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ABSTRACT 11 

Large-scale multi-site biosensors are essential to probe the olfactory bulb (OB) circuitry for understanding 12 
the spatiotemporal dynamics of simultaneous discharge patterns. Current ex-vivo electrophysiological 13 
techniques are limited to recording a small set of neurons and cannot provide an inadequate resolution, 14 
which hinders revealing the fast dynamic underlying the information coding mechanisms in the OB circuit. 15 
Here, we demonstrate a novel biohybrid OB-CMOS platform to decipher the cross-scale dynamics of OB 16 
electrogenesis and quantify the distinct neuronal coding properties. The approach with 4096-17 
microelectrodes offers a non-invasive, label-free, bioelectrical imaging to decode simultaneous firing 18 
patterns from thousands of connected neuronal ensembles in acute OB slices. The platform can measure 19 
spontaneous and drug-induced extracellular field potential activity. We employ our OB-CMOS recordings 20 
to perform multidimensional analysis to instantiate specific neurophysiological metrics underlying the 21 
olfactory spatiotemporal coding that emerged from the OB interconnected layers. Our results delineate 22 
the computational implications of large-scale activity patterns in functional olfactory processing. The high-23 
content characterization of the olfactory circuit could benefit better functional interrogations of the 24 
olfactory spatiotemporal coding, connectivity mapping, and, further, the designing of reliable and 25 
advanced olfactory cell-based biosensors for diagnostic biomarkers and drug discovery. 26 
 27 
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INTRODUCTION  31 

The olfactory bulb (OB) is a vital chemosensory structure of the information coding mechanisms1. It allows 32 
vertebrates to process and discriminate vast complex odorants and distinguish them with high selectivity 33 
and sensitivity2,3. The OB's neuronal processes are distributed intricately, composed of an abundance of 34 
dendrodendritic interactions and a stratified structure in five connected layers4,5. The OB also renders a 35 
distinctive form of morpho-functional neuronal plasticity conferred by a constant supply of new neurons 36 
(i.e., adult neurogenesis), allowing profound remodeling of the bulbar circuit in response to experience 37 
and challenges6. 38 
This organization represents a high degree of plasticity and is the first relay station of olfactory perception 39 
with downstream information processing from the primary sensory epithelium to high-order neurons in 40 
subcortical and cortical areas for odor identification and interpretation7–9.  41 
This high dimensionality of olfactory processing and odor coding properties inspired the development of 42 
biomimetic olfactory sensors, i.e., electronic noses10–12. They promise potential advances in medical 43 
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diagnosis, food quality, environmental, and military applications13. However, a fundamental inherent 44 
shortfall in these electronic nose systems is the lack of realistic dynamics at the physiological cellular and 45 
network levels, thus hindering this technology's exploitation for further challenging applications14. Hence, 46 
considerable achievements in genetic, biotechnology, and bioengineering have been put forth to enable 47 
the implementation of olfactory cell-based biosensors (i.e., bioelectronic noses)14,15 to circumvent the 48 
limitations of conventional electronic noses and to promote specific measurement of target odorants16. 49 
In this context, many studies have been reported to employ a range of different olfactory cell-based 50 
biosensors16–18. Notably, a roadmap for advancing this technology has focused on deciphering the 51 
inherent plasticity mechanisms of olfactory information encoded in the orchestrated spatiotemporal 52 
activity patterns to refine and stabilize the OB sensory information9. These patterns are rhythmic neuronal 53 
synchronizations that encompass time-varying spatial distributions of discrete spike trains superimposed 54 
and complemented with a slow oscillation ˂ ~300 Hz of the local field potentials (LFPs) that reflect 55 
subthreshold integrative processes19–21. 56 
On the other hand, the mammalian olfactory system generates rhythmic oscillations of LFPs that exhibit 57 
a functional role in local odor processing and odor discrimination (i.e., gamma frequency band; 40-100 58 
Hz)22, odor learning and experience (i.e., beta band; 15-30 Hz)23, and respiratory oscillations overlapping 59 
with the (theta band; 2-12 Hz)24. Thus, investigating the electrophysiological properties is crucial to further 60 
understand the local OB functional circuit connections and behavior and how they shape sensory 61 
processing. In view of these demands, many previous studies have used cell or slice-based biosensors to 62 
report experimental paradigms and classical recording techniques for different olfactory signal biosensing 63 
such as microelectrode arrays (MEAs)25–27, semiconductor field-effect transistors28,29, patch-clamp 64 
recordings30, light addressable potentiometric sensors31, quartz crystal microbalance32, electrochemical 65 
impedance spectroscopy33, and surface Plasmon resonance34. 66 
Also, these efforts are aided by insights from computational models35 and neuromorphic computing36. 67 
Despite MEAs shortcomings (i.e., low spatial resolution due to low numbers of recording electrodes), this 68 
method enables non-invasive, multi-site, long-term, and label-free probing of neuronal firing activity 69 
without disruption of cellular integrity. Recently, the manufacturing of low-cost semiconductor 70 
techniques based on complementary metal-oxide-semiconductor (CMOS) technology has been 71 
introduced into the design of biosensors37 and the implementation of a high-density active-pixel sensor 72 
(APS) MEAs38,39. Thereafter, APS CMOS-MEAs have been exploited in a wide range of neuroscience and 73 
bioengineering applications40–42. Their unique inherent features with on-chip addressing and multiplexing 74 
and high signal-to-noise ratio (SNR) allow the measurement of neural signals at high spatiotemporal 75 
resolution with simultaneous recordings from several thousands of electrodes both in vitro38,39 and in 76 
vivo43. In turn, these features enabled large-scale recordings and network information analysis from the 77 
interaction of various neuronal components to facilitate understanding the mechanisms that give rise to 78 
behavior-dependent of cell assembly patterns44. However, spatiotemporal circuit interactions underlying 79 
OB coding mechanisms have remained mostly elusive, hindering the development of advanced olfactory-80 
cell-based sensors. Although existing olfactory-MEA biosensors have endowed valuable results, a clear 81 
understanding of the interareal coordination of bulbar circuitry mechanisms has lagged behind. 82 
In this study, we report a novel Biohybrid Olfactory Neural Circuit on a CMOS-chip (BIONICS) capable of 83 
recording massively simultaneous neuronal firing patterns in acute mouse OB slices. The platform 84 
integrates large and dense electrode arrays (i.e., 4096-microelectrodes) and on-chip signal processing 85 
implemented in a CMOS-chip. The combination of the OB circuit and the high-density electrode 86 
configuration allows the recording of real-time spontaneous and pharmacologically-evoked activation of 87 
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the OB neural circuit from thousands of connected neuronal ensembles within the interareal layers of the 88 
OB operated in ex vivo. We further exploit our OB-CMOS-chip recordings with fundamental basic and 89 
advance analyses to instantiate specific neurophysiological metrics underlying the olfactory 90 
spatiotemporal information that emerged from the OB interconnected layers. Therefore, we characterize 91 
the rhythmic oscillations of the LFPs, oscillatory frequency bands, and coherence magnitude for single 92 
electrode activity as well as between OB layers. We also identify the event initiation onsets and quantify 93 
the dynamic profiles of signal propagation patterns. The rich information ingrained in our unique datasets 94 
also allows us to compute the spatial neural sources that contribute to the LFPs by using the kernel current 95 
source density (kCSD) method, functional connectivity (FC) maps, and topological interaction of thousands 96 
of active OB neuronal ensembles that delineate the construction of functional OB circuitry. Finally, we 97 
validated our platform to unveil a large-scale functional remodeling in the OB circuitry due to ongoing 98 
neurogenesis using a well-established and reported mouse model of enhanced neural stem cell 99 
expansion45–47. 100 
To our knowledge, this is the first report of a high-density CMOS-neurochip that allows revealing the 101 
spatiotemporal functional processing in the interconnected OB circuit. Deciphering the mechanism of 102 
large-scale OB electrogenesis will enhance our understanding of the neuronal ensembles' functional 103 
organization. It will also provide an effective tool to investigate information processing and 104 
spatiotemporal coding in the OB circuit. Together, our results offer vital evidence for the future 105 
development of biomimetic olfaction detection biosensors for various applications. 106 

MATERIALS AND METHODS  107 

Animals and OB acute slices preparation. All experiments were performed on 8 weeks C57BL/6j (Charles 108 
River Laboratories, Germany) and triple transgenic 4D- and 4D+ mice, previously described45. All work and 109 
animal procedures were performed in accordance with the applicable European and national regulations 110 
(Tierschutzgesetz) and were approved by the local authority (Landesdirektion Sachsen; 25-5131/476/14 111 
and DD24-9168.11-1/2011-11, TVV13/2016, and HD35-9185.81/G-61/15). Mice were anesthetized with 112 
isoflurane before decapitation. The brain and OB were carefully removed from the skull and placed in a 113 
chilled cutting sucrose solution before slicing. The Brain and OB were fixed on the cutting plate, and 114 
horizontal slices (300 µm thick) were prepared using Leica Vibratome VT1200S (Leica Microsystems, 115 
Germany). Slices were cut at 0-2°C in aCSF solution saturated with 95% O2 and 5% CO2 (pH = 7.2-7.4) of a 116 
high sucrose solution containing in mM: 250 Sucrose, 10 Glucose, 1.25 NaH2PO4, 24 NaHCO3, 2.5 KCl, 0.5 117 
Ascorbic acid, 4 MgCl2, 1.2 MgSO4, 0.5 CaCl2. Next, OB slices were incubated for 45 min at 34°C and then 118 
allowed to recover for at least 1 hour at room temperature before used for recordings with CMOS-chips, 119 
in a recording aCSF solution containing in mM: 127 NaCl, 2.5 KCl, 1.25 NaH2PO4, 24 NaHCO3, 25 Glucose, 120 
1.2 MgSO4, 2.5 CaCl2, and the solution was aerated with 95% O2 and 5% CO2. 121 

Biohybrid OB-CMOS biosensor recordings. We performed all extracellular recordings using CMOS-122 
biosensors and an acquisition system (3Brain AG, Switzerland) customized to our BIONICS setup. CMOS-123 
chips integrate 4096 recording electrodes with 42 μm pitch-size to compose an active sensing area of ~7 124 
mm2, ideal for recording from the entire ~4 mm2 OB tissue. The on-chip amplification circuit allows for 125 
0.1-5kHz bandpass filtering conferred by a global gain of 60 dB sufficient to record slow and fast 126 
oscillations. Modular Stereo microscope Leica MZ10F (Leica Microsystems, Germany) was designed and 127 
incorporated into the setup to capture OB slices' light-imaging simultaneously with the whole-circuit firing 128 
pattern recordings. All CMOS-chips were coated with 0.1 mg/ml PDLO (Sigma-Aldrich, Germany) and 129 
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incubated for 30 min at 37°C before recordings. Then, slices were moved onto chips, and the coupling 130 
between OB slices and CMOS-electrodes was enhanced with a custom-made platinum harp placed above 131 
the tissue. Slices were perfused continuously with oxygenated recording solution at 4 ml/min. We 132 
collected 10 min of spontaneous and pharmacological-induced extracellular recordings at 14 133 
kHz/electrode sampling frequency and stored them for offline analysis. We used Brainwave software 134 
(3Brain AG, Switzerland) for data recording and employed a hard threshold algorithm to perform LFP 135 
detection with a 10 ms refractory period and a 500 ms maximum event duration.  136 

Drug treatment. We prepared fresh solutions of all drugs for each experiment by dissolving the drug in 137 
the recording solution. The final working concentrations used for all experiments were 100 µM, 30 µM, 138 
and 10 µM of 4AP, BiC, and MK-801 (Sigma-Aldrich, Germany), respectively.  139 

Immunohistochemistry and fluorescence imaging. Brains with OB were perfused and post-fixed 140 
overnight in 4% PFA at 4°C. Immunohistochemistry was performed as described45. The images were 141 
acquired with an automated Zeiss ApoTome confocal microscope (LSM 780, Carl Zeiss, Germany).  142 

Data Analysis. All basic and advanced algorithms used in this study were developed as custom-written 143 
Python scripts.  144 

Mean activity basic analysis. We selected four parameters to describe the mean activity features of large-145 
scale spatiotemporal LFP oscillations, including amplitude, energy, frequency, and duration. The signal 146 
amplitude analysis was obtained by full-wave rectification and low-pass filtering (cutoff frequency 100 147 
Hz). The energy is defined as the area under the squared magnitude of the LFP rates for a specific time 148 
window. 149 

Lognormal distribution. The LFP firing patterns of the OB neuronal ensembles show a wide degree of 150 
participation in the circuit activity and followed a skewed lognormal distribution. Thus, we computed the 151 
probability density function for the lognormal distribution: 152 

𝑝𝑝(𝑥𝑥) =  
1

𝑥𝑥𝑥𝑥√2𝜋𝜋
𝑒𝑒−(𝑙𝑙𝑙𝑙𝑙𝑙−𝜇𝜇)2 2𝜎𝜎2�  153 

Where 𝜇𝜇 is the mean, and 𝜎𝜎 is the standard deviation. 154 

Gini coefficient and CV2. To quantify the inequality of participation of individual neurons in the OB circuit, 155 
we employed the Gini index as a commonly used measure of inequality and sparsity48 and computed as 156 
the ratio of the areas on the Lorenz curve diagram:  157 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  
𝐴𝐴

𝐴𝐴 + 𝐵𝐵
 158 

Where A is the area above the Lorenz curve, and B is the area below for the cumulative LFP firing rates.  159 

To assess the local-trial variability of the firing patterns, we used the coefficient of variation (CV2)49, which 160 
is defined as the function of pairs of adjacent inter-LFP-event intervals 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖  and 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖+1 divided by the 161 
average of the event intervals. 162 

𝐶𝐶𝐶𝐶2(𝑖𝑖) =  
2|𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 − 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖+1|
𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 + 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖+1

  163 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2021. ; https://doi.org/10.1101/2021.03.05.434081doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.05.434081
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

Time-frequency and PSD analyses. We first constructed the frequency-time dynamics in pseudo-color 164 
spectrograms for a selected 10 sec time window using a filtered LFPs (1-100 Hz). Next, we computed the 165 
Periodograms to identify dominant frequencies in the oscillatory activity in a given time-series. The 166 
spectra were calculated using Welch’s method50 by calculating the Fast Fourier Transform of the recorded 167 
LFPs to estimate the power spectral density (PSD).  168 

Waveform classification.  To characterize and allocate the nonsinusoidal shapes of the recorded LFP 169 
waveforms to their OB layers, we developed a procedure consisting of four steps. First, (waveform 170 
extraction) - we detected active firing electrodes clustered based on their structural relation to the OB 171 
layers. We extracted information from hundreds of waveform segments that occurred at least in three 172 
consecutive LFP events. Second, (Pre-processing) – all detected and extracted waveforms were denoised 173 
by hard threshold algorithm and filtered by Low pass filter (1-100 Hz). Third, (Parameter Identification) – 174 
we defined in our extracted waveforms four features, including amplitude (waveform height feature), 175 
period, rise-decay symmetry (slope features), and area (area feature). Fourth, (classification and 176 
clustering), we reduced the dimensionality of the computed waveform features using the Principal 177 
Component Analysis (PCA) and K-means clustering algorithms51 to identify best-classified waveform 178 
shapes into five clusters associated with the GL, GCL, PL, ONL, and OCx layers. 179 

Spatial coherence. To measure the predictable relationship between firing LFP rates at different spatial 180 
locations of the OB circuit, we calculated the 2D spatial coherence maps. We calculated the correlation 181 
between pairs of firing electrodes of the CMOS-chip (64 x 64 electrodes) arranged in rows (x) and columns 182 
(y). The function is a dimensionless quantity and ranges between (0,1) and defined as52: 183 

𝐶𝐶𝑥𝑥𝑥𝑥(𝑓𝑓) =
�𝑃𝑃𝑥𝑥𝑦𝑦 (𝑓𝑓)�2

𝑃𝑃𝑥𝑥𝑥𝑥 (𝑓𝑓)𝑃𝑃𝑦𝑦𝑦𝑦(𝑓𝑓)
 184 

Where 𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓) and 𝑃𝑃𝑦𝑦𝑦𝑦(𝑓𝑓) are the autospectral density of the firing x and y, respectively, and 𝑃𝑃𝑥𝑥𝑥𝑥(𝑓𝑓) is the 185 
cross-spectrum density of the firing x and y estimated using Welch’s method. A Spatial coherence near 186 
one indicates that the active electrodes encode all information of the firing rate of that spectral frequency 187 
component. In contrast, a value close to zero indicates no information of the firing is present. 188 

LFP propagation dynamics. To quantify the propagation magnitude of the spatiotemporal LFP Events in 189 
all interconnected OB layers, we employed the center-of-activity trajectories (CATs) analysis53,54. We used 190 
the voltage values embedded in the LFP frame activities within 5 ms moving time bins to collect the CAT 191 
magnitudes in each firing event. The value of the CA at time t is a two-dimensional vector defined as: 192 

𝐶𝐶𝐶𝐶�����⃗  (𝑡𝑡) = �𝐶𝐶𝐶𝐶𝑥𝑥 ,𝐶𝐶𝐶𝐶𝑦𝑦� =  
∑ 𝑉𝑉𝑡𝑡𝑡𝑡(𝐸𝐸) .  [𝐶𝐶𝐶𝐶𝐶𝐶(𝐸𝐸) − 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑅𝑅𝑅𝑅𝑅𝑅(𝐸𝐸) − 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟] 𝑛𝑛
𝐸𝐸=1

∑ 𝑉𝑉𝑡𝑡𝑡𝑡(𝐸𝐸)𝑛𝑛
𝐸𝐸=1

 193 

Where 𝑉𝑉𝑡𝑡𝑡𝑡(𝐸𝐸) represents the LFP firing rate corresponding to the active electrodes E within a time 194 
window (tm). Also, 𝐶𝐶𝐶𝐶𝑙𝑙(𝐸𝐸) and 𝑅𝑅𝑅𝑅𝑅𝑅(𝐸𝐸) are the column and row numbers of the associated E. Then, 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐  195 
and 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 are the coordinates of the physical center of 64 x 64 electrodes. n is the total number of active 196 
electrodes. Then, the CA trajectory from t0 to t1 with a time step ∆𝑡𝑡 is defined as: 197 
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𝐶𝐶𝐶𝐶𝐶𝐶��������⃗  (𝑡𝑡0, 𝑡𝑡1) = 𝐶𝐶𝐶𝐶�����⃗  (𝑡𝑡0),𝐶𝐶𝐶𝐶�����⃗  (𝑡𝑡0 + ∆𝑡𝑡),𝐶𝐶𝐶𝐶�����⃗  (𝑡𝑡0 + 2∆𝑡𝑡), … . ,𝐶𝐶𝐶𝐶�����⃗  (𝑡𝑡1) 198 

Velocity of conduction. To track the putative displacement of 𝐶𝐶𝐶𝐶�����⃗  of LFP events in the entire 199 
interconnected OB circuit, the velocity of conduction was calculated as the average of instantaneous 200 
vector quantity displacements calculated for the time of a propagating LFP event and expressed as: 201 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉������������������⃗ =  
∆𝑑𝑑�����⃗
∆𝑡𝑡

 202 

Where ∆𝑑𝑑 is the change in displacement and ∆𝑡𝑡 is the change in time. 203 

Functional connectivity and causal links. To infer the large-scale statistical dependent connectivity in a 204 
multilayered OB network, we first calculated the cross-covariance between pairs of active electrodes in 205 
the 64 x 64 array using the Pearson correlation coefficient (PCC)55. The correlation coefficient between 206 
electrodes was then sorted based on the OB layers and presented in a symmetric matrix. The PCC is 207 
defined as: 208 

𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥𝑥𝑥 =
𝑛𝑛∑𝑥𝑥𝑥𝑥 −  ∑𝑥𝑥 ∑𝑦𝑦

�𝑛𝑛∑𝑥𝑥2 − (∑𝑥𝑥)2 �𝑛𝑛∑𝑦𝑦2 − (∑𝑦𝑦)2
 209 

Where x, y denoted the values of pair electrodes time series for n number of the active array.  210 

Then, we performed the Multivariate Granger causality by fitting a vector autoregressive model to the 211 
time series to quantify the influence of one time series on another56. To measure the directional 212 
information flow within the correlated links in the network, we performed the Directed Transfer Function 213 
(DTF)57.  214 

Current source density. To estimate the current sources generating the extracellular low-frequency 215 
potentials recorded in all OB layers, we used the Kernel Current Source Density (kCSD) Analysis58, 216 
described in the kCSD-python package and available on GitHub (https://github.com/Neuroinflab/kCSD-217 
python). 218 

Network efficiency and wiring cost. To quantitatively measure a precise information flow and exchange 219 
of parallel integrated processing in the interconnected OB network, we used the measure of global, local 220 
efficiencies59, and connection cost. These are dimensionless measures ranging from 0 to 1. The global 221 
efficiency can be defined as the inverse of the average of shortest path lengths between all nodes in the 222 
network and calculated as: 223 

𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =
1

𝑁𝑁(𝑁𝑁 − 1)
�

1
𝐿𝐿𝑖𝑖,𝑗𝑗𝑖𝑖≠𝑗𝑗∈𝐺𝐺

 224 

Where N is the number of all nodes in the network, 𝐿𝐿𝑖𝑖,𝑗𝑗  is the average path length between all nodes in 225 
the network. 226 
Further, based on local clusters, the local efficiency is the average efficiency of clusters (subgraph) for a 227 
node with the neighbors, and calculated as:  228 
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𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
1

𝑁𝑁𝐺𝐺𝑖𝑖(𝑁𝑁𝐺𝐺𝑖𝑖 − 1)
�

1
𝐿𝐿𝑘𝑘,𝑗𝑗𝑘𝑘≠𝑗𝑗∈𝐺𝐺𝑖𝑖

 229 

Where 𝑁𝑁𝐺𝐺𝑖𝑖  is the number of nodes in the local subgraphs (clusters) Gi of the network, 𝐿𝐿𝑘𝑘,𝑗𝑗 is the path 230 
length between pair nodes in the cluster. 231 

Wiring cost. The network cost was estimated based on the minimum spanning tree (MST) method using 232 
the Kruskal algorithm. This approach is calculating the shortest path length connecting all network nodes 233 
at the cheapest cost.  234 

Statistical analysis. All statistical analyses were performed with Originlab 2020. All data in this work were 235 
expressed as the mean ± standard error of the mean (SEM). All box charts are determined by the 25th- 75th 236 
percentiles, and the whiskers by the 5th- 95th percentiles, and lengths within the Interquartile range (1.5 237 
IQR). Also, the lines depict the median and the squares for the mean values. Differences between groups 238 
were examined for statistical significance, where appropriate, using one-way analysis of variance (ANOVA) 239 
or two-way ANOVA followed by Tukey’s posthoc testing. P < 0.05 was considered significant.  240 

RESULTS AND DISCUSSION  241 

In what follows, we first developed and implemented a hybrid biosensor platform by integrating the OB 242 
circuit into a CMOS-MEA chip, which allowed us to record LFPs and spikes from the OB multilayers. Next, 243 
we exploited the multidimensional data focusing on the LFPs to infer and provide new insights about the 244 
subthreshold integrative processes in high spatiotemporal resolution expressed by extracting unique 245 
dynamic features of the oscillatory activity and functional mapping across the OB circuitry. (i.e., frequency 246 
spectrum, coherence, cross-correlation, causal connectivity, and assessing neurogenic remodeling effect). 247 

Implementation of the large-scale BIONICS platform 248 

To quantitatively probe the large-scale firing patterns and characterize the olfactory spatiotemporal 249 
coding of the whole-multilayered, we engineered a biohybrid OB-CMOS biosensor platform (BIONICS) 250 
(Figure 1). It combines isolated whole-OB acute slices and a CMOS-chip. The OB-CMOS-chip continuously 251 
perfused with an optimized aCSF to maintain high viability and stable, functional responses for several 252 
hours (n=24 slices from 8 adult mice at 8 weeks old). Also, we employed optical imaging into the 253 
bioelectrical OB-CMOS-based setup allowing the light-imaging acquisition of OB slices concurrently with 254 
the whole-circuit firing pattern recordings (Figure 1a). The CMOS-chip integrates a 64 x 64 255 
microelectrodes pixel array to allow the simultaneous recordings of sub-millisecond extracellular firing 256 
information from the entire OB circuitry (Figure 1b). The active sensing area of the CMOS-chip is 2.69 x 257 
2.69 mm (i.e., 4096 microelectrodes with 42 µm pitch)39, which is compatible with the area of a whole 258 
mouse OB slice (i.e., 2 x 2 mm). Our OB-CMOS biosensor readout captured the real-time circuitry 259 
acquisition rendered by a single electrode (i.e., pixel-like) sensor from sequential bioimaging frames 260 
encoding olfactory functional information at high spatiotemporal resolution. The voltage values of each 261 
sensing pixel were mapped on large-scale OB layers with a pseudo-color scaling. The final construction 262 
illustrated real-time bioimaging video frames of the entire OB functional circuit (Figure. 1b, and 263 
Supplementary Movie 1). The CMOS-chip surface was functionalized using a specific adhesion-promoting 264 
molecule – poly-DL-ornithine (PDLO)60 that enhanced the cell-electrode interface coupling and improved 265 
SNR by increasing the seal resistance (Rseal) between the tissue and the electrode ( Figure 1c). 266 
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Features of spatiotemporal LFP firing patterns and activity-dependent distributions in multilayered OB 267 
circuits 268 

The neuronal processes in the OB instantiate in five connected layers, i.e., olfactory nerve layer (ONL), 269 
glomerular layer (GL), external plexiform layer (EPL), mitral cell layer (MCL), and granule cell layer (GCL)4,5. 270 
In our study, we consider the EPL and the MCL as the projection layer (PL). In a canonical biological 271 
olfactory circuit, the olfactory sensory neurons (OSNs) project and converge their axons into the same 272 
glomeruli in the GL. Glomeruli represent the inhibitory functional units for information coding that shape 273 
the features of odorant responses61. OSNs form excitatory synapses with mitral cells in the projection 274 
layer that, in turn, project their axons to the olfactory cortex (OCx)62.  275 
To address the overarching benefit of the OB-CMOS-biosensor to reveal different neuronal processes by 276 
their intrinsically generated firing patterns or the facilitation of synaptic transmission, we recorded the 277 
spontaneous and pharmacologically-induced large-scale responses in OB circuitry. We used three 278 
biochemical benchmark compounds including, 4-aminopyridine (4-AP) - potassium channel blocker, 279 
Bicuculline (BiC) - GABAA antagonist, and dizocilpine (MK-801) - N-Methyl-D-aspartate (NMDA) receptor 280 
antagonist. We computed several first-order statistical parameters (LFP energy, oscillation frequency, 281 
amplitude, and duration). Spontaneous oscillation and spiking activity were detected in all OB layers 282 
except the ONL. We found substantial responses of the OB circuit assessed by the statistical parameters 283 
shown in (Figure 2a, right). We also illustrated the spatial organization of those large-scale metrics by 284 
overlaying the computed mean of the functional, statistical metrics obtained from the LFP recordings on 285 
the OB circuits' optical images (Figure. 2a left).  286 
The collective functional representations given in firing patterns of synchronized neuronal populations 287 
have been shown to exhibit a skewed distribution of firing rates in other experimental setups41,63. Our 288 
large-scale OB recordings found similar highly skewed lognormal-like distributions of firing LFPs in GCL, Pl, 289 
and OCx layers (Figure 2b). Those skewed distributions showed a range of low and high firing patterns 290 
indicating a network-wide firing fluctuation and a diverse repertoire of participating neurons to the 291 
circuitry firing information. In other words, when the OB circuit activity was enhanced by unbalancing the 292 
inhibition or excitation drive (i.e., BiC and MK-801 treatments), the firing distribution showed lognormal-293 
like distributions in the GCL, PL, and OCx, but a symmetric distribution in the GL, indicating a mixture of 294 
circuit firing regimes of fluctuation-driven and mean-driven, respectively64. Remarkably, this mixture of 295 
activity regimes within interconnected OB layers indicates the significance of featured spatiotemporal 296 
patterns in maintaining the sensitivity and stability balance of the OB circuitry.   297 
To parametrically evaluate the spatial sparsity and diversity of participating neurons (i.e., the efficiency of 298 
neuronal representations) rendered by their firing potentials, we used Lorenz statistics to generate the 299 
Gini coefficient48. The Gini index is between zero and one and reflects the inequality of participation of 300 
neurons giving by their firing LFP values; it is higher in the unequal participation of neurons to the firing 301 
activity (Figure 2c).  The Gini index was higher in the spontaneous recorded LFPs in all OB layers (i.e., 302 
particularity in GCL, PL, and OCx), which decreased along with the treatment of the compound of 4-AP, 303 
BiC, and Mk-801, respectively (Figure 2d). This indicated that neuronal selectivity and the sparseness of 304 
representation in a given spontaneous activity reflected the strong activation of a relatively small group 305 
of cells. This is the first evidence of the sloppiness in spontaneously active OB layers. A small but stable 306 
subnetwork of neurons is critical for global stability, allowing considerable plasticity to occur in the 307 
remaining majority of cell population65. 308 
On the other hand, the evoked-activity groups (i.e., BiC and MK-801) showed sloppiness but not 309 
sparseness, which inferred stiff dimensions involving more complicated combinations of other parameters 310 
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following the circuit modulation. Despite the overall stability we observed in the OB functional 311 
representations, changes in the LFP timings were found upon manipulating the balance of inhibition and 312 
excitation by pharmacological treatment. To evaluate these changes in all OB layers, we quantified the 313 
LFP timings irregularity using the coefficient of variation index (CV2)49(see methods). We found a 314 
significant decrease in the CV2 (i.e., GCL=1.3, 1.04, and 0.87) in spontaneous, 4-AP, and BiC conditions, 315 
respectively (Figure 2e). This decrease in CV2 values indicates decreased variability, hence, increased LFP 316 
regularity upon compound treatment. Altogether, our results delineate detailed spatiotemporal 317 
functional implications of discharge patterns in distinct subnetworks of the OB layers opt for stability and 318 
spatial information coding. This could emerge from the intrinsic biophysical properties of the individual 319 
ensembles in these circuits and their distinct wiring, as reported in other brain states63.     320 

Characterization of oscillatory-dependent features of LFPs and waveform classification 321 

Next, we sought to identify the functional significance in the frequency and time domains of the LFP 322 
oscillatory synchronized waves rendered by the interconnected OB layers. Thus, we employed band-pass 323 
filters on the recorded data to set for high-frequency oscillation (HFO), indicating spiking activity and low-324 
frequency-oscillation (LFO), indicating three prominent oscillatory bands in different layers (i.e., theta, 325 
beta, and gamma) (Figure 3a). We observed slow and fast oscillations in nearly all layers under 326 
spontaneous and pharmacologically-modulated activity (Figure 3a, GL and GCL layers examples). Then, 327 
we computed the synchronous frequency-time domain dynamics of a selected electrode within the 4096-328 
microelectrode array in pseudo-color spectrograms. This spectrogram exhibited superposed sustained 329 
oscillatory events in the GL layer lasting for several seconds with coordinated frequency peaks in the 330 
theta-gamma band (Figure 3b, left). 331 

Similarly, (Figure 3b, right) shows the GCL layer's spectrogram, where single transient pulses of oscillatory 332 
events occurred with a frequency range between 4-60 Hz. Further, we employed the power spectral 333 
density (PSD) analysis to simultaneously quantify a specific oscillatory band's power magnitude in the 334 
interconnected OB layers recorded by a full-CMOS array from spontaneous and drug-induced activity 335 
phases (Figure 3c, and Supplementary figure 1). Despite the noticeable fluctuations in the power 336 
magnitude upon pharmacological manipulation, we found a prevailing network frequency oscillation in 337 
the theta band in all OB layers, predominantly in GCL and GL. These results confirm evidence on the 338 
rhythmic theta oscillations coordinated by the glomerular network66. Further, the theta-gamma coupled 339 
oscillations were also reported to emerge from the individual mitral cells67 and also found in hippocampal 340 
networks68. Our results suggest rhythmogenic subregions of the OB circuitry to drive distinct functional 341 
microcircuits that are vital for OB coding.     342 
In addition, investigating the features of oscillatory waveforms can better elucidate the contribution of 343 
individual neuronal populations in the spatially connected layers and the olfactory information coding. 344 
Therefore, we employed unsupervised clustering of LFP waveforms, which resulted in five distinct 345 
waveform classes across all OB layers (Figure 3d). We analyzed hundreds of waveforms in each OB layer 346 
made possible by the multidimensional high spatiotemporal resolution CMOS-recordings. The 347 
classification process was performed by PCA and clustering with the k-means algorithm (see methods).  348 

Mapping the spatial firing patterns for global circuit dynamics 349 

Coherent oscillatory activity in the olfactory circuit is rendered by the spatiotemporal LFP patterning 350 
across the OB layers. We sought to exploit BIONICS to quantify the spatial mapping of large-scale firing 351 
rate encoded in the whole OB interconnected layers. To do so, we computed the spatial coherence as the 352 
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correlation of the encoded firing rates of interelectrode distance. The spatial extent of LFP rates is derived 353 
from each pixel in the 4096-microelectrode array to capture the dynamics of rhythmic components in 354 
space and estimate the breadth of activity origin. Thus, higher coherent electrodes have more regulated 355 
LFP firing in a specific cluster of the OB region in space, while lower coherent electrodes show more 356 
nonstationary and lower firing activity. In all recorded OB slices, coherence increased across evoked-357 
activity conditions (spontaneous vs. 4AP, BiC, and MK-801, respectively) due to increased spatial rate 358 
coding under the activation of more cells in the OB circuits (Figure 4a). We also computed and quantified 359 
the population average of the spatial coherence across the pharmacological conditions divided over bins 360 
by groups (Figure 4b and inset). Despite analogous peaks in all groups, the spontaneous and 4-AP groups 361 
do not extend the right tail, as in the BiC and MK-801 groups, indicating recorded electrodes with low 362 
coherence values. On the other hand, the distributions of BiC and MK-801 groups are shifted to the right, 363 
indicating an increase of the spatial coherence for the average oscillatory activity in the whole OB 364 
neuronal circuit. These significant changes in the spatial coherence may set new standard values, 365 
especially in the GL layer (i.e., greater than 0.3 ), which meet the criteria for considering the GL as a 366 
morpho-functional basis of the spatial coding in the early processing of the sensory input69. 367 
In turn, this mapping may provide insights into a better understanding of large-scale circuit coding, 368 
decoding, and functional features of synchronized firing patterns in OB circuits.   369 

Localized initiation and large-scale propagation of synchronized oscillatory activity 370 

In a multilayered OB circuit, the site of generation and spatial propagation of rhythmic electrical patterns 371 
are critical for the integrative activity of olfactory information processing. We used the simultaneous 372 
recordings from all OB layers to compute the initiation of the field potential signals and trace the 373 
spatiotemporal propagation of individual synchronized events. Figure 4c and Supplementary Movie 2 374 
show multi-frame pseudo-color images of the LFP oscillatory activity overlaid on the OB circuit's 375 
corresponding anatomical regions. In the case of MK-801 treatment, the input signal is processed at the 376 
ONL. The oscillatory activity is initiated in the GL layer, propagates across GCL and PL layers to finally send 377 
output at the OCx layers. These characterized patterns sculpt complex propagation dynamics of the 378 
cellular mechanisms underlying the spatiotemporal coordination of information processing displayed by 379 
glomerular, mitral, and granule cells in the OB circuit. 380 
Furthermore, Figure 4d shows the horizontal propagation of the LFPs across all OB layers. The dynamical 381 
propagation is illustrated as the time shift of the peak of the oscillatory events of exemplified signal traces 382 
selected from five electrodes located in different OB layers.  383 
Next, to quantitatively investigate the propagation dynamics in detail and identify the ignition site of the 384 
location-weighted average of spatiotemporal LFP patterns, we employed a population parameter using 385 
the center-of-activity trajectories (CAT)54. We calculated the CAT mean for each electrode by integrating 386 
the total number of LFP events in 200 ms voltage-coded movies (see methods). We performed the CAT 387 
analysis on the spontaneous, 4-AP, BiC, and MK-801 groups that showed distinct ignition sites in the GL 388 
layer in all groups, with a dynamic population propagation towards the OCx in BiC and MK-801 (Figure 389 
4e).  390 
Furthermore, measuring a multi-site relation of spatiotemporal differences of occurring events allowed 391 
us to compute the instantaneous velocity of displacements of the CATs of LFP events in spontaneous and 392 
pharmacologically-induced groups to describe the dynamic of spreading activity within the 393 
interconnected layers of the OB circuitry. We found a range of propagation mean velocities of CATs ranged 394 
from (117 ± 17 to 323.67 ± 21.4 mm/s) in spontaneous and MK-801 groups, respectively (Figure 4f). These 395 
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values are in the range of other previously reported for olfactory bulb velocity of conduction in rats (250-396 
460 mm/s)70,71.  397 
In sum, these results display the global dynamics of the OB population activity by incorporating the 398 
physical location of the electrode and the neuronal firing patterns of the multilayered OB circuitry. Also, 399 
illustrate evidence of spatial changes in interconnected neuronal populations of the bulbar 400 
rhythmogenesis upon blocking the dendrodendritic synaptic connections with MK-801. Similar results 401 
were also confirmed by previous in vivo reports on the role of NMDA receptor blockade for 402 
dendrodendritic inhibition concluded in smaller-scale electrophysiological and molecular readouts72,73.    403 

Multilayered OB functional decomposition for network-wide connectivity 404 

The intricate spatiotemporal propagation patterns illustrated in the previous section involve diverse local 405 
neuronal connectivity necessary to synchronize the OB population. To unravel OB circuitry's complexity 406 
to understand the underlying information processing, we have examined the emergence of inter-bulbar 407 
functional connectivity patterns as a network of pairwise firing electrode interactions. In this context, we 408 
computed the Pearson correlation between all LFP firing electrode pairs and performed the OB regional 409 
clustering to identify the level of synchronization (Figure 5a). Quantitatively, the cross-correlation 410 
increased significantly after pharmacological treatment with 4-AP, BiC, and MK-801 compared to the 411 
baseline spontaneous activity (Supplementary figure 2). Further, by tracing the emergence of functional 412 
links from spontaneous to MK-801-evoked activity, we found in the GL, predominant distinct populations 413 
of activated ensembles forming hub microcircuits and connecting OB subregions circuitry (Supplementary 414 
figure 3). This mesoscale rewiring of those new connections is signaled by the activity-dependent changes 415 
processed by the contemporary firing ensembles in the GL and determined the interareal coordination 416 
and reorganization of the population activity. These results illustrate individual neuronal ensembles' 417 
contribution to the OB network synchrony in ever-available detail. Further, help to identify the critical OB 418 
subregions for optimizing network patterns in a large-scale spatial organization. 419 

Identifying OB neuronal transmembrane current source and sink generators 420 

Next, we further exploited our platform to pinpoint the high spatiotemporal resolution of local field 421 
generators (i.e., sources and sinks) in the inter-bulbar circuitry as emerged from the oscillatory activity of 422 
OB neuronal ensembles. Thus, we constructed bidimensional maps employing the kCSD method58 to 423 
estimate the average transmembrane currents extracted from the field activity recordings (Figure 5b, and 424 
Supplementary Movie 3). At the beginning of the LFP activation (t=187.5 ms), the KCSD maps (Figure 5b, 425 
bottom) showed defined topographic activation features indicated by stronger and focused source 426 
generators (red color-coded in the GL and GCL layers with defined cellular identity (i.e., the 427 
microelectrodes underlying the transmembrane dipole). In contrast, the potential maps (Figure 5b, top) 428 
showed general activation with no topographical differences in the GL and GCL layers. The computed 429 
propagating source-sink generators accompanied the oscillatory synchronized activation dynamically 430 
across OB layers. These current generators are eventually conveyed information at the OCx layers (t=297 431 
ms) but provided more defined and sharper localization of the cellular neuronal activation (i.e., in the OCx, 432 
multiple sources revealed by kCSD while only sinks were detected in the potential maps). These results 433 
demonstrate remarkable advantages in defining and mapping disjoint sets of sinks and sources of the OB 434 
oscillatory activity compared to potential measures in terms of strength of neuroelectrical activation and 435 
spatial topographic patterns. This allows us to circumvent field potentials' ambiguity and pinpoint the LFP 436 
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generators at a high spatiotemporal resolution to capture with fidelity the correlated functional and 437 
individual cellular elements.  438 

Large-scale recordings validating enhanced OB-wide network connectivity and efficiency with adult 439 
neurogenesis 440 

Next, to validate the significance of our large-scale recordings, we sought to examine the impact of 441 
ongoing neurogenesis on the dynamic of cross-scale OB circuitry and olfaction improvement. Thus, we 442 
used a genetically modified mouse model allowing the inducible expansion of neural stem cells by 443 
overexpression of Cdk4/cyclinD1 (4D+) in neural stem cells and using littermate (4D-) mice as negative 444 
controls45. Structurally, the 4D+ group has shown a neuronal expansion and increased neurogenesis 445 
indicated by the NeuN+/BrdU+ staining compared to the 4D- group (Figure 5c)45. On the other hand, using 446 
standard patch-clamp whole-cell recordings reported no significant functional and electrophysiological 447 
differences between 4D+ and 4D- group45. Thus, here, we obtained OB-wide patterns of activity from 4D+ 448 
and 4D- groups. Then, we applied the Granger causality as a connectivity method74,75 to quantify the 449 
directional information flow in the OB layers rendered by all pairwise electrode interactions (Figure 5d). 450 
The 4D+ group showed significantly higher unidirectional (GL→ GCL, OCx →GL, GCL, PL) and bidirectional 451 
(GL→GL, PL, ONL) interactions compared with the 4D- group (Figure 5e). 452 
However, despite the localized functional induction by the new neurons in the GCL layer of the 4D+ group, 453 
the neurogenic effect significantly enhanced the global performance capacity of information processing 454 
in the entire interconnected OB circuitry, thus promoting network economy76. To this highlight, our results 455 
demonstrate the trade-off between network cost and efficiency indicated by the increased 456 
interconnection density between OB layers, reduced physical cost (i.e., wiring cost), and increased local 457 
and global efficiencies of information transfer of the spatially connected neuronal ensembles (Figure 5e 458 
inset) (see methods). Remarkably, our results also concluded network-wide functional remodeling 459 
properties that were unfeasible in smaller-scale electrophysiological methods.  460 

CONCLUSIONS AND OUTLOOK  461 

The unmet need for large-scale multi-site bioelectrical imaging techniques limits the understanding of 462 
information processing in the olfactory system. It also hampers implementing olfactory biomimetic cell-463 
based biosensors to exploit olfaction in fundamental applications. Dense microchips composed of 464 
thousands of electrodes could overcome this limitation and reveal the olfactory spatiotemporal dynamics. 465 
Thus, we have devised BIONICS (Biohybrid Olfactory Neural Circuit on a CMOS-chip), a novel platform with 466 
high-density CMOS-based active circuit architecture for simultaneously recording from thousands of OB 467 
neuronal ensembles to delineate large-scale spatiotemporal morpho-functional plasticity in the 468 
multilayered OB circuitry. 469 
These recordings are facilitated by functionalizing the CMOS-chip surface with the adhesion-promoting 470 
molecule (PDLO). This allowed a homogenous and effective electrical coupling of the neuro-electrode-471 
wide interface (i.e., generation of a high seal resistance) that fostered cellular activity stability and optimal 472 
SNR. Accelerating development in bioelectronics nose platforms hinges on the measurement technique 473 
and biosensing instruments as well as complex analytical tools for acquiring fundamental insight about 474 
the recorded biosignals. Thus, we employed rigorous algorithms and statistical analysis to catalyze 475 
significant parameters and insights from our multidimensional recorded data.  476 
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We have attributed the inhomogeneity and sparsity of OB cross-scale functional representations to their 477 
skewed lognormal LFP distributions driven by a balance between excitatory and inhibitory neuronal 478 
populations to provide network stability and reliable information processing for spatiotemporal coding.  479 
We further characterized the firing patterns and their dynamical features across the OB-wide network by 480 
classifying the waveform shapes based on their rich inherent information in their nonsinusoidal 481 
oscillations. These results can inspire computational models and analytical methods to correlate these 482 
distinct waveforms to their underlying biophysical generators to describe disease conditions or behavioral 483 
states.    484 
Also, facilitated by multi-site measurements of pharmacological-induced activity, we concluded the 485 
emergence of spatial network coherence, initiation of the LFP oscillations, and their cross-scale 486 
propagational dynamics at high spatiotemporal resolution. 487 
The large number of recording sites in the CMOS-array confer sufficient access to simultaneous neuronal 488 
ensembles, enabling the construction of high-resolution 2D network-wide functional connectivity 489 
matrices and kCSD maps of local field potentials. Thus, providing a plausible method to probe the 490 
intrinsically sparse OB network connectivity and the contribution of local microcircuits and 491 
inhomogeneities in the LFP generation.  492 
Our study suggests a new tool to address plasticity underlying olfactory spatiotemporal coding, not 493 
accessible with current imaging and electrophysiological techniques. Remarkably, we have specifically 494 
assessed the large-scale functional remodeling in the OB circuit that involved integrating newly generated 495 
neurons in the GCL layer of a mouse model with enhanced neurogenesis. We elucidated the induced 496 
functional neurogenic effect for enhancing OB network performance by integrating wide-effective 497 
information rendered by the topological organization and the local and global network efficiency. This 498 
would suggest a new generation of biologically inspired smart dynamical biomimetic systems and 499 
computational models capable of achieving faster and optimized olfactory information processing and 500 
enabling optimal selectivity and sensitivity for challenging applications. 501 
In sum, our work has attempted to paint with a large-scale neurotechnological approach the breath and 502 
wonders of the chemosensory olfaction system. BIONICS has meticulously broken down the intricate firing 503 
patterns associated with olfactory code, promising progress, not only toward understanding neural 504 
processing of sensory information in the olfactory system but the biomimetic design of a bioelectronic 505 
nose and artificial chemosensory system development that may provide specific biomarkers for health 506 
and disease. 507 
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 691 

 692 
 693 
Figure 1| BIONICS setup and implementation. a) Graphical isometric imaging setup featuring the 694 
biohybrid OB-CMOS-chip with 64x64 electrode array and integrating the experimental and analysis 695 
components. b) Pixel-multi-frame real-time representation of the encoded OB network-wide activity 696 
enabling pseudo-color reconstruction of the firing information from the sequential obtained frames. c) 697 
Cell model of tissue-electrode CMOS interface showing the pixel circuit configuration, the individual 698 
functional elements, and the communication interfaces. Surface functionalization with PDLO enhanced 699 
the slice-electrode coupling interface and increased the SNR (i.e., increased the Rseal). 700 
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 701 

Figure 2| OB network-wide extracellular activity parameters and distribution. a) Topographical 702 
representations and statistical characteristics of the large-scale firing patterns recorded simultaneously 703 
from the entire OB slices (i.e., 4AP induced activity example). Pseudo-color values of the energy, 704 
frequency, amplitude, and LFP activity duration superimposed to the OB structural images. LFP energy is 705 
significantly higher in GL than other layers, and frequency denotes a similar frequency oscillation range in 706 
all layers. The amplitude is also significantly higher in GL and increased with drug treatment; in contrast, 707 
the LFP events' duration is decreased with consecutive drug treatments. b) LFP firing events display a 708 
lognormal-like distribution in interconnected OB layers allowing to elucidate the network dynamics. c) 709 
Lorenze curve and Gini coefficient analysis indicate the inequal neuronal participation and sparseness. d) 710 
Gini coefficient quantification for the firing activity in all OB layers (*p < 0.05, **p < 0.01, ANOVA). e) CV2 711 
values (0 → 2) showing the quantification of the spread of IEIs for the entire firing events. The CV2 is 712 
reduced (towards regular pattern) after blocking the GABAergic population with BiC as indicated by 713 
moving red arrows to the left side (**p < 0.01, ANOVA) (n=24 slices from 8 mice).   714 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2021. ; https://doi.org/10.1101/2021.03.05.434081doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.05.434081
http://creativecommons.org/licenses/by-nc/4.0/


21 
 

 715 

Figure 3| Network-wide oscillation features and waveforms signatures. a) Representative event traces 716 
from large-scale CMOS-chip recording sites showing low to high ranges of oscillatory frequencies in GL 717 
and GCL layers. Exemplary signals from the GL and GCL show wide biosignal signatures of spikes and LFPs 718 
with frequency components (θ, β, and γ bands). b) Pseudo-color spectrograms showing the Frequency-719 
time dynamics in GL and GCL layers. c) Representative power spectral density analysis depicts the LFP 720 
signals' strength regarding their broadband oscillation in OB layers. It displays a high power magnitude of 721 
the θ band in the GL. d) Classification of multilayered OB oscillatory waveform shapes profiled with the 722 
PCA analysis and K-means algorithm based on features extracted from the LFP events. Superimposed 723 
colored average waveforms correspond to the OB layers, and grey waveforms showing all extracted 724 
extracellular waveforms. 725 
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 726 

Figure 4| Topographical analysis of spatiotemporal dynamics of coding information. a) Spatial 727 
coherence maps displaying correlated pairs of recorded sites in the OB circuit. Maps on top showing the 728 
coherence, and at the bottom the maps of firing information encoded in field potentials. Spatial coherence 729 
increasing sequentially by pharmacological treatment of 4-AP, BiC, and MK-801, respectively, yielding 730 
more active electrodes encoding higher information of the firing rate of that spectral frequency 731 
component (i.e., in the GL). b) Spatial coherence quantification showing a significantly shifted distribution 732 
towards higher coherence values under drug-treatment compared with spontaneous activity and 733 
summarized in (b, inset) (***p < 0.001, ANOVA) (n=24 slices from 8 mice). c) Profile of propagation 734 
sequence of representative LFP event showing a defined initiation (ONL and GL) and dynamic propagation 735 
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of the LFP firing patterns in the OB interconnected circuitry (sending output at the OCx). d) Temporal 736 
event traces corresponding to active recording sites in different OB layers. The red arrows point to the 737 
initiation time and shift to the right to indicate the propagation sequence (i.e., initiated in ONL-GL and 738 
terminates at OCx). e) Averaged CATs superimposed to the propagating active electrodes and the 739 
morphological structure of the OB layers. Time color-coded scale (right) indicates the CATs propagation 740 
profile and the firing electrodes of a single LFP event. f) Velocity of conduction of propagating LFP events 741 
is significantly increased when recording performed with 4-AP, BiC, and MK-801 compared to 742 
spontaneous (*p < 0.05, **p < 0.01, ***p < 0.001 ANOVA) (n=24 slices from 8 mice).   743 

  744 
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 745 

Figure 5| Large-scale functional connectivity analysis and validation on dynamical circuit remodeling.  746 

 a) Functional connectivity matrices of different active regions of the OB circuit computed using the cross-747 
correlation method for each pair of active electrodes in the 4096-array. In the spontaneous phase, only 748 
electrodes of the GL layer showed correlation to each other. The cross-correlation matrices in 4-AP, BiC, 749 
and MK-801 treatment indicate higher connectivity with more electrodes simultaneously fired and higher 750 
network synchronization than spontaneous recordings. b) The temporal evolution of a 2D kCSD 751 
construction (bottom) from the LFP recordings (top) for ongoing 100 ms activity. The kCSD indicates the 752 
sources (red tones) and sinks (blue tones) during the global field potential activation of the entire OB 753 
circuit. c) Evident OB neurogenesis effect in 4D+ mouse model as obtained from45. Confocal micrographs 754 
showing 4D+ slices with higher expression of NeuN+/BrdU+ of newborn integrated neurons mainly in the 755 
GCL compared to 4D-. Scale bars represent 500 µm (whole OB) and 100 µm insets. d) Direction-based 756 
functional connections of interactive pairs of firing electrodes in 4D- and 4D+ recordings computed using 757 
Granger causality and DTF algorithms. Grey links showing only 20% of the total detected links on 64x64 758 
CMOS-recording array and are sorted in 6 clusters of the OB layers. e) Quantification of (D) showing 759 
significantly higher unidirectional and bidirectional interactive links in the 4D+ compared to 4D- (*p < 0.05, 760 
ANOVA). (E, inset) showing the effect of induced OB neurogenesis on the topological network parameters 761 
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of efficiency (*p < 0.05, ANOVA) and cost of information processing in the entire OB circuit (**p < 0.01, 762 
ANOVA) (n=12 slices from 4 mice). 4D+ indicates higher network efficiency at a lower wiring cost compared 763 
to 4D- group.    764 
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