses 
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were also conducted. In cases where neither the initially proposed set of masks nor the whole-brain 

analyses generated a significant cluster, post-hoc analyses were conducted where further masks were 

examined (this was only necessary for the negative affect cluster, and only two additional sets of masks 

were examined post-hoc, see Table 2).  

 

Clusters that exhibited significant associations based on permutation testing (p < 0.05) are reported. 

Linear models predicting symptom severity using connectivity were constructed using mean connectivity 

between the seed region and the identified cluster for each subject.  

 

Multivariate methods 

 

The next two modeling approaches used the Power264 atlas, a well-validated parcellation that identifies 

264 functional nodes of the brain [24]. In addition to these 264 nodes, we supplemented 14 additional 

nodes relevant to anxious misery disorders, adopted from the additional nodes used in [25] (see full table 

of additional seeds in Supplemental Table 3).  

 

For each of the following methods, we extracted the mean time series of each node using spherical ROIs 

(5mm radius) and then computed the Pearson correlation between each time series to generate a 278 x 

278 functional connectivity matrix for each scan (38503 unique connections). Because participants 

completed four scans, the four resulting matrices were averaged to generate one matrix per participant.  

 

Modeling Approach 2: Support vector regression (SVR) 

 

Support vector machines (SVMs) are a class of supervised machine learning techniques that attempt to 

learn a hyperplane that maximizes the margin between two classes, and extensions of this technique allow 

for continuous regression (SVR). Our cross-validated feature selection procedure indicated that SVR 

models performed best with a small subset of connectivity features (~5% of the full matrix).  

 

Modeling Approach 3: Brain Basis Set Modeling (BBS) 

 

Brain Basis Set Modeling is a recently developed technique that associates symptoms with a low 

dimensionality representation of global functional connectivity patterns [15]. In short, principal 

components analysis was used to generate a low-dimensional representation of global connectivity 

patterns, and then linear regression was used to associate each symptom dimension with connectivity 

component scores. Of the three modeling approaches, only BBS utilized data from HC participants 

(Supplemental Methods).  
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Modeling assessment framework 

 

 
Figure 1. Flowchart of model assessment framework. After data are split into training and testing partitions, hyperparameter 

tuning in training data is accomplished using nested 5-fold cross validation. The best performing hyperparameters are used in a 

final model that is fit on the full training dataset. Finally, model performance is assessed using the testing data, and significance is 

determined using permutation testing. This process was repeated for each symptom dimension, each time using the same 

training/testing partition.  

 

Each of the models that was tested underwent the following assessment framework (Fig. 1) designed to 

test the performance of our association models on new, unseen data. First, age, sex and motion (quantified 

using mean RMS) were regressed from connectivity matrices, and age and sex were regressed from 

symptom scales. Second, while matching for age, sex and symptom severity, a random subset of 50 AM 

participants (26.0% of AM participants) were segregated to a testing set, leaving 142 AM participants for 

our training set. Next, within the training set, five-fold cross validation was employed to perform 

hyperparameter tuning and feature selection (Supplemental Methods) for the multivariate methods. 

Finally, model performance was assessed in the held-out testing set, again by computing the Pearson 

correlation between the predicted and actual symptom scores. Significance was determined using 

permutation testing (Supplemental Methods).   
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Results 

 

Symptom clustering 

 

Inspection of the symptom hierarchy revealed that items clustered according to clinically relevant 

dimensions of dysfunction (see Supplemental Figure 1 for complete symptom hierarchy). Symptoms first 

separated into two large communities, one with predominantly depressive symptoms and the other with 

largely anxiety-related symptoms. At finer resolutions, these two larger communities separated into three 

subcommunities each, resulting in six total communities (Fig. 2). Anxiety-related symptoms divided into 

the following communities: anxiety sensitivity (ASI item #3: “It scares me when my heart beats 

rapidly.”), anxious arousal (MASQ item #16: “Hands were shaky”) and ruminative thought (RTS item #4: 

“I can’t stop thinking about some things.”). Depression-related symptoms divided into the following 

communities: anhedonia (SHAPS item #3: “I would find pleasure in my hobbies and pastimes.”), 

insomnia (ISI item #1: “Difficulty falling asleep”) and negative affect (MADRS item # 9: “Pessimistic 

Thoughts”). See Supplemental Table 4 for a complete list of symptom clusters and their constitutive 

items. Ultimately, this resolution was chosen for analysis because it both (i) allowed for interrogation of 

symptom dimensions finer than those aligned with traditional diagnostic categories (anxiety and 

depressive disorders) and (ii) resulted in communities that were broadly aligned with constructs of the 

RDoC, unlike finer resolutions which split groups of symptoms into clusters too fine to be meaningful in 

transdiagnostic analyses.  

 
Figure 2. Clustering revealed six communities of symptoms. Each circle represents an item on one of seven patient assessments 

of psychopathology. Indicated in each circle is the assessment to which the item belongs. Connections and proximity of circles 

indicate the strength of correlation between items. MADRS = Montgomery-Asberg Depression Rating Scale, HAMD = Hamilton 

Depression Scale, MASQ = Anxiety Depression Distress Inventory-27, ASI = Anxiety Sensitivity Index, SHAPS = Snaith-

Hamilton Pleasure Scale, ISI = Insomnia Severity Index, RTS = Ruminative Thought Style Questionnaire.  
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Training and testing partitions 

 

Training (n = 192) and testing (n = 50) partitions were well-matched for age, sex and z-scored symptom 

scores (Supplemental Figure 2). Two sample t-tests and χ2 tests did not indicate significant differences 

between data partitions for all categories.  

 

SCA results 

 
 

Symptom Ref. Seed Mask x y z sign # voxels r (training) r (testing) 

Anxiety 
sensitivity 

[26-30] 

L Amygdala Whole brain -- -- --  -- -- -- 

 L dlPFC -39 33 31 + 74 0.355* 0.337* 

 R dlPFC 42 33 40 + 8 0.335* 0.069 

R Amygdala Whole brain -- -- --  -- -- -- 

 L dlPFC -41 29 35 + 31 0.359* 0.241 

 R dlPFC -- -- --  -- -- -- 

Anxious 
arousal 

[26-30] 

L Amygdala Whole brain -50 -24 48 - 7 0.376* 0.007 

 L dlPFC -- -- --  -- -- -- 

 R dlPFC -- -- --  -- -- -- 

R Amygdala Whole brain -- -- --  -- -- -- 

 L dlPFC -- -- --  -- -- -- 

 R dlPFC 30 24 40 - 18 0.326* 0.016 

Ruminative 
thought 

[31-34] 

PCC Whole brain -- -- --  -- -- -- 

 Precuneus 10 -72 50 + 27 0.345* 0.135 

 mPFC -- -- --  -- -- -- 

Anhedonia [35-39] 

L iVS Whole brain -- -- --  -- -- -- 

 L OFC -- -- --  -- -- -- 

 R OFC -- -- --  -- -- -- 

R iVS Whole brain -- -- --  -- -- -- 

 L OFC -16 38 -16 - 19 0.345* 0.276* 

 R OFC -- -- --  -- -- -- 

Negative 
affect 

[40-42] 
 

sgACC Whole brain -- -- --  -- -- -- 

 Precuneus -- -- --  -- -- -- 

 mPFC -- -- --  -- -- -- 

 PCC -- -- --  -- -- -- 

[43-45] 
 

 L dlPFC† -- -- --  -- -- -- 

 R dlPFC† -- -- --  -- -- -- 

[46, 47] 
 L Insula† -41 -11 0 + 49 0.396* 0.247 

 R Insula† -- -- --  -- -- -- 

Insomnia [48-52] 

L Insula Whole brain -- -- --  -- -- -- 

 Precuneus -- -- --  -- -- -- 

 mPFC 11 69 5 + 111 0.384* 0.272 

R Insula Whole brain -- -- --  -- -- -- 

 Precuneus -- -- --  -- -- -- 

 mPFC 11 70 3 + 37 0.353* 0.245 
 

Table 2. Seed-based correlation analysis results. Unique seeds and masks for each symptom cluster (in addition to a whole brain 

analysis) were assigned based on findings from extant literature (Ref.). Significant clusters were identified using a nonparametric 

permutation testing technique incorporating threshold-free cluster enhancement (implemented in FSL’s randomise; FWER < 

0.05). Coordinates for cluster center of mass are in MNI space. “Sign” indicates the direction of association: “+” indicates that 
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hyperconnectivity was associated with worse symptoms, while “-” indicates that hypoconnectivity was associated with worse 

symptoms. r (training) and r (testing) indicate Pearson correlations between observed and predicted symptom scores using a 

linear model using connectivity z-scores. * indicates correlation was significant at p < 0.05 using permutation testing. † indicates 

masks that were added post-hoc to identify a significant association in the training set. dlPFC = dorsolateral prefrontal cortex, 

PCC = posterior cingulate cortex, mPFC = medial prefrontal cortex, iVS = inferior ventral striatum, OFC = orbitofrontal cortex, 

sgACC = subgenual anterior cingulate cortex.  

 

 

The complete list of significant clusters identified using SCA is detailed in Table 2. Only one significant 

cluster was identified using a whole-brain analysis, and association with this cluster did not replicate in 

the testing dataset (anxious arousal, L Amygdala → whole brain, cluster region = left primary motor 

cortex, rtesting = 0.007, p = 0.962). Additionally, the originally proposed masks for the negative affect 

cluster (precuneus, mPFC and PCC) did not generate any significant clusters, so the dlPFC and insular 

cortices were examined post-hoc as additional masks.  

 

Using SCA, all connectivities extracted from identified clusters were significantly correlated with 

symptom dimensions in the training data. However, replication within the testing data was mixed. Only 

clusters for anxiety sensitivity (L Amygdala → L dlPFC, rtesting = 0.337, p = 0.017) and anhedonia (R iVS 

→ L OFC, rtesting = 0.276, p = 0.049) generated statistically significant correlations in the testing set. Other 

symptoms, like negative affect (sgACC → L Insula, rtesting = 0.247, p = 0.088), generated moderate, but 

not significant correlations, while still others, like anxious arousal (R Amygdala → R dlPFC, rtesting = 

0.016, p = 0.909), failed to generate any meaningful correlations in the testing set.  

 

Multivariate models: hyperparameter tuning in training dataset  

 

Hyperparameter tuning was accomplished using nested cross validation within the training dataset. SVR 

favored smaller numbers of connections (~500 connections), with cross-validated performance (measured 

by Pearson’s correlation between observed and predicted symptom scores) peaking around r = 0.65 for 

most symptom dimensions (Supplemental Figure 3). In contrast, BBS favored a high number of 

connections (~38000 connections), with more moderate cross-validated performance (r = 0.2 for most 

symptom dimensions). As BBS models generally exhibited increasing cross validated performance with 

more features, the full connectivity matrix was used for all BBS models.  

 

Final model performance in testing dataset 

 

Symptom 
SCA SVR BBS 

rtesting (p) 
# of 

conn. 
rtesting (p) 

# of 
conn. rtesting (p) 

# of 
conn. 

Anxiety sensitivity 0.337* (0.017) 1 0.225 (0.062) 500 0.284* (0.026) 38503 

Anhedonia 0.276* (0.049) 1 0.185 (0.097) 500 0.198 (0.086) 38503 

Insomnia 0.272 (0.058) 1 0.344* (0.006) 4600 0.313* (0.013) 38503 

Anxious arousal 0.016 (0.909) 1 0.336* (0.009) 1200 0.255* (0.046) 38503 

Negative affect 0.247 (0.088) 1 0.016 (0.449) 140 0.323* (0.013) 38503 

Ruminative thought 0.135 (0.351) 1 0.167 (0.136) 3000 0.313* (0.014) 38503 

 

Table 3. Pearson’s correlations between actual and predicted symptom constructs in the held-out testing set using three different 

modeling approaches. In parentheses are permutation-based p-values where rows of imaging data were shuffled relative to 

symptom data in the training set and used to predict testing set symptom data (repeated 5000 times for each symptom and 

modeling approach). Also listed are the number of functional connectivity features (# of conn.) used for each model. Highlighted 

in bold are the best performing model approaches for each symptom construct. For SCA, the best performing association for each 
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symptom was selected. * indicates correlation was significant at p < 0.05. SCA = seed-based correlation analysis. SVR = support 

vector regression. BBS = Brain Basis Set Modeling.  

 

Final model performance for all three modeling approaches is detailed in Table 3. Each symptom 

dimension was best modeled by a different modeling approach: anxiety sensitivity (rtesting = 0.337, p = 

0.017) and anhedonia (rtesting = 0.276, p = 0.049) were best modeled by SCA, insomnia (rtesting = 0.344, p = 

0.006) and anxious arousal (rtesting = 0.336, p = 0.009) were best modeled by SVR and negative affect 

(rtesting = 0.323, p = 0.013) and ruminative thought (rtesting = 0.313, p = 0.014) were best modeled by BBS.   
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Figure 3. Schematic representations of each symptom and its best performing modeling approach. Symptoms in the first row 

were modeled using seed-based correlation analysis (SCA), in the second row using support vector regression (SVR) and in the 

third row using Brain Basis Set Modeling (BBS). A connection’s color represents either hyperconnectivity (red) or 

hypoconnectivity (blue), and a connection’s width represents the magnitude of its associated model weight. Green and yellow 

nodes denote the a priori connections tested in SCA models; green nodes represent seeds while yellow nodes represent resulting 

clusters. Other nodes belonging to key connections are labeled and colored cyan for easier identification: anxious arousal was 
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associated with hypoconnectivity between L frontopolar cortex and R supramarginal gyrus and hyperconnectivity between R 

insula and L amygdala, ruminative thought was associated with hyperconnectivity between primary motor cortex and R angular 

gyrus and negative affect was associated with hyperconnectivity between R amygdala and anterior cingulate cortex. For SVR and 

BBS models, connections in the strongest 1% of model weights are plotted for display purposes (~30 connections for SVR 

models, ~300 for BBS models). dlPFC = dorsolateral prefrontal cortex, Amy = amygdala, FPC = frontopolar cortex, SMG = 

supramarginal gyrus, Ins = insula, M1 = primary motor cortex, PreC = precuneus, PCC = posterior cingulate gyrus, Ang = 

angular gyrus, iVS = inferior ventral striatum, OFC = orbitofrontal cortex, mPFC = medial prefrontal cortex, ACC = anterior 

cingulate cortex, sgACC = subgenual anterior cingulate cortex.  

 

Schematic representations of each symptom and their best performing modeling approaches are displayed 

in Figure 3. While modeling approaches were fit independently, connections weighted heavily in simpler 

models were also prominent in more complex modeling approaches. For example, a priori connections 

tested in SCA generally exhibited strong weights in multivariate models: the L Insula → mPFC 

connection was in the top 4.04% of connections associated with insomnia, the sgACC → L Insula 

connection was in the top 3.50% of connections associated with negative affect and the precuneus → 

PCC connection was in the top 10.21% of connections associated with ruminative thought (and this 

connection performed comparatively worse in SCA, with rtesting = 0.135). Only anxious arousal did not 

exhibit strong correspondence between its SCA model (which had poor replication in the testing set: rtesting 

= 0.016) and its multivariate models: SVR did not select the R Amygdala → R dlPFC connection, and 

this connection was only in the top 34.01% of connection weights in BBS. Finally, connection weights 

from SVR models correlated significantly with BBS connection weights across all symptom dimensions 

(r = 0.626, p < 0.001). 
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Figure 4. Chord diagrams displaying network-level associations for symptoms best fit by multivariate models. Association 

strengths were collated by node community, according to the a priori communities delineated in the Power264 atlas. 

Communities were lateralized and plotted around each chord diagram, with left-lateralized nodes displayed on the left side of the 

plot and bar width proportional to the number of nodes in the community. Red ribbons indicate hyperconnectivity while blue 

ribbons indicate hypoconnectivity in association with symptom scores. Ribbon opacity is proportional to the mean strength of 

association with the symptom dimension (more opaque = stronger association), and ribbon width is proportional to the number of 

connections participating in a plotted association (wider ribbon = more connections). Note that the left column of diagrams 

represents SVR models, while the right column represents BBS models. DMN = default mode network, MEM = memory 

retrieval, FPN = frontoparietal network, CIN = cinguloopercular network, VAN = ventral attention network, DAN = dorsal 

attention network, SAL = salience network, LIM = limbic, SUB = subcortical, CER = cerebellar, SMN = somatomotor network, 

AUD = auditory, VIS = visual. Full details for how this visualization was generated can be found in the Supplemental Methods 

(Under heading: Chord diagram for multivariate models).  
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Network-level representations for multivariate models reveal common and distinct patterns of 

connectivity abnormalities associated with each symptom dimension (Fig. 4). Of the four symptoms best 

represented by multivariate models, all exhibited abnormal connectivity patterns in the default mode 

network (DMN). Anxious arousal was characterized by hyperconnectivity between bilateral regions of the 

DMN, as well as hyperconnectivity between (i) sensory regions like the visual and auditory cortices and 

(ii) networks in association cortex, like the cinguloopercular network (CIN), frontoparietal network (FPN) 

and DMN. Insomnia was associated with hyperconnectivity between the (i) DMN and (ii) visual and 

auditory cortices, the right salience network and limbic nodes. Ruminative thought was associated with 

hyperconnectivity between bilateral regions of the CIN, as well as hyperconnectivity between the CIN 

and visual cortex and hypoconnectivity between the right CIN and the DMN. Finally, negative affect was 

associated with decreased segregation (increased connectivity) between the left FPN and the DMN, as 

well as between CIN and DMN. The left FPN exhibited decreased connectivity with the salience network 

and visual cortex.  
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Discussion 

 

Most studies of anxious misery pathophysiology have examined differences between a single-diagnosis 

cohort of patients and a matched group of healthy controls. The present work examines transdiagnostic 

associations between functional connectivity and different symptom dimensions, in line with the 

dimensional perspective espoused by NIMH’s RDoC framework [1]. Our multi-modeling approach 

suggests that different dimensions of psychopathology are best expressed at different scales of brain 

connectivity (Fig. 3). Some dimensions, like anhedonia and anxiety sensitivity, were best represented by a 

single, univariate relationship. Other dimensions, like insomnia and anxious arousal, required a data-

driven approach, drawing from a subset of the brain connectome to generate a replicable association. Still 

other dimensions, like negative affect and rumination, required connectivity patterns that spanned the 

entire brain; for these dimensions, smaller subsets of brain connectivity measures were not sufficient to 

generate a replicable association.  

 

Anhedonia and anxiety sensitivity were best modeled using single connections, suggesting that these 

symptom dimensions may represent more elementary neurocognitive processes gone awry. Anhedonia 

has been consistently linked to dysfunctions in the mesolimbic dopaminergic system, a relatively 

circumscribed and evolutionarily conserved system [53, 54] that plays a fundamental role in reward and 

goal-directed behaviors in many vertebrate species [55]. Anxiety sensitivity has been characterized as 

“fear of fear”, or the fear of sensations associated with the experience of anxiety [56]. Associations 

between anxiety sensitivity and disorders like PTSD [56, 57] and panic disorder [58], both disorders with 

exaggerated fear responses to threatening stimuli, support this account. Like the mesolimbic circuit in 

anhedonia, fear circuitry centered around the amygdala has remained well-conserved throughout 

evolution [59, 60]. 

 

In contrast to anhedonia and anxiety sensitivity, anxious arousal and insomnia were best modeled using 

SVR, which utilized a small subset of the connectome (~5%). Like anxiety sensitivity, anxious arousal 

has been associated with abnormal amygdala connectivity [28, 61]. However, cross-cultural studies have 

revealed that different ethnoracial groups experience different degrees of anxious arousal (somatization), 

suggesting that this symptom dimension likely involves cortical integration beyond the amygdala [61, 

62]. Indeed, anxious arousal was associated with hyperconnectivity between sensory regions and regions 

in association cortex (including CIN, FPN and DMN), which may underlie the somatization of anxious 

states. Insomnia was associated with hyperconnectivity between the DMN and multiple cortical areas, 

including primary sensory cortex, salience network and limbic nodes. This exaggerated connectivity with 

the DMN may represent increased vigilance and intrusive awareness of emotional and bodily states, 

resulting in poor sleep initiation and continuity [63].  

 

Finally, two of our constructs, rumination and negative affect were best modeled by BBS, which utilized 

over 38,000 connections. Evolutionary theories of ruminative thought support the notion that this 

symptom dimension likely developed later in evolution, as the emergence of complex social environments 

and the ability to engage in sustained processing are thought to be supported by the expansive primate 

neocortex [64, 65]. Similar theories about negative affectivity suggest that stress drives the brain to 

reorganize to minimize surprise (prediction error) in the environment, a complex process that likely 

involves cortex-spanning, multi-network interactions [66]. Both ruminative thought and negative affect 

exhibited abnormalities with the DMN, which has been consistently implicated in anxious misery 

disorders, particularly in depression [41, 67]. Hyperactivity of the DMN during emotional perception and 

judgement [68] and passive viewing and reappraisal of negative pictures [67], as well hyperconnectivity 

between the DMN and the FPN [42] suggest that DMN abnormalities may underlie an inability to detach 

from internal emotional states (e.g., rumination and negative affect; [67]).  
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The present work suggests that anhedonia and anxiety sensitivity (and its related construct, fear) may be 

well modeled by rodent models due to high concordance with human neurobiology, while more complex 

symptom dimensions like negative affect and rumination may be challenging for cross-species translation. 

This is not to suggest, however, that rodent circuit-level analyses of negative affect and rumination are 

without merit; for example, the subgenual anterior cingulate cortex (sgACC) → left insula connection had 

a relatively robust association with negative affect, corroborating clinical neuromodulatory techniques 

that target the sgACC [44, 69] and rodent studies of homologous brain regions [70, 71]. In fact, across our 

three modeling approaches, different models of the same symptom dimension exhibited similar weights, 

suggesting that convergent signals informed models at different scales. However, our results do suggest 

that symptom dimensions differ in the degree to which they impact different scales of brain organization, 

and future studies in both humans and rodents should acknowledge these discrepancies.  

 

Critical to our confidence in the validity of these conclusions is that we directly tested our models with a 

fully held-out validation dataset. Indeed, SVR models exhibited excellent performance in training set 

cross validation (typically achieving correlations of 0.6) but failed to generate significant associations in 

testing data for 4 out of 6 symptom dimensions. Furthermore, this gap between cross validated and testing 

performances persisted despite a careful segregation of feature selection across cross validation folds 

(Figure 2; [18]), highlighting the challenges of interpreting cross validation results without held out 

validation [72]. SVR models favored smaller subsets of features, typically on the order of 500 features 

(around ~1% of the full connectivity matrix), which is similar to the number of connections used in many 

other studies examining multivariate associations of psychopathology [25, 73-75]. Notably, many of these 

studies did not provide a direct validation of their models on held-out data which, as the results from this 

study suggest, is a crucial step in assessing the generalizability of multivariate models.  

 

While we strove to implement a rigorous analytic design and findings are reinforced by and expand upon 

prior literature, these results should also be considered in the context of the following limitations. In order 

to minimize the number of hypotheses tested for SCA, we limited seeds and masks for SCA to a 

circumscribed set based on extant literature. It is possible that univariate connections outside of those 

tested could replicate in a testing set. However, we took care to focus on those connections that were best 

supported by the literature. Further, exploratory whole-brain analyses only generated one cluster (anxious 

arousal; L Amygdala → L primary motor cortex), which failed to replicate in the testing dataset. 

Additionally, the testing dataset was of moderate size (n = 50); future analyses pooling data from multiple 

sites will prove invaluable for continuing to test the robustness and generalizability of symptom-brain 

associations [17].  

 

Despite these limitations, the present work represents one of the only studies to examine transdiagnostic, 

multidimensional psychopathology using multiple scales of brain connectivity. Our rigorous performance 

assessment framework revealed that different dimensions of anxious misery psychopathology require 

different scales of functional connectivity, which, in addition to advancing a fundamental understanding 

of disease etiologies across DSM diagnosis categories, has implications for the translation of basic 

research paradigms to human psychopathology.  

 

Word count: 3778 
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Supplemental Methods and Materials 

 

Participant assessment 

 

While participants completed a total of 32 assessments that addressed a broad range of cognitive 

performance, general health and social cognitive domains (full details in [1]), we focused on seven well-

established scales of psychopathology that measure various aspects of anxious misery symptomology. 

These seven scales are: (i) Montgomery-Asberg Depression Rating Scale (MADRS[2]) and (ii) Hamilton 

Depression Rating Scale (HAM-D / HDRS; [3]), which both measure depressive symptoms, (iii) Anxiety 

Depression Distress Inventory-27 (ADDI-27 / MASQ-Short[4]), which measures both depressive and 

anxious symptoms, (iv) Anxiety Sensitivity Index-3 (ASI-3; [5]), which measures anxious symptoms, (v) 

Snaith-Hamilton Pleasure Scale (SHAPS[6]), which measures hedonic capacity, (vi) Insomnia Severity 

Index (ISI[7]), which measures issues with sleep and (vii) Ruminative Thought Style Questionnaire 

(RTSQ; [8]which measures ruminative thought severity.  

 

Hierarchical clustering of symptoms 

 

To perform hierarchical clustering, we used a recently developed ensemble consensus clustering 

algorithm [9]), implemented in the HierarchicalConsensus package (v1.1.1) in MATLAB. We used 

minimum co-clustering as the measure of cohesion (option ‘min’ for ‘SimilarityFunction’) in order to 

prevent decreases in mean co-clustering after branching events. The result is a consensus structure 

representing correlational structure present in participants’ symptoms. In order to determine a reasonable 

resolution of symptom community structure, we manually inspected each level of the hierarchy, seeking a 

resolution that generated communities of the same general scale of those delineated by RDoC constructs 

(fear, anxiety, frustrative nonreward, sleep-wakefulness, etc.). 

 

Modeling approach 1: Seed-based correlation analysis 

 

Seeds and masks were derived from the Harvard-Oxford Cortical and Subcortical Atlases, with 

supplemental regions provided by other sources when appropriate regions were not present in the 

Harvard-Oxford atlases (only the inferior ventral striatum and orbitofrontal cortex were from 

supplemental sources; see Supplemental Table 2 for a complete description of seeds and masks). In order 

to limit the number of hypotheses tested for SCA, each symptom dimension was associated with one set 

of seeds (e.g., left and right amygdalae) and one set of masks (e.g., default mode network nodes: 

precuneus, medial prefrontal cortex, posterior cingulate gyrus). 

 

To conduct SCA, mean timeseries were extracted from each seed and correlated with the timeseries of 

every voxel in the brain, using a Pearson correlation and subsequent Fisher’s z transformation. Because 

participants completed four scans, the resulting four z-statistic maps were averaged within subjects to 

generate one map for each participant and symptom-seed. Then, linear associations with the relevant 

symptom dimension were tested, with significance determined by permutation testing (using FSL’s 

randomise, 5000 permutations; [10] 

 

Modeling approach 2: Support vector regression (SVR) 

 

For SVR, we utilized sklearn’s (v0.23.2; Python v3.7.6) implementation, using a linear kernel [11] Tuned 

hyperparameters specific to this modeling approach included a regularization parameter, C, and the kernel 

coefficient, gamma. SVRs were fit on a subset of individual connection strengths, which were selected 

using our cross-validated feature selection process. Our cross-validated feature selection procedure 

indicated that SVR models performed best when fit using smaller numbers of connections (~500 

connections; Supplemental Figure 3).  
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Modeling approach 3: Brain Basis Set Modeling (BBS) 

 

BBS effectively summarizes large-scale connectivity patterns, but it is unclear whether the entire 

functional connectome is necessary for effective modeling. Therefore, the optimal number of connectivity 

features to be included in the model was determined using our cross-validated feature selection procedure; 

this procedure indicated that BBS models performed best when the full connectivity matrix was used 

(Supplemental Figure 3). Second, principal components analysis using the prcomp function in R (v3.6.3) 

was performed on the subjects x connections matrix (dimensions = [192 x 38503]) from the training 

dataset, including healthy comparators. The resulting 192 components represent orthogonal directions 

along which interindividual variance in connection strength is maximized. All 50 healthy participants 

were included in this modeling approach in order to capture directions of connectivity variance that 

extend into healthy ranges; this was the only modeling approach that utilized our sample of healthy 

comparators. After PCA, individual component loadings were computed by projecting each subject’s 

connectivity matrix onto each component. Finally, linear regression models were fit to associate each 

symptom dimension with these connectivity component scores. 

 

Feature selection for multivariate methods 

 

With the exception of seed-based correlation analysis, which is a univariate method, all models underwent 

a feature selection procedure to improve performance and computational tractability. An important 

hyperparameter to determine was the number of connections to include in each model (in fact, only SVR 

had hyperparameters other than the number of selected connections). Feature selection was conducted for 

each symptom dimension that was assessed, meaning each symptom dimension was associated with a 

unique set of connections. Connections were selected by computing the Spearman correlations between 

the functional connectivity matrix and the symptom in question and then selecting the n connections with 

the highest absolute correlation. Importantly, connection selection was performed for each fold of cross-

validation, within the held-in data, which is a critical step to prevent overfitting [12] 

 

Permutation testing for final model performance assessment 

 

Model performance was assessed by examining the correlation between the predicted and observed 

symptom scores in testing set data. In order to determine the significance of these correlations, a 

permutation testing procedure was used wherein the rows of the training data’s imaging variables were 

shuffled, keeping the symptom data fixed. A model was fit on this permuted training data (rerunning 

nested 5-fold CV, hyperparameter tuning and feature selection each time) and then applied to the testing 

data, and a correlation between predicted and actual symptoms was computed. This procedure was 

repeated 5000 times for each symptom dimension to generate a null distribution, and a p-value was 

computed as the proportion of permuted correlations that were greater than the observed correlation.   

 

Chord diagram for multivariate models 

 

In order to present the results of our multivariate models, we translated node-wise model weights to mean 

community-level associations (based on the a priori communities given by the Power atlas) and displayed 

these in a chord diagram (Fig. 8). For these plots, we first re-projected BBS model coefficients back into 

connectivity space by multiplying the vector of model coefficients with the matrix of PCA loadings. The 

result is a 38503 x 1 vector of loadings, one for each connection in the full connectivity matrix. Next, for 

both SVR and BBS models, we assigned each non-zero connection to its two communities based on the a 

priori communities given by the Power atlas, one community for each node in the connection. To further 

aid in interpretation and visualization, communities were lateralized such that nodes belonging to the 

default mode network (for example) on the left side of the brain were assigned to the left default mode 
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community while nodes on the right side were assigned to the right default mode community, etc. Finally, 

visualization was accomplished by computing a “t-stat” for each community-pair, wherein the weight of 

each community-pair was given by the following equation: 

 

𝑤𝑒𝑖𝑔ℎ𝑡𝑖,𝑗 = | 
𝑤𝑖,𝑗 

𝑠𝑤𝑖,𝑗 √𝑛𝑖,𝑗⁄
| 

 

where 𝑤𝑖,𝑗 is the mean of the weights assigned to connections in community-pair i,j, 𝑠𝑤𝑖,𝑗
 is the standard 

deviation of those weights and 𝑛𝑖,𝑗 is the number of connections constituting community-pair i,j. The sign 

and absolute value of this term determined the color and opacity of each connection, respectively, in the 

resulting chord diagram (Fig. 8). The width of ribbons was set to be proportional to the number of 

constitutive connections. Community-pairs were plotted until the cumulative weight reached a specific 

threshold (150 for BBS models, 100 for SVR models), a threshold which was selected to balance 

interpretability and faithful representation of model complexity.  
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Supplementary Table 1. Additional Demographic Characteristics 

% Total 

 

Category 

 

Total 

(N = 242) 

Control 

(N = 48) 

Anxious Misery 

(N = 194) 

Education 

0.4% 

Grade 7-12 (without high school 

graduation) 1 0 1 

7.5% 

Graduated high school (or 

equivalent) 18 3 15 

21.2% Part college 51 7 44 

3.8% Graduated 2-year college 9 1 8 

38.8% Graduated 4-year college 93 22 71 

13.3% 

Part graduate or professional 

school 32 9 23 

15% 

Completed graduate or 

professional school 36 6 30 

Employment 

43.4% Full time 104 20 84 

28.3% Part time 68 11 57 

18.3% In school or training 44 14 30 

5.4% 

Unemployed and looking for 

work 13 2 11 

4.2% 

Unemployed and not looking for 

work 10 1 9 
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Supplemental Table 2. Seeds and masks used for SCA analysis 

Region name Atlas Name in atlas 
MNI coordinates 

(x,y,z, radius) 

L/R Amygdala Harvard-Oxford L/R Amygdala -- 

L/R dlPFC Harvard-Oxford L/R Middle Frontal Gyrus -- 

PCC Harvard-Oxford Cingulate Gyrus, posterior division -- 

Precuneus Harvard-Oxford Precuneous Cortex -- 

mPFC Harvard-Oxford Frontal Medial Cortex + Frontal Pole -- 

iVS* -- -- (±14, 8, -9, 3) [13] 

OFC AAL Superior frontal gyrus, orbital -- 

sgACC Harvard-Oxford Subcallosal Cortex -- 

Insula Harvard-Oxford Insular Cortex -- 

Abbreviations: Harvard-Oxford = Harvard-Oxford Cortical and Subcortical Atlases, AAL = Automated 

Anatomical Labeling Single-Subject Atlas, dlPFC = dorsolateral prefrontal cortex, PCC = posterior 

cingulate gyrus, mPFC = medial prefrontal cortex, iVS = inferior ventral striatum, OFC = orbitofrontal 

cortex, sgACC = subgenual anterior cingulate gyrus. * All regions used in SCA analysis were drawn from 

atlases, with the exception of the iVS seed (as neither Harvard-Oxford nor AAL atlases had sufficiently 

fine parcellations of the striatum). For this seed, we used spherical ROIs centered at the listed MNI 

coordinates.  
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Supplemental Table 3. Additional ROIs related to anxious misery pathophysiology added to the 

Power264 atlas 

 

Name x y z 

L nucleus accumbens -13 8 -8 

R nucleus accumbens 13 8 -8 

L subgenual anterior cingulate -5 15 -11 

R subgenual anterior cingulate 5 15 -11 

L caudate nucleus -12 18 -3 

R caudate nucleus 12 18 -3 

L amygdala -19 -2 -21 

R amygdala 19 -2 -21 

L hippocampus -26 -12 -22 

R hippocampus 26 -12 -22 

L locus coeruleus -5 -37 -27 

R locus coeruleus 5 -37 -27 

ventral tegmental area 6 -15 -15 

raphe nucleus 6 24 -16 

All coordinates are given in MNI coordinate space. ROIs were generated using 5mm radius spheres 

centered on the coordinates.  
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Supplemental Figure 1. Consensus hierarchical clustering result of participant symptoms. 

Labels were generated through manual inspection of symptom clusters. Minimum co-

classification was selected as the measure of cohesion, and 1000 partitions where each partition 

is sampled using a different value of γ) were used. Figure was generated using the 

drawHierarchy function of the HierarchicalConsensus package in MATLAB, v1.1.1 [9]  
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Supplemental Table 4. Complete list of symptom clusters and constitutive items 

Cluster Item Description 

Anxiety 
sensitivity 

ASI #1 It is important for me not to appear nervous. 

ASI #2 When I cannot keep my mind on a task, I worry that I might be 
going crazy. 

ASI #3 It scares me when my heart beats rapidly. 

ASI #4 When my stomach is upset, I worry that I might be seriously ill. 

ASI #5 It scares me when I am unable to keep my mind on a task. 

ASI #6 When I tremble in the presence of others, I fear what people might 
think of me. 

ASI #7 When my chest feels tight, I get scared that I won't be able to 
breathe properly. 

ASI #8 When I feel pain in my chest, I worry that I'm going to have a heart 
attack. 

ASI #9 I worry that other people will notice my anxiety. 

ASI #10 When I feel "spacey" or spaced out I worry that I may be mentally 
ill. 

ASI #11 It scares me when I blush in front of people. 

ASI #12 When I notice my heart skipping a beat, I worry that there is 
something seriously wrong with me. 

ASI #13 When I begin to sweat in a social situation, I fear people will think 
negatively of me. 

ASI #14 When my thoughts seem to speed up, I worry that I might be going 
crazy. 

ASI #15 When my throat feels tight, I worry that I could choke to death. 

ASI #16 When I have trouble thinking clearly, I worry that there is 
something wrong with me. 

ASI #17 I think it would be horrible for me to faint in public. 

ASI #18 When my mind goes blank, I worry there is something terribly 
wrong with me. 

HAMD #9 Agitation  

HAMD #19 Insight 

MASQ #27 Had trouble swallowing 

Anxious 
arousal 

MASQ #5 Felt nervous 

MASQ #8 Felt numbness or tingling in my body 

MASQ #14 Felt dizzy or lightheaded 

MASQ #15 Was short of breath 

MASQ #16 Hands were shaky 

MASQ #18 Had a very dry mouth 

MASQ #20 Muscles twitched or trembled 

MASQ #23 Heart was racing or pounding 

MASQ #24 Was trembling or shaking 

MASQ #25 Worried a lot about things 

MADRS #3 Inner tension: Representing feelings of ill-defined discomfort, 
edginess, inner turmoil, mental tension mounting to either panic, 
dread or anguish. Rate according to intensity, frequency, duration 
and the extent of reassurance called for. 

HAMD #10 Anxiety psychic 

Ruminative 
thought 

RTS #1 I find that my mind often goes over things again and again. 

RTS #2 When I have a problem, it will gnaw on my mind for a long time. 

RTS #3 I find that some thoughts come to mind over and over throughout 
the day. 

RTS #4 I can't stop thinking about some things. 

RTS #5 When I am anticipating an interaction, I will imagine every possible 
scenario and conversation. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 7, 2021. ; https://doi.org/10.1101/2021.03.05.434151doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.05.434151


RTS #6 I tend to replay past events as I would have liked them to happen. 

RTS #7 I find myself daydreaming about things I wish I had done. 

RTS #8 When I feel I have had a bad interaction with someone, I tend to 
imagine various scenarios where I would have acted differently. 

RTS #9 When trying to solve a complicated problem, I find that I just keep 
coming back to the beginning without ever finding a solution. 

RTS #10 If there is an important event coming up, I think about it so much 
that I work myself up. 

RTS #11 I have never been able to distract myself from unwanted thoughts. 

RTS #12 Even if I think about a problem for hours, I still have a hard time 
coming to a clear understanding. 

RTS #13 It is very difficult for me to come to a clear conclusion about some 
problems, no matter how much I think about it. 

RTS #14 Sometimes I realize I have been sitting and thinking about 
something for hours. 

RTS #15 When I am trying to work out a problem, it is like I have a long 
debate in my mind where I keep going over different points. 

RTS #16 I like to sit and reminisce about pleasant events from the past. 

RTS #17 When I am looking forward to an exciting event, thoughts of it 
interfere with what I am working on. 

RTS #18 Sometimes even during a conversation, I find unrelated thoughts 
popping into my head. 

RTS #19 When I have an important conversation coming up, I tend to go 
over it in my mind again and again. 

RTS #20 If I have an important event coming up, I can't stop thinking about 
it. 

Anhedonia 

SHAPS #1 I would enjoy my favorite television or radio program 

SHAPS #2 I would enjoy being with my family or close friends 

SHAPS #3 I would find pleasure in my hobbies and pastimes 

SHAPS #4 I would be able to enjoy my favorite meal 

SHAPS #5 I would enjoy a warm bath or refreshing shower 

SHAPS #6 I would find pleasure in the scent of flowers or the smell of a fresh 
sea breeze or freshly baked bread  

SHAPS #7 I would enjoy seeing other people's smiling faces 

SHAPS #8 I would enjoy looking smart when I have made an effort with my 
appearance 

SHAPS #9 I would enjoy reading a book, magazine, or newspaper 

SHAPS #10 I would enjoy a cup of tea or coffee or my favorite drink 

SHAPS #11 I would find pleasure in small things, e.g. a bright sunny day, a 
telephone call from a friend 

SHAPS #12 I would be able to enjoy a beautiful landscape or view 

SHAPS #13 I would get pleasure from helping others 

SHAPS #14 I would feel pleasure when I receive praise from other people 

MASQ #4 Felt really happy 

MASQ #9 Felt like I had accomplished a lot 

MASQ #10 Felt like I had a lot of interesting things to do 

MASQ #11 Felt like I had a lot to look forward to 

MASQ #13 Was proud of myself 

MASQ #17 Felt really "up" lively 

MASQ #19 Felt confident about myself 

MASQ #21 Felt like I had a lot of energy 

MASQ #26 Felt really good about myself 

HAMD #14 Genital symptoms 

Insomnia 
ISI #1 Difficulty falling asleep 

ISI #2 Difficulty staying asleep 

ISI #3 Problem waking up too early 
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ISI #4 How satisfied/dissatisfied are you with your current sleep pattern? 

ISI #5 How NOTICEABLE to others do you think your sleeping problem is 
in terms of impairing the quality of your life? 

ISI #6 How WORRIED/DISTRESSED are you about your current sleep 
problem? 

ISI #7 To what extent do you consider your sleep problem to INTERFERE 
with your daily functioning (e.g., daytime fatigue, mood, ability to 
function at work/daily chores, concentration, memory, mood, etc.) 
CURRENTLY? 

HAMD #4 Insomnia early 

HAMD #5 Insomnia middle 

HAMD #6 Insomnia late 

HAMD #11 Anxiety somatic 

HAMD #15 Hypochondriasis 

MADRS #4 Reduced Sleep: Representing the experience of reduced duration 
or depth of sleep compared to the subject's own normal pattern 
when well. 

Negative 
affect 

MADRS #1 Apparent Sadness: Representing despondency, gloom, and 
despair, (more than just ordinary transient low spirits) reflected in 
speech, facial expression, and posture. 
Rate on depth and inability to brighten up. 

MADRS #2 Reported Sadness: Representing reports of depressed mood, 
regardless of whether it is reflected in appearance or not. Includes 
low spirits, despondency or feeling of being beyond help without 
hope. Rate according to intensity, duration and the extent to which 
the mood is reported to be influenced by events. 

MADRS #5 Reduced Appetite: Representing the feeling of loss of appetite 
compared with when well. Rate by loss of desire for food or the 
need to force oneself to eat. 

MADRS #6 Concentration Difficulties: Representing difficulties in collecting 
one's thoughts mounting to incapacitating lack of concentration. 
Rate according to intensity, frequency, and degree of incapacity 
produced. 

MADRS #7 Lassitude: Representing a difficulty getting started or slowness 
initiating and performing everyday activities. 

MADRS #8 Inability to Feel: Representing the subjective experience of 
reduced interest in the surroundings, or activities that normally give 
pleasure. The ability to react with adequate emotion to 
circumstances or people is reduced. 

MADRS #9 Pessimistic Thoughts: Representing thoughts of guilt. Inferiority, 
self-reproach, sinfulness, remorse and ruin. 

MADRS #10 Suicidal Thoughts: Representing the feeling that life is not worth 
living, that a natural death would be welcome, suicidal thoughts, 
and the preparations for suicide. Suicidal attempts should not in 
themselves influence the rating. 

HAMD #1 Depressed mood (sadness, hopelessness, helpless, worthless)  

HAMD #2 Feelings of guilt 

HAMD #3 Suicide 

HAMD #7 Work and activities 

HAMD #8 Retardation (slowness of thought and speech; impaired ability to 
concentrate; decreased motor activity) 

HAMD #12 Somatic symptoms gastrointestinal 

HAMD #13 Somatic symptoms general 

HAMD #17 Loss of weight (by history) 

MASQ #1 Felt sad 

MASQ #2 Felt discouraged 

MASQ #3 Felt worthless 

MASQ #6 Felt hopeless 
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MASQ #7 Blamed myself for a lot of things 

MASQ #12 Felt like a failure 

MASQ #22 Was disappointed in myself 
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Supplemental Figure 2. Training and testing partitions were matched for age, sex and symptom 

severity. A. Density plot of age. B. Barplots of proportion female. C. Density plots for z-scored 

symptom dimensions, one for each of our six dimensions.  
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Supplemental Figure 3. Results from cross-validation identified the optimal number of 

connections to select for each method and symptom dimension. Y-axis indicates the mean 

Pearson’s correlation between predicted and observed symptom score across a 5-fold cross 

validation scheme. Red line indicates the number of connections used in the final model fit on 

the full training dataset. Cross-validation performance for BBS exhibited increasing performance 

with more connections, so the full connectivity matrix was used for all BBS models. SVR = 

support vector regression, BBS = Brain Basis Set modeling.  
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