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Abstract Di�usion-weighted neuroimaging approaches provide rich evidence with which to estimate the9

structural integrity of white matter in vivo. Tract-based spatial statistics (TBSS), for instance, allows us to10

assess the spatial distribution of statistical tests performed on di�usion properties such as fractional11

anisotropy, which are proposed to reflect the integrity of white matter tracts. However, such methods do12

not provide a direct assessment of white matter integrity for connections between two specific regions of13

the brain. Here, we present a novel method for deriving tract-specific di�usion statistics, based upon14

arbitrarily-defined regions of interest. Our approach makes use of an empirically-derived population15

distribution based on probabilistic tractography, using the Nathan Kline Institute (NKI) Enhanced16

Rockland sample. We use a heuristic method to determine the most likely geometry of a path between17

two regions, if one exists, and express this as a spatial distribution. We then estimate the average18

orientation of streamlines traversing this path, at discrete distances along its trajectory, and compute the19

fraction of di�usion directed along this orientation for each participant. This allows us to obtain20

participant-wise metrics along the specific tract (tract-specific anisotropy; TSA), which can then be used21

to perform statistical analysis on any comparable population. Based on this method, we report both22

negative and positive associations between age and TSA for two networks derived from published23

meta-analytic studies (the “default mode” and “what-where” networks), along with more moderate sex24

di�erences and age-by-sex interactions in both networks.25

26

Introduction27

Di�usion-weighted imaging (DWI) is a promising non-invasive in vivo technique for evaluating the integrity28

of myelinated axonal projections in the brain. DWI is based on the attenuation of the T2-weighted MRI29

signal in the presence of a field gradient, which indicates the degree to which di�usion is unrestricted in30

brain tissue in the direction of that gradient. Methods that reconstruct DWI maps across multiple gradient31

orientations can be used to model the di�usion of water molecules in discrete compartments (or voxels)32

of brain tissue, and the anisotropy of this di�usion can be used to estimate the orientation(s) along which33

di�usion is biased in that voxel. Because myelin is highly lipid-based, and forms a strong hydrophobic34

barrier, the degree of directed anisotropy in a white matter voxel is presumed to indicate the degree to35

which it is comprised of coherently oriented myelinated axons (Assaf and Pasternak, 2007). Moreover,36

variance in this anisotropy can be used to estimate the relative integrity of myelinated fibres that run37

through a voxel – with the assumption being that decreased anisotropy indicates a decrease in myelination38

or myelinated axons.39
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The simplest model of di�usion used for DWI analysis is the di�usion tensor, which assumes a Gaus-40

sian distribution with one principal and two secondary axes, corresponding to the first three eigenvectors41

of observed di�usion across gradient orientations (Basser and Jones, 2002; Chung et al., 2010). From this42

model, we can obtain a summary measure of anisotropy (fractional anisotropy; FA), based on the relative43

magnitudes of the eigenvalues associated with each axis of the tensor. FA ranges from 0 to 1, where 044

indicates perfect isotropy (as would be expected of a uniform substance such as water or cerebrospinal45

fluid), and 1 indicates di�usion exclusively in the principal direction. The di�usion tensor can also be used46

to perform deterministic tractography, in which streamlines are generated by starting at a pre-specified47

set of “seed” voxels, and propagated through a series of neighbouring voxels by reorienting at each ac-48

cording to its principal orientation of di�usion. Tractography can also be set in a probabilistic framework,49

by generating many streamlines and sampling at each voxel from a posterior probability distribution of50

orientations based on the tensor model (Behrens et al., 2003).51

While the basic di�usion tensor is an adequate model for voxels through which fibres are essentially52

oriented in a single direction (e.g., fibres traversing the corpus callosum), it fails to model more complex53

situations, such as the case where two or more fibres are crossing, diverging, or converging. This presents a54

strong bias in favour of finding certain pathways over others. One way of addressing this issue is to explicitly55

model multiple fibre directions, for example by using Bayesian model estimation to determine whether56

multiple fibre orientations are present, and if so how strongly they contribute to the observed di�usion57

signal (Behrens et al., 2007). Such an approach greatly improves the ability of probabilistic tractography to58

discover tracts which traverse areas of uncertainty. As an example from Behrens et al. (2007): while seeding59

in the internal capsule led only to a prominent primary motor projection in the single-fibre approach,60

numerous other cortical targets were reached when crossing fibres were explicitly modelled.61

It is often desirable to relate voxel-wise DWI-based metrics such as FA to other phenotypical obser-62

vations, such as behavioural or cognitive measures, or clinical status. Voxel-wise analyses can be highly63

confounded by the individual geometry of white matter tracts, and one way to address this issue is tract-64

based spatial statistics (TBSS), in which FA measures are projected onto a population-based FA “skeleton”65

with a high probability of being white matter in all participants (Smith et al., 2006, 2007). The presence of66

crossing fibres, however, also has implications for the interpretation of FA (Jbabdi et al., 2010). As an exam-67

ple, for two identical fibres oriented along the anteroposterior (AP) axis, FA would be inversely proportional68

to the number of fibres crossing each along the (perpendicular) mediolateral (ML) axis. Interpreting FA in69

terms of the underlying microstructure of white matter in a voxel is thus inherently ambiguous. This ambi-70

guity can be improved if crossing fibres are explicitly modelled, for example using the Bayesian approach71

described above. Such a crossing fibre model has been proposed as an extension to the TBSS approach72

(Jbabdi et al., 2010).73

Although TBSS provides a means of assessing the spatial distribution of statistical e�ects on white mat-74

ter integrity, it is often di�cult to apply this distribution to specific connectivity in the brain. Suppose, for75

instance, that we are interested in whether the white matter comprising the physical connection between76

brain regions Ra and Rb is altered in condition C . Using TBSS, we observe that the C+ group has decreased77

FA in an area of white matter that could be intermediary to Ra and Rb. However, as most major white mat-78

ter tracts host a mixture of numerous projection, association, and commissural fibres, we can only really79

speculate about the possibility of a compromised RaRb tract. To improve interpretability, we require an80

explicit approximation of the geometry of tract RaRb, and an estimate of the di�usion specifically oriented81

along this tract.82

In this study, we introduce a novel methodology to address both of these issues. We first perform prob-83

abilistic tractography on a representative sample of participants (N=130, aged 18-80), using high angular84

resolution DWI data from the Nathan Klein Institute Enhanced Rockland sample (Nooner et al., 2012), and85

two sets of regions-of-interest (ROIs) obtained from published meta-analytic neuroimaging studies. For86

each pair of ROIs Ra and Rb, we then compute the probability of a tract passing through a given voxel, and87

use a heuristic approach to determine whether a tract likely exists between Ra and Rb, and what its most88

probable trajectory is. Finally, we use an approach similar to Behrens et al. (2007) to determine for each89

participant, and each voxel, the degree of di�usion in the direction of the tract at that voxel. This yields90
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Figure 1. Schematic of the procedure followed in this study. Probabilistic tractography: ROIs were obtained from
previous meta-analytic studies and used as seed/target regions for di�usion tensor modelling with bedpostx and
probabilistic tract tracing performed with probtrackx, across all participants. The resulting probability distributions
were averaged across directions for each ROI pair (Pab). Tract trajectory estimation: For each ROI pair, a “core”
trajectory was estimated from these bidirectional averages, and represented as a 3-dimensional polyline. An
uncertainty field (�ab) was then generated from this polyline using an anisotropic Gaussian kernel. Finally, a “core”
tract estimate (Pab−tract ) was generated as the element-wise product of Pab and �ab . Tract-specific anisotropy: Average
tract orientations were computed for each voxel in a given tract, and these orientations were then regressed against
the di�usion evidence for each individual participant. This produced a tract-specific anisotropy (TSA) distribution for
each participant, that can be regressed against variables of interest.
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a tract-specific anistropy (TSA) metric that can be regressed against variables of interest. Here, we report91

the tract-wise and 3D distributions of TSA regressed against age, sex, and their interaction.92

Results93

Tract determination94

Figure 2. (a) Core tract trajectory estimation steps, shown for two
exemplar tracts. The top row shows the streamline probability
determined across all participants, averaged in both directions, Pab .
The bottom row shows the estimated core trajectory for each ROI pair,
Pab−tract . (b) Three-dimensional distributions of Pab (top) and Pab−tract
(bottom), for four exemplar tracts. Axis labels: ML, medial-lateral; AP,
anterior-posterior; IS, inferior-superior.

We used a heuristic approach (see Fig-95

ure 1) to determine the most proba-96

ble trajectory of a white matter pro-97

jection between two regions of inter-98

est (ROIs). For a given pair of ROIs99

Ra andRb, we performed probabilistic100

tractography twice, seeding in one of101

these regions and terminating in the102

other. The resulting directed proba-103

bility distributions were averaged to104

obtain a bidirectional probability av-105

erage, which was then thresholded in106

order to identify a set of contiguous107

voxels connecting the two regions. If108

this step did not result in such a path-109

way, a connection between Ra and110

Rb was rejected; otherwise, we iden-111

tified the “core” of the pathway and112

used this to obtain a final bidirec-113

tional tract trajectory estimate. Tract114

determination was carried out on two115

sets of ROIs, derived from previously116

published meta-analytic studies: the117

default mode network (DMN), and the118

what-where network (WWN).119

Figure 2a illustrates the tract tra-120

jectory estimation process for ex-121

ample tracts PFCm(R) - LOC(R) and122

dPMC(L)-vPMC(R). The horizontal and123

coronal slice renderings show the ini-124

tial minimal bidirectional averages125

(top row) and final tract trajectory126

estimates (bottom row). Figure 2b127

shows three-dimensional renderings128

of these steps, including the failure to129

estimate a core trajectory for SPL(L)-130

dPMC(R). For the vast majority of tracts, this method was able to isolate a single, core trajectory from a131

variety of alternatives.132

For the DMN, 33 of 36 ROI pairs (92%) produced core tract estimates (Figure 3). Two of the failed tracts133

involved the left PFCm, with the more posterior LOC(R) and PCm(L) regions. Tracts connecting PCm and134

PCG to PFC and ACC traversed the more superior cingulum bundle, while those connecting LOC to PFC and135

ACC traversed the more inferior fronto-occipital fasciculus. Contralateral DMN connections traversed the136

splenium of the corpus callosum (CC; Figure 3d) for posterior ROIs, and the genu of the CC for anterior ROIs137

and anteriorly projecting LOC connections.138

For the WWN, 43 of 45 tracts were estimated (96%), with only 2 tracts failing because no core tract could139
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Figure 3. Tract determination. (a) All accepted tracts shown for the DMN (blue) and WWN (green) networks, rendered as
isosurfaces thresholded at 0.5 (top, right, and oblique perspectives). (b) Core polylines representing the trajectories of
accepted tracts in the DMN (top) and WWN (bottom) networks. Images are rendered with oblique perspectives next to
planar sections of the ICBM non-linear T1 template image, for reference. See Materials and Methods for names of the
ROIs. (c) Graph representations of the DMN (blue) and WWN (green) networks, with failed edges shown in grey. Graph
vertices represent the center points of each ROI, projected onto the transverse plane. (d) Sagittal section at midline,
showing where contralateral tracts (thresholded at 0.5) for each network traverse the corpus callosum. Coordinates
are ICBM152. Axis labels: ML, medial-lateral; AP, anterior-posterior; IS, inferior-superior.
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be identified (Figure 3). The failed tracts were the two contralateral connections between SPL and dPMC140

(Figure 3c). Successfully estimated tracts consisted of anteroposterior projections traversing the superior141

longitudinal fasciculus, and contralateral connections traversing the splenium of the CC and the inferior142

part of the body of the CC (Figure 3d).143

Tract-specific anisotropy144

Given a tract trajectory estimate, as described above, we next wanted to determine how strongly di�usion145

profiles of individual participants were oriented along that tract. For a given voxel, we determined the146

average streamline orientation derived from the previous probabilistic tractography step, and then com-147

puted, for each participant, a “tract-specific anisotropy” (TSA) estimate, indicating the degree to which this148

average orientation loaded onto the DWI intensities along each gradient direction (TSA values are the �149

parameters estimated from Equation 3).150

Kernel density estimates for TSA, for both networks, are shown in Figure 4a. These show the distribution151

of scores for tracts thresholded at Pab−tract > 0.5. While most distributions were roughly Gaussian, with a152

heavy positive tail, this varied across tracts in terms of both kurtosis and skewness, and some shorter153

tracts (e.g., PCG(L)-PCm(R)) had very little variance. For a number of tracts (e.g., SPL(R)-IPS(L)), a bimodal154

distribution was evident. The overall distribution for each network is shown in the insets; WWN showed a155

broader, flattened distribution relative to DMN.156

Figure 4b shows the two-dimensional spatial distributions of TSA scores for two exemplar participants,157

along with the average TSA across all 130 participants. These distributions demonstrate variability be-158

tween participants, but in general the highest TSA scores were observed in the center of estimated tract159

trajectories - reflecting the strongest loading of di�usion profiles - which tapered o� towards the edges.160

Tract-specific Age and Sex e�ects161

Having obtained TSA scores for each individual participant, we were next interested in whether these162

scores were associated with age, sex, and their interaction. We performed voxel-wise regressions of the163

form TSA = �0 + �1 ⋅ Age + �2 ⋅ Sex + �3 ⋅ Age × Sex + ". T-statistics for each coe�cient were obtained, and164

summarised at each distance along the tract. For each tract, we then used one-dimensional random field165

theory to identify significant clusters of t-statistics (p<0.05). To control for family-wise error, we limited the166

false discovery rate (FDR) over all tracts to 0.05.167

For the DMN, there were significant associations of TSA with age and sex, as well as the interaction168

between these two factors (Figure 5, top row). Age e�ects were fairly di�use. Negative e�ects of age were169

found in 15/32 (47%) of DMN tracts, including ipsi- and contralateral connections between PFC and LOC170

(traversing the fronto-occipital fasciculus), and PCm(L)-PFCm(R). Modest positive e�ects of age were also171

found for 4/32 (12%) of tracts. These were smaller, and comprised exclusively of ipsilateral tracts (three172

left and one right). Both positive (female > male) and negative sex di�erences were also found. Figure 6173

shows scatter and violin plots for selected tracts. Notably, tract PCm(L)-PCG(L) showed e�ects for age, sex,174

and their interaction; and tract ACC(L)-LOC(L) and PFCm(R)-LOC(R) showed both positive and negative age175

e�ects.176

The WWN also showed significant associations for age, sex, and their interaction (Figure 5, bottom177

row). Surprisingly, there were strong posirtive and negative age e�ects for this network, with 16/32 (50%)178

having showiung negsative e�ects and 14/32 tracts (44%) showing positive e�ects. Compared to DMN,179

the age e�ects for WWN were more focal. Negative age e�ects were found proximal to dPMC(L), and in180

collosal fibres traversing the body of the corpus callosum (see Figure 3d), involving contralateral tracts181

between dPMC and vPMC. There were also negative associations found in contralateral tracts between IPS,182

dPMC, and vPMC. The largest positive age e�ects occurred along anteroposterior-oriented tracts in the183

longitudinal fasciculus, particularly those involving left and right dPMC. All sex di�erences were negative184

(male > female) for this network, on were found on contralateral tracts. Figure 6 shows scatter and violin185

plots for selected tracts. Notably, the homotopic dPMC(L)-dPMC(R) tract showed both a sex di�erence and186

an Age×Sex interaction.187
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Figure 4. Tract-specific anisotropy (TSA). (a) Distributions of TSA across voxels and participants, for each estimated
tract (ROI pair), shown as kernel density estimates for DMN (blue) and WWN (green). Insets show the distribution of
TSA values over all tracts; x-axis scales are the same for all plots. Red crosses indicate that no tract was generated. (b)
Spatial distributions of TSA values for two exemplar participants and averaged over all participants, and three
examplar tracts, shown in horizontal and coronal section. Anatomical images are the ICBM152 nonlinear template.
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Figure 5. Regression results for both networks, for linear models of the form TSA = Age + Sex + Age × Sex + �. 3D
renderings show the maximal t-values (thresholded using cluster-wise inference, with FDR<0.05) at each distance
along the core trajectories of each tract in the network. Circular graph representations show the sum of significant
positive (red) and negative (blue) t-values for each tract. The thickness of an edge is proportional to its sum, and the
absence of an edge indicates that no significant clusters were found for that tract. Axis labels: ML, medial-lateral; AP,
anterior-posterior; IS, inferior-superior
Figure 5–Figure supplement 1. GLM t-value distance traces for all ROI pairs in the DMN.
Figure 5–Figure supplement 2. GLM t-value distance traces for all ROI pairs in the WWN.
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Scatter and violin plots for all significant e�ects, and line plots and tables showing raw and cluster-188

thresholded t-values for all tracts, are provided in Supplementary Material.189

Discussion190

Estimation of core tract trajectories191

In this study we introduce a novel method for obtaining tract-specific spatial estimates of the “core” trajec-192

tories of projections between two arbitrarily defined ROIs, on the basis of probabilistic DWI tractography193

performed across a representative cohort of healthy individuals. This approach yielded plausible trajectory194

estimates for 33 of 36 ROI pairs (92%) in the DMN network, and 43 of 45 ROI pairs (96%) in the WWN network.195

In order to achieve su�cient coverage of the space of possible trajectories, we derived our probability es-196

timates from a large number of streamlines (50,000 × ROI) over 130 participants. Our results demonstrate197

the feasibility of using DWI-based probabilistic tractography for delineating individual tracts between ar-198

bitrary pairs of distal brain regions, as well as obtaining participant- and tract-specific anisotropy values199

from these tracts.200

ROI pairs failed to generate tract trajectory estimates when the thresholding applied to the bidirectional201

population average distribution broke the contiguous path between them. Notably, this is not evidence202

that the tract does not exist, but rather that there is ambiguity about the location of its trajectory, based on203

the di�usion evidence. It is important to note that the threshold applied here was determined somewhat204

arbitrarily, i.e., by observing what value reduced the number of alternative pathways to a single, core one.205

In cases where this failed, there were typically two or more alternatives that could not be disambiguated206

(see Figure 2b for an illustration of failed tract SPL(L)-dPMC(R)). Further investigation into these ROI pairs,207

e.g., by comparing them to known connectivity evidence from tract tracing studies (in non-human primates)208

or di�erent modalities (in humans), may be useful for determining whether a tract indeed exists between209

them.210

Previous studies have also evaluated white matter tract geometry using DWI. In a now-classic study,211

Catani et al. (2002) used deterministic tractography to identify and “dissect” individual tracts based on212

seed ROIs. This was extended by Jones et al. (2005) in order to map di�usion metrics onto the trajectories213

of specific tracts. More recently, Colby et al. (2012) used B-spline resampling to map FA to specific tracts in214

individual participants, allowing e�ects to be mapped to points along its trajectory. The present approach215

extends the work of these previous studies, in that it facilitates the investigation of white matter pathways216

connecting specific ROI pairs, rather than coarse-scale fasciculi, in terms of tract geometry and anisotropy217

estimation. Another important advantage is its use of a probabilistic tractography framework to describe218

the “core” trajectories of specific tracts across a population of interest.219

Tract-specific anisotropy220

It is common to use streamline counts from probabilistic tractography as an estimate of connection221

strength between two ROIs (e.g., Daianu et al., 2013; Lohse et al., 2014; Reid et al., 2016b). This approach,222

however, su�ers from a number of seemingly intractable biases, including: the nature of the di�usion pro-223

file through which a given tract traverses (anisotropy bias); the length of the tract (distance bias); and the224

position of seed and target ROIs relative to gryi or sulci (Reveley et al., 2015; Reid, 2016). It is thus uncertain225

how to interpret a relative streamline count, or change in this quantity in association with some covariate226

of interest, with respect to biophysical properties such as white matter integrity or connectivity strength.227

The present approach is arguably less susceptible to these biases, because it only models the geometry228

of streamlines that do connect two ROIs. However, future research e�orts should be directed at validating229

(1) the interpretability of TSA with respect to axonal white matter integrity, and (2) the spatial specificity230

of trajectory estimates. This could be done, for example, through the use of phantoms (Zhu et al., 2011;231

Caspers and Axer, 2017) or histological approaches (Mollink et al., 2017; Schae�er et al., 2018).232

The present method might be considered an extension of the well-known TBSS approach (Smith et al.,233

2007), in which statistics are projected onto a pre-established population-based white matter “skeleton”,234
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Figure 6. Plots of selected TSA regression results. Top row: DMN tracts with (from left to right) negative and positive
age e�ects, and a sex di�erence (male > female). Bottom row: WWN tracts with negative and positive age e�ects, and
an Age×Sex interaction. Data points are the mean TSA values within significant clusters (as shown in Figure 5). Shaded
areas on scatterplots represent 95% confidence intervals.
Figure 6–Figure supplement 1. Scatter and violin plots for all significant e�ects in the DMN.
Figure 6–Figure supplement 2. Scatter and violin plots for all significant e�ects in the WWN (Part A).
Figure 6–Figure supplement 3. Scatter plots for all significant e�ects in the WWN (Part B).

which serves a similar function to population-based anatomical grey matter templates, such as the lin-235

ear and nonlinear ICBM-152 templates (Fonov et al., 2009; Mazziotta et al., 1995). There are two major236

advantages of the present method over TBSS: (1) it allows a population-based tract estimate to be derived237

specifically for the white matter tract connecting any two arbitrarily-defined ROIs, if that tract is likely to238

exist; and (2) it allows participant- and tract-specific anisotropy to be estimated, based on the orientation239

of streamlines defining that tract in each voxel along its trajectory. Conversely, one major limitation with240

the TSA approach is that it is substantially more computationally intensive, and scales quadratically with241

the number of ROIs in a network of interest.242

Age and sex are associated with tract-specific anisotropy243

Positive and negative age/TSA associations were found for both networks. There is an abundance of ev-244

idence for age-related decreases in DMN connectivity, including a decrease in fMRI-based resting-state245

functional covariance (Hafkemeijer et al., 2012; Marstaller et al., 2015; Sambataro et al., 2010), and age-246

related decreases in FA in white matter tracts proximal to DMN regions (Marstaller et al., 2015). Marstaller247

and colleagues found a reduction in the extent to which posterior cingulate and precuneus activity covar-248

ied with wider brain networks, along with reduced FA in numerous tracts, including the fronto-occipital249

fasciculus, where the current negative age association is most prominent. Sambataro et al. reported de-250

creased covariance between PCC and PFC, which predicted working memory performance. Decreases in251

DMN functional covariance also appear to be accelerated in Alzheimer’s disease (Jones et al., 2011; also252

reviewed in Reid and Evans, 2013).253

For the WWN, age-related decreases in TSA occurred mainly in the body, but not the splenium, of the254

corpus callosum. This pattern is in agreement with several DWI-based studies of age-related connectivity255

changes. Burzynska et al. (2010) used TBSS to show an age-related reduction in FA (and increase in radial256

and mean di�usivity) in the genu and body of the corpus callosum, but not the splenium. Using a DTI257
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approach, Bennett and Madden (2014) found decreased FA in older versus younger participants for both258

the genu and splenium, but with a more pronounced e�ect in the former. The same authors report an259

anterior-to-posterior gradient in age-related FA changes, with these being more pronounced in frontal260

white matter, consistent with the pattern found in the current study (Bennett et al., 2009).261

Positive age associations were a more surprising finding, as numerous articles report negative age/FA262

associations (e.g., Kodiweera et al., 2016) and postmortem evidence of white matter loss and decrease in263

the proportion of small myelinated fibres with age (Tang et al., 1997; Aboitiz et al., 1997). Both positive and264

negative age/FA associations have been reported in at least one previous brain-wide TBSS study (Kochunov265

et al., 2007), however. For DMN in particular, we found that most positive associations occurred in regions266

proximal to ROIs, where the potential confound of crossing fibres is likely more pronounced (Jeurissen267

et al., 2012). The positive relationships in the WWN were especially prominent, and suggest a (paradoxical)268

increase in white matter integrity in these tracts. The majority of positive relationships in WWN were found269

in the middle of the superior longitudinal fasciculus (SLF). One TBSS study focusing on the SLF in a healthy270

cohort found no e�ect of age on FA (Madhavan et al., 2014), while another whole-brain study found SLF271

among tracts with negative age e�ects (Marstaller et al., 2015). Increased FA in Alzheimer’s disease patients272

has also been reported in SLF (Douaud et al., 2011). The authors of this study suggest that a relative sparing273

of crossing motor fibres may account for this e�ect, but this is consistent with our observed increase in TSA;274

on the contrary, our findings might be explained by a relative decrease in WM integrity in these crossing275

fibres.276

It is possible that the increased specificity of the current approach permits a more fine-grained spatial277

and angular dissection of e�ects than does TBSS with FA, which uses a more coarse-grain white matter278

skeleton, and is not orientation-specific. If so, then the positive e�ects observed here may reflect a real279

age-related increase in white matter integrity for specific tracts. This possibility is supported by reports280

of fairly widespread increases in fMRI-based functional covariance with aging (Tomasi and Volkow, 2011),281

which have been proposed to reflect compensatory changes in response to degeneration or dysfunction282

of other brain regions. Given the conflicting evidence, however, these e�ects should be interpreted with283

caution. It will be important in future TSA studies to increase the number of ROIs, or query specific crossing284

tracts, in order to obtain a more complete picture of age-related e�ects across white matter.285

More modest sex di�erences, and age-by-sex interactions, were also observed for both networks. Pre-286

vious DWI-based studies have also found sex di�erences in FA, typically with males showing higher FA287

values (Takao et al., 2013; Rathee et al., 2016; Menzler et al., 2011). For DMN, we found negative e�ects288

(males > females) for the PCG(L) with PFCm(L), which accords with findings from Menzler et al. (2011), who289

report prominent di�erences in the cingulum bundle. We also found positive e�ects (females > males) that290

were mostly left lateralized and included LOC(L), which have not commonly been reported in the literature.291

Although sex di�erences in LOC function have been hypothesised on the basis of di�erential object per-292

ception (Vanston and Strother, 2016) – a function that has been associated with this region – there does293

not currently appear to be much direct evidence for this.294

It is also notable that, for numerous tracts, we found both positive and negative age e�ects in di�erent295

parts of the same tract (see Figure 5). It is not immediately clear how to interpret such a result. If our296

inference is that a TSA value represents the number of intact axons projecting between two grey matter297

ROIs, this is contradicted by the observation of both increases and decreases in this region - damage to298

an axon anywhere along its length will trigger Wallerian degeneration in both directions. On the other299

hand, this finding is consistent with the idea that TSA reflects the degree of (de)myelination, which may300

be increased on average in one part of the tract and decreased in another. Importantly, there is evidence301

that demyelinated axons, while they may be functionally impaired, are not necessarily at higher risk of302

degeneration (Smith et al., 2013). A third possibility is that TSA is influenced by the degree of crossing303

fibres in a particular region along its length; changes to di�usion in directions other than the average304

orientation of interest will influence the regression fit used to estimate this metric.305
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Limitations and future directions306

The NKI Rockland dataset was chosen due to its large size, age range, and the use of a single MRI scanner307

and protocol. To ensure the cohort was as representative of the general population as possible, and to308

enable the analysis of age over the lifespan, we chose to use close to the full age range (18-80), and to309

exclude participants with clinical diagnoses. As with most population templates, however, the choice of310

cohort is an important consideration when interpreting a derived result. The human brain is known to311

show systematic anatomical grey matter changes across the lifespan (Sowell et al., 2003; Giorgio et al.,312

2010), and this will almost certainly bias normalization in a way that may account for a portion of the TSA313

e�ects reported here. It will be important in future studies to assess the influence of this bias, use cohorts314

that are more targeted to a particular phenomenon under investigation, and compare the predictions of315

TSA to in vivo or post mortem analyses of white matter (e.g., as in Reveley et al., 2015).316

The ability to estimate spatial trajectories of white matter projections between specific pairs of ROIs317

could lead to a number of important applications. For instance, this information could be used to pre-318

dict the functional outcomes of age-related white matter lesions (WML), which have a prevalence of ∼18%319

in people aged 60-69 and ∼40% in people over 80 (Vernooij et al., 2008). Conceivably, clinicians would320

identify WML locations using T2-FLAIR imaging, estimate which tracts intersect these lesions, and predict321

functional deficits on the basis of the brain regions connected by these tracts. This approach could aug-322

ment previous studies investigating connectivity (Tuladhar et al., 2014), cortical thickness (Reid et al., 2010),323

and gait changes related to WML (de Laat et al., 2012).324

Materials and Methods325

Participants326

Participant data were obtained from the publicly available Nathan Klein Institute (NKI) Enhanced Rockland327

sample (Nooner et al., 2012), through the 1000 Functional Connectomes Project (www.nitrc.org/projects/328

fcon_1000/). We included participants from the first four data releases, while excluding any participant329

with an existing clinical diagnosis at the time of scanning. In total, 130 participants (86 female, age range330

18 to 80) were analyzed.331

Neuroimaging data and metadata332

All imaging data in the Rockland sample were acquired from the same scanner (Siemens Magnetom TrioTim,333

3.0T). T1-weighted images were obtained using a MPRAGE sequence (TR = 1900 ms; TE = 2.52 ms; voxel size334

= 1 mm isotropic). DWI was collected with a high spatial and angular resolution (TR = 2400 ms; TE = 85 ms;335

voxel size = 2 mm isotropic; b = 1500 s/mm2; 137 gradient directions). Age and sex data were also obtained,336

with the Sex factor encoded as 1=Male, 2=Female.337

Preprocessing338

DWI images for all participants were preprocessed using FMRIB software (Smith et al., 2004; Woolrich et al.,339

2009); specifically, FSL version 6.0.0. Participant datasets were processed in parallel using a Linux-based340

SLURM computing cluster, located at the University of Nottingham. Raw di�usion data were first corrected341

for eddy current artifacts using the eddy command. All B0 (zero-gradient) images were then averaged and342

used to extract a brain mask using the bet command. Next, for each voxel in the brain mask, a di�usion343

tensor model was fit to the data using dtifit, and subsequently passed to the bedpostx command, which344

infers the existence of crossing fibres and estimates the contribution of each crossing fibre to the di�usion-345

weighted signal (Behrens et al., 2007). Finally, to express the voxel-wise di�usion models in standard space,346

linear and nonlinear transforms between native di�usion and MNI-152 space were estimated, by applying347

the flirt (12 degrees of freedom) and fnirt commands, respectively, using individual FA images as input348

and a mean template FA image as the reference. Inverse transforms were also estimated, using the invwarp349

command, for use in later steps.350
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Regions of interest351

Seed regions of interest (ROIs) were obtained from two previously-defined networks (see Figure 3b). For352

each network, all possible ROI pairs were considered as potential tracts.353

The default-mode network (DMN) was derived from Schilbach et al. (2012), who performed an Activa-354

tion Likelihood Estimation (ALE; Eickho� et al., 2009, 2012) meta-analysis using 533 experiments from355

the BrainMap database (Fox and Lancaster, 2002), querying for regions that were consistently deacti-356

vated across tasks. The ROIs were obtained by downloading the DMN network from the ANIMA database357

(https://anima.inm7.de/studies/Schilbach_SocialNetworks_2012; Reid et al., 2016a). The network was com-358

prised of 9 ROIs: anterior cingulate cortex (ACC; left only), lateral occipital cortex (LOC; bilateral), posterior359

cingulate gyrus (PCG; bilateral), precuneus (PCm; bilateral), and medial prefrontal cortex (PFCm; bilateral).360

The what/where network (WWN) was derived from Rottschy et al. (2012), with data obtained from the361

ANIMA database (https://anima.inm7.de/studies/Rottschy_WorkingMemory_2012). The authors performed362

a conjunction on ALE analyses for tasks testing memory for object identity (“what”; 42 experiments) and363

object location (“where”; 13 experiments). The WWN was comprised of 10 ROIs, with 5 brain regions rep-364

resented bilaterally. These ROIs were: dorsal and ventral premotor cortex (dPMC, vPMC), superior parietal365

lobule (SPL), inferior parietal lobule (IPL), and infraparietal sulcus (IPS).366

Probabilistic tractography367

Probabilistic tractography was performed in MNI-152 space, using the probtrackx command (Behrens et al.,368

2007). For both networks, we generated 50,000 streamlines per seed voxel, with the other seed regions as369

target masks. We applied a step length of 0.5 mm, a curvature threshold of 0.2, a minimal path distance370

of 5 mm, and a fibre threshold of 0.01. A distance correction was also applied. For each voxel probtrackx371

recorded the number of streamlines which encountered that voxel, producing a separate count for stream-372

lines terminating in each target ROI. Additionally, the voxel-wise mean orientation of streamlines between373

each seed/target pair was computed.374

Tract determination375

Tracts were determined separately for each ROI pair. Voxel-wise streamline counts for each direction (Ra376

to Rb or Rb to Ra) were first normalized by dividing by the total number of streamlines reaching target Rb377

from seed Ra, and the minimum across both directions was obtained. These minimum images were sub-378

sequently averaged over participants, smoothed, and normalized to the range [0,1], yielding a probability379

Pab(i) of voxel i being included in tract Tab. It is noteworthy that in some cases, the matrix Pab of such values380

is constrained to a single, geometrically confined tract, while in others, it reflects many possible routes381

between two ROIs (see examples in Figure 2b). Our objective was to identify the single most probable382

tract, or reject the tract altogether if such could not be determined. This was done in a heuristic manner.383

Firstly, we thresholded Pab by setting all values where Pab < � to zero. A threshold of � = 0.07 was applied384

by experimentation, in order to both disconnect most low-probability alternative pathways, and ensure385

that (for cases where the existence of a tract is known or likely) at least one pathway remained intact.386

Additionally, because Pab proximal to ROIs tended to be lower that for the main tract trajectory, ROIs were387

dilated by 3 voxels to ensure they remained connected after thresholding.388

We next discretized Pab into distance assignments D, using a flood-fill approach, assigning all voxel389

neighbours of seed region Ra a value of d = 1, all subsequent neighbours d = 2, and so on, until all390

voxels in Tab were assigned a distance. We then identified the voxel of maximal Pab for each distance d,391

constructing a polyline Lab with center points of these voxels as its vertices. Inclusion of a vertex in Lab was392

conditional on two constraints: (1) segment length |xi−1,i| < 4 mm; and (2) vertex angle �i < �∕3. Where a393

constraint was violated, the voxel with the next highest Pab was tested, and so on until a voxel was found394

satisfying the constraints. In cases where no appropriate voxels were found, the maximal voxel was added395

and the violation was recorded as a flag for visual inspection. Lab was extended in this fashion until: (1)396

the target region Rb was encountered, and the tract was accepted for further analysis; or (2) the maximal397

distance was encountered, but not the target region Rb, and the tract was rejected for further analysis (i.e.,398

the thresholding broke all routes, and thus a “true” route between Ra and Rb could not be determined).399
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With the assumption that an accepted polyline represents the geometric center of a given tract Tab, we400

then modelled the probability Pab−tract of a voxel being in that tract, as the product of an uncertainty field401

�ab oriented around Lab, and the original probability field Pab (see Figure 1).402

�ab was constructed as follows. For every vertex v ∈ Lab, an orientation vector !v was computed as the403

sum of the segment vectors xv−1,v and xv,v+1 (at the endpoints of Lab, only one segment was used). From404

!v, an anisotropic Gaussian kernel �(i, !v, �, �a, �r) was applied to the subset of voxels within a radius of405

8 mm of v. Parameters defining the shape of the Gaussian function were fixed at � = 0 mm, axial �a = 10406

mm, and radial �r = 4 mm; where axial and radial axes were parallel and perpendicular to !v, respectively.407

For a given voxel i in Tab, the maximal value of � across all vertices v was assigned:408

�ab(i) = max
v

(

�(i, !v, �, �a, �r)
)

(1)

Pab−tract was determined as:409

Pab−tract = f (�ab ⊙ Pab, d) (2)

The function f (g, d) normalizes g, at each discrete distance d, to values between 0 and 1.410

Tract-specific anisotropy estimation411

Having defined (or rejected) a tract Tab, we were next interested in extracting meaningful di�usion metrics412

from it, which can allow us to perform statistical inference on specific tracts. At each voxel, we thus413

wanted to estimate how strongly its di�usion weighed onto the orientation of the tract at that voxel. To do414

this, we obtained the average orientation (across all participants) of streamlines going through voxels in415

Tab using probtrackx (see Probabilistic tractography). These average orientation images, along with the416

Pab−tract images, were warped from standard to individual participants’ di�usion space, using the inverse417

transforms computed in the preprocessing step (see Preprocessing).418

Next, for each participant, and for each voxel j, the fraction of the di�usion-weighted signal along the419

average tract orientation was estimated by fitting the following linear regression using the statsmodels420

Python library (https://www.statsmodels.org):421

sj∕s0j = �j ⋅ e
−b�(R⊺ v̄j )2 + cj (3)

where v̄j is the average streamline orientation, R is the M × 3 matrix of gradient orientation vectors422

(where M is the number of orientations, here M = 137), s0j is the non-di�usion-weighted signal, sj is the423

observed signal at each gradient orientation, b is the gradient strength (b-value), and � is the di�usivity.424

Notably, this formulation is equivalent to that presented in Behrens et al. (2003, 2007), but applying425

only to the average orientation v̄j . �j is the regression coe�cient (with cj being an intercept term), and is426

analogous to the f value from the crossing fibres model; i.e., the fraction of signal contributed by v̄j . We427

refer to these coe�cients as tract-specific anisotropy (TSA).428

Statistical analyses429

The TSA values obtained in the preceding step were warped back into standard space and smoothed with430

a Gaussian kernel with a full-width at half-maximum (FWHM) of 1.5 mm. Subsequently, for each voxel in a431

tract, the following linear regression model was tested, for the first-order e�ects of Age and Sex, and their432

interaction:433

TSA = �0 + �1 ⋅ Age + �2 ⋅ Sex + �3 ⋅ Age × Sex + " (4)

For each contrast, we next wanted to summarize the resulting t-statistics at each discrete distance434

along the trajectory of the tract. To do this, following an approach similar to TBSS (Smith et al., 2006), we435

computed weighted t-statistics for each voxel j as t′(j) = t(j) ⋅ Pab−tract(j)�, where � determines the rate of436

decay (here, we set � = 1.0). At each discrete distance d along the tract, we assigned (unweighted) td as437

the t-statistic corresponding to the maximal t′d .438
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Because anatomical properties along a tract can be assumed to form a continuous random field (i.e.,439

neighbouring vertices have a spatial dependence), we analyzed the resulting distance-wise summary statis-440

tics as a one-dimensional random field, using the rft1d Python library (http://www.spm1d.org/rft1d/;441

Pataky, 2016). Firstly, the spatial smoothness of model residuals was estimated for each tract as a FWHM442

value, and averaged across tracts. For each tract, this mean FWHM was used to compute t∗, the critical443

t-value at � = 0.05 for a Gaussian field, using an inverse survival function. Secondly, cluster-wise inference444

was performed to identify significant clusters along the tract, with a minimum cluster size of 3. Thirdly,445

p-values for all clusters, across all tracts, were corrected for family-wise error using a false discovery446

rate (FDR) threshold of 0.05. FDR was performed using the statsmodels Python library, with a two-stage447

non-negative FDR method (fdr_tsbky). Finally, to estimate the spatial extent of e�ects for a given tract,448

significant t-values were summed over that tract, for positive and negative t-values separately.449

Code and data sharing450

All code for this procedure was written in Python 3 (Anaconda build), making system calls of native FSL451

packages, as indicated. The following third-party Python libraries were also used: nibabel, nilearn, and452

statsmodels. Source code for all procedures used in this study is freely available at https://github.com/453

neurocoglab/dwi-tracts. This includes: scripts to run FSL preprocessing and DWI analyses, using stan-454

dard SGE- or SLURM-style parallel environments; a module to estimate core trajectories and TSA values; a455

module to fit general linear models to TSA values; and a module to plot the results of these. The out-456

put of these modules (polylines, surface meshes, graphs) can be visualised using ModelGUI software,457

an open source Java library available at https://github.com/neurocoglab/mgui-core. The NKI-Rockland458

data is freely available at www.nitrc.org/projects/fcon_1000/. Participant- and sample-wise data will be459

made freely available on the University of Nottingham Research Data Management Repository at https:460

//doi.org/10.17639/nott.7102.461
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Figure 5–Figure supplement 1. Distance traces show the t-values for Age, Sex, and Age × Sex, for all ROI
pairs in the DMN. Plots on the left show uncorrected t-values, and plots on the right show t-values derived
from one-dimensional random field theory (1D-RFT) and false-discovery rate (FDR) < 0.05. Line separation
is t = 1.
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Figure 5–Figure supplement 2. Distance traces show the t-values for Age, Sex, and Age × Sex, for all ROI
pairs in the WWN. Plots on the left show uncorrected t-values, and plots on the right show t-values derived
from one-dimensional random field theory (1D-RFT) and false-discovery rate (FDR) < 0.05. Line separation
is t = 1.
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Figure 6–Figure supplement 1. Scatter and violin plots showing significant e�ects for all tracts in the DMN.
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Figure 6–Figure supplement 2. Scatter and violin plots showing significant e�ects for all tracts in the WWN
(Part A).
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Figure 6–Figure supplement 3. Scatter plots showing significant e�ects for all tracts in the WWN (Part B).

626

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.05.434061doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.05.434061
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Results
	Tract determination
	Tract-specific anisotropy
	Tract-specific Age and Sex effects

	Discussion
	Estimation of core tract trajectories
	Tract-specific anisotropy
	Age and sex are associated with tract-specific anisotropy
	Limitations and future directions

	Materials and Methods
	Participants
	Neuroimaging data and metadata
	Preprocessing
	Regions of interest
	Probabilistic tractography
	Tract determination
	Tract-specific anisotropy estimation
	Statistical analyses

	Code and data sharing
	Acknowledgements

