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Abstract  38 

Metagenomic binning enables the in-depth characterization of microorganisms. To improve the 39 

resolution and efficiency of metagenomic binning, BASALT (Binning Across a Series of AssembLies 40 

Toolkit), a novel binning toolkit was present in this study, which recovers, compares and optimizes 41 

metagenomic assembled genomes (MAGs) across a series of assemblies from short-read, long-read or 42 

hybrid strategies. BASALT incorporates self-designed algorithms which automates the separation of 43 

redundant bins, elongate and refine best bins and improve contiguity. Evaluation using mock 44 

communities revealed that BASALT auto-binning obtained up to 51% more number of MAGs with up 45 

to 10 times better MAG quality from microbial community at low (132 genomes) and medium (596 46 

genomes) complexity, compared to other binners such as DASTool, VAMB and metaWRAP. Using 47 

BASALT, a case-study analysis of a Salt Lake sediment microbial community from northwest arid 48 

region of China was performed, resulting in 426 non-redundant MAGs, including 352 and 69 bacterial 49 

and archaeal MAGs which could not be assigned to any known species from GTDB (ANI < 95%), 50 

respectively. In addition, two Lokiarchaeotal MAGs that belong to superphylum Asgardarchaeota were 51 

observed from Salt Lake sediment samples. This is the first time that candidate species from phylum 52 

Lokiarchaeota was found in the arid and deep-inland environment, filling the current knowledge gap 53 

of earth microbiome. Overall, BASALT is proven to be a robust toolkit for metagenomic binning, and 54 

more importantly, expand the Tree of Life. 55 

Keywords: Microbiome; Metagenome; Binning refinement; Tree of Life; Salt Lake; 56 

Asgardarchaeota/Lokiarchaeota 57 
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Introduction 69 

Metagenomics analyses accommodated numerous of approaches exploring microbial diversities, 70 

biosynthetic potentials and evolutionary relationships of earth’s microbiome (Tyson et al. 2004, 71 

Temperton and Giovannoni 2012). Specifically, the development of sequencing technologies, 72 

computational capacities and bioinformatic tools enabled genome-scale analyses, which freed our 73 

cognition of microorganisms from only cultivated isolates and significantly boosted our 74 

understandings on uncultivable microorganisms (Parks et al. 2017, Pasolli et al. 2019). Genome-75 

resolved metagenomics was firstly applied in 2004 from low microbial diversity environment (Tyson 76 

et al. 2004), followed by a series of initiations such as Earth Microbiome Project (EMP) and the 77 

European Nucleotide Archive (ENA) which enabled us to unravel the microorganisms on a global 78 

scale (Thompson et al. 2017). For example, the latest report from EMP projects revealed more than 79 

52,000 Metagenomic Assembled Genomes (MAGs) on species level (Amid et al. 2020, Nayfach et al. 80 

2020), consisting a wide range of samples from environments with medium to high level of microbial 81 

complexities, such as human (Pasolli et al. 2019, Almeida et al. 2021), freshwater (Ali et al. 2020), 82 

marine (Tully et al. 2018, Reji et al. 2020), engineered environment (Ransom-Jones et al. 2017, Liang 83 

et al. 2020) and soil (Kroeger et al. 2018, Nascimento Lemos et al. 2020), etc. Such studies 84 

implementing genome-resolved metagenomic approaches have largely expanded branches of 85 

microorganisms on tree of life (Hug et al. 2016). However, despite these findings, a vast majority of 86 

microorganisms remain obscured due to 1) limitation of bioinformatic tools such as assembly and 87 

binning; 2) large unexplored area/regions with specific environmental conditions; and 3) advanced 88 

cultivation methods to be developed. 89 

Aside from the developing innovations of culturing new microorganisms (Lewis et al. 2020), major 90 

discovery of novel species was based on sequencing-based analyses.  However, major impediments 91 

that hampered us from obtaining comprehensive and high-qualitied MAGs from existing sequencing 92 

datasets are assembly and binning steps (Nayfach et al. 2020). Due to the nature of next-generation 93 
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sequencing, a series of errors may occur in binning sourced from assembled short-read sequences, such 94 

as mis-clustering contigs into bins, mis-separating contigs from one genome into multiple bins, and 95 

mis-separating multiple genomes into bins sharing partial genomic sequences (Rinke et al. 2013, Yu 96 

et al. 2018, Wang et al. 2019), resulting in redundant and artificial bins that interfere the actual binning 97 

result. While the development of third generation sequencing can significantly increase the length of 98 

sequencing reads to mitigate binning errors, higher costs (e.g. Pacific Biosciences sequencing, PacBio) 99 

or error reads (e.g. Oxford Nanopore Technology, ONT) are still hindrances from acquiring intact 100 

microbial genomes with higher completeness and lower contamination (Laver et al. 2015, Wang et al. 101 

2015). To date, the development of assembly (Bankevich et al. 2012, Peng et al. 2012, Li et al. 2015), 102 

binning (Alneberg et al. 2013, Wu et al. 2016, Kang et al. 2019, Nissen et al. 2021) and refinement 103 

tools (Song and Thomas 2017, Uritskiy et al. 2018) have allowed us recovering MAGs from relatively 104 

high diversity environments (Parks et al. 2017, Sczyrba et al. 2017), but an average of 70% of 105 

sequencing reads were still unable to be exploited on genome-resolved analyses, which proportion is 106 

even higher in more complexed environment such as soil (Howe et al. 2014, Nayfach et al. 2020). 107 

Although a growing number of bioinformatic tools have implemented algorithms on third generation 108 

sequencing datasets, such as hybrid assemblers (e.g. Unicycler, OPERA-MS, Wick et al. 2017, 109 

Bertrand et al. 2019), a systematic estimation of these tools on complexed environmental samples is 110 

crucially needed. Moreover, no study has utilized third generation sequences on post-binning 111 

approaches calibrating assembled bins and complementing genome gaps, which can maximize the 112 

exploitation of long-reads data to elevate recovered genome qualities. Therefore, to further expand tree 113 

of life, more robust assembly and binning workflows, as well as post-binning refinement methods are 114 

yet to be developed. 115 

In addition to the demands of advanced bioinformatic tools, more investigations on remote 116 

areas/regions, especially the ones from unique environmental conditions that absent from global 117 

projects (Nayfach et al. 2020, Almeida et al. 2021) can largely expand our knowledge on earth genomic 118 
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pools. As such environmental parameters (physical, chemical and biological) have direct and indirect 119 

effect on microbial communities (Berdjeb et al. 2011, Nishiyama et al. 2018, Easson and Lopez 2019, 120 

Glasl et al. 2019), exploring uncommon environment can expand the breadth of our understanding on 121 

microbial diversity and potential functions. A few studies have already launched targeting rarely 122 

explored environments on deserts (Finstad et al. 2017), oil fields (Eze et al. 2020), hydrothermal vents 123 

(Anderson et al. 2017) and non-marine soda lakes (Vavourakis et al. 2018), but such number of 124 

investigations were still scarce to support the expansion of microbial diversity, compare to a vast 125 

majority of studies on marine, soil and human-associated microbiomes (Hoshino et al. 2020, 126 

Nascimento Lemos et al. 2020, Almeida et al. 2021).  127 

In this study, we introduce a highly robust toolkit BASALT (Binning Across a Series of AssembLies 128 

Toolkit) to robustly recover microbial genomes from sequencing datasets using a series of innovative 129 

methodologies for assembly, binning and refinements. Firstly, BASALT uses high-throughput 130 

assembly methods to automatically assemble/co-assemble multiple files in parallel to reduce the 131 

manual input; Next, BASALT incorporates self-designed algorithms which automates the separation 132 

of redundant bins to elongate and refine best bins and improve contiguity; Further, BASALT facilitates 133 

state-of-art refinement tools using third-generation sequencing data to calibrate assembled bins and 134 

complement genome gaps that unable to be recalled from bins; Lastly, BASALT is an open frame 135 

toolkit that allows multiple integration of bioinformatic tools, which can optimize a wide range of 136 

datasets from various of assembly and binning software. Using BASALT, we performed a case study 137 

on sediment samples of Aiding Lake, Xinjiang China, a deep-inland hypersaline lake with high aridity 138 

in the surrounding area (Figure S1, Guan et al. 2020), which is different from common chlorite saline 139 

aquatic system. Based on the superior number and quality of MAGs obtained via BASALT, we present 140 

taxonomic and genetic profiles on prokaryotic microbial communities of lake sediment samples, 141 

including two Lokiarchaeota species from a recently discovered archaeal superphylum 142 

Asgardarchaeota (Zaremba-Niedzwiedzka et al. 2017) that also found in our samples. Here, we 143 
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highlighted that BASALT can efficiently enhance the assembly and binning processes on metagenomic 144 

sequences, which allows in-depth investigations on the existing dataset by increasing overall and 145 

individual MAG quality. By acquiring more high-qualitied MAGs, we could potentially unfold much 146 

more knowledges on known or unknown microbial taxa, potential functions and host-microbial 147 

interactions, which further expand the tree of life. 148 

 149 

Results 150 

Environment, pipeline and availability 151 

BASALT is command line software based on Python scripts with a series of modules, each containing 152 

one or more algorithms/programs addressing data processing or analysis. Overall, BASALT is an 153 

automated program running with one command line, while a few checkpoints are set in each module 154 

to accommodate users to customize their preference to start at any checkpoint as needed. Further details 155 

of outlines and algorithms are available at (https://github.com/EMBL-PKU/BASALT). 156 

 157 

BASALT workflow. 158 

BASALT is a versatile toolkit that provides comprehensive pipeline from mapping, automated binning 159 

to post-binning refinement that enable users to retrieve non-redundant and high-qualitied MAGs from 160 

metagenome samples. Overall, BASALT contains four major modules including Automated Binning, 161 

Bin Dereplication, Bin Refinement and Reassembly, where five core algorithms were implemented in 162 

these modules including Core Contigs Identification, Bin depth normalization, Outlier Removal, 163 

Contigs Retrieval and Restrained Overlap-Layout-Consensus (rOLC, Figure 1). As BASALT enables 164 

multiple assembly or co-assembly datasets from short-read sequences (next-generation sequencing, 165 

NGS) or long-read sequences (third-generation sequencing, TGS) as input files, it is expected that a 166 

potential increase of reads utilization is available (Stewart et al. 2018). By importing multiple 167 
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sequences with coverage information, BASALT conducted automated binning using prominent tools 168 

such as MetaBAT2, Maxbin2 and CONCOCT (Alneberg et al. 2013, Wu et al. 2016, Kang et al. 2019) 169 

that generated hybrid bin-sets. Raw hybrid bin-sets were firstly filtered with a homebrew Bin 170 

Dereplication module to remove replicated bins obtained from the same assembly. The non-redundant 171 

bins of each assembly were then merged and categorized into different groups at a customized average 172 

nucleotide identity (ANI) cutoff. Each group of bins were further filtered by the homebrew algorithm 173 

which classifies core contigs that further enables identification of redundant bins before selecting into 174 

a single, hybrid bin-set obtained from all samples. The selected bin-set was further filtered using a 175 

critical Outlier Removal algorithm, which integrated coverage and tetranucleotide frequency (TNF) to 176 

remove outliers by using an interquartile ranges (IQR) method with multiple thresholds. Next, 177 

sequences from assembly files were retrieved by connecting with existing contigs in the OR-filtered 178 

bins to create an expanded sequences pool with potential connected contigs, while BASALT compared 179 

and selected the refined bins with higher quality value. Further, a restrained Overlap-Layout-180 

Consensus (rOLC) step was conducted to overlap the replicated bins obtained from different 181 

assemblies into OLC-merged bins, followed by the reassembly step to generate the finalized bin-set. 182 

Notably, the sequence retrieval and reassembly step allowed utilization of long-read sequences 183 

obtained from TGS to complement gaps and join overlapped regions on the bins to increase 184 

completeness and reduce contamination. 185 
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  186 

Figure 1. BASALT workflow for assembly, binning and refinement of metagenomic sequencing data (blocks 187 

in green). BASALT contains four major modules (blocks in blue) including Automated Binning, Bin 188 

Dereplication, Bin Refinement and Reassembly, where five core algorithms (blocks in yellow) were 189 

implemented in these modules including Core Contigs Identification, Bin depth normalization, Outlier Removal, 190 

Contigs Retrieval and Restrained Overlap-Layout-Consensus (rOLC). In addition to core workflow, assembly 191 

and binning tools (blocks in orange) were also flexibly embedded in BASALT. 192 

 193 

BASALT improves recognition of non-redundant bins. 194 

BASALT pipeline enables multiple input files for assembly, including long-reads files for hybrid 195 

assembly. The advantage of input with multiple files is not limited to the reduction of computational 196 

time but could also generate more bins than individual assembled samples. For example, binning using 197 

multiplexed samples generated 16.3%, 14.2% and 11.1% more non-redundant MAGs when using DAS 198 

Tool (MCM), VAMB and metaWRAP (MCM), respectively on CAMI-medium dataset (Table S1, 199 

Figure S2), while the increasing rate on CAMI-high dataset were 8.2%, 11.0% and 9.0%, respectively 200 

(Table S1, Figure 2A). Despite the advantage above, a major drawback using multiplexed samples was 201 

the byproducts of replicated bins, which were considered as redundant or pseudo- genomes. To address 202 
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this issue, BASALT pipeline accommodates a Bin Dereplication module with homebrew algorithms 203 

which can remove redundant bins generated from the multiplexed assemblies as well as hybrid bin-204 

merging from automated binning, resulting in optimized, non-redundant bin-sets (Figure 1). 205 

Comparing with standard CAMI-medium and -high genomes, DAS Tool, VAMB and metaWRAP 206 

generated 85.9%, 77.1%, 95.0% (CAMI-medium) and 84.8%, 52.3%, 72.7% (CAMI-high) redundant 207 

MAGs, respectively (Figure 2A, Figure S2), while no redundancy was observed in BASALT MAGs, 208 

suggesting high redundancy rate were existed using the first three binning tools/toolkits. Remarkably, 209 

BASALT Bin Dereplication, Refinement and Reassembly modules can not only eliminate redundant 210 

MAGs generated from DAS Tool, VAMB and metaWRAP pipelines, but also increase the overall 211 

quality of non-redundant MAGs (Co-assembled data refined with BASALT, CAB, Figure 2A), 212 

suggesting good efficiently of redundancy removal and quality improvement using BASALT from co-213 

assembled bins. 214 

 215 
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Figure 2. Comparison of BASALT with other binning tools/pipelines on CAMI-high dataset. A) Number of 216 

MAGs recovered from CAMI-high dataset using DASTool (MaxBin2, CONCOCT and MetaBAT2, MCM), 217 

VAMB, metaWRAP (MCM) and BASALT. In the first three tools, Co-assembly (CA) resulted in higher number 218 

of non-redundant MAGs compare to single assembly (SA) approach, while BASALT refinement module (Co-219 

assembly refined with BASALT, CAB) removed redundant MAGs and generated higher quality of MAGs in 220 

the co-assembly approach. Color of bars indicated the quality of MAGs (50-100, from light to dark). B) Venn 221 

diagram showing number of MAGs recovered using different tools. There were 128 MAGs found shared across 222 

all tools, while 4, 4, 7 and 30 MAGs were uniquely recovered using DAS Tool (green), VAMB (purple), 223 

metaWRAP (cyan) and BASALT (red) pipelines, respectively. C) Completeness, contamination and quality of 224 

128 shared MAGs recovered using DAS Tool (DAS, green), VAMB (purple), metaWRAP (MWP, cyan) and 225 

BASALT (BST, red). MAGs recovered using BASALT had lower contamination rate compared to DAS Tool 226 

and metaWRAP, and higher completeness and quality compared to all other tools. D) Pairwise comparison of 227 

MAGs shared by corresponding pairs of tools. Overall, BASALT was superior in obtaining higher qualitied 228 

MAGs compared to other tools. The number of MAGs that BASALT gained higher quality value (bars in light 229 

green) was much more than the number of MAGs that other tools gained higher quality value (bars in light red) 230 

or had similar quality value (difference of value ≤ 1, bars in light blue). 231 

 232 

BASALT generates higher number and qualitied MAGs in synthetic microbial communities. 233 

The BASALT refinement module not only removes redundant bins generated in other pipelines, but 234 

also improves the quality and number of MAGs. In comparison of MAGs (Quality score ≥ 50) obtained 235 

via different toolkits, BASALT resulted in 27.1%, 7.0%, 1.7% (CAMI-medium) and 50.9%, 50%, 11.7% 236 

(CAMI-high) more non-redundant MAGs than DAS Tool, VAMB and metaWRAP, respectively 237 

(Figure 2A, Figure S2, Table S1). Moreover, in top-qualitied CAMI-high MAGs (Quality score ≥ 90), 238 

BASALT obtained 38%, 47.7% and 17.6% more non-redundant MAGs than DAS Tool, VAMB and 239 

metaWRAP, respectively (Figure 2A). This result suggested BASALT is more robust retrieving high-240 

qualitied and non-redundant MAGs from metagenome samples, especially on those samples with 241 

higher complexity. 242 

To individually evaluate the BASALT refinement module, a further refinement step was performed on 243 

CAMI-high datasets processed with DAS Tool, VAMB and metaWRAP. Although less MAGs were 244 
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recovered compare to the result using comprehensive BASALT pipeline, 3.7%, 2.4% and 7.0% more 245 

MAGs (Quality score ≥ 80) were retrieved, respectively, compared to the default approaches of other 246 

toolkits (Table S1, Figure 2A). This result suggested that BASALT can also optimize number and 247 

quality of MAGs even based on the datasets processed with other pipelines. 248 

Comparing MAGs recovered from the abovementioned toolkits with reference genomes in CAMI-249 

high dataset, 128 MAGs were found universally presented across all pipelines, while 4, 4, 7 and 30 250 

MAGs were uniquely recovered using DAS Tool, VAMB, metaWRAP and BASALT pipelines, 251 

respectively (Figure 2B). In comparison of the 128 shared MAGs in their completeness, contamination 252 

and quality score (completeness – 5*contamination) across different toolkits, BASALT has the overall 253 

advantages in acquiring high-quality and low contamination MAGs in comparison with others (Figure 254 

2C). Further, we performed pairwise comparison between BASALT and the other tools of shared 255 

MAGs and calculated delta value (difference of MAG quality between two tools) on the same genome. 256 

The delta value showed BASALT could retrieve 10, 3.1 and 6.8 times of high-quality MAGs compared 257 

to DAS Tool, VAMB and metaWRAP, respectively (Figure 2D), indicating that BASALT can 258 

substantially obtain better quality of MAGs comparing with other tools. In summary, BASALT can 259 

retrieve a greater number of non-redundant MAGs from medium-high complexed samples with higher 260 

qualities. 261 

 262 

BASALT efficiently retrieves genomes from high complexity samples. 263 

We performed four metagenome samples from Aiding Lake sediments using both BASALT to evaluate 264 

the capacity of BASALT on improving genome qualities recovered from complexed environmental 265 

samples. Using BASALT, assembled bins were quality-checked with CheckM (Parks et al. 2015), 266 

resulting in 426 non-redundant MAGs (completeness – 5*contamination ≥ 50, mean completeness = 267 

79%, mean contamination = 1.7%, mean quality value = 70.4), including 113 MAGs above high-268 
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quality level (quality ≥ 80). As a majority of metagenomic sequences could not be utilized to recover 269 

high-qualitied genomes (Nayfach et al. 2016, Nayfach et al. 2020), we estimated the efficiency of 270 

sequences utilized in the lake sediment samples, resulting in 26.9% of reads mapped to the MAGs, 271 

which largely improved the utilization rate of metagenomic sequences in recovered MAGs compared 272 

to other samples with high complexity (Howe et al. 2014). 273 

In reference to Genome Taxonomy Database (GTDB, Parks et al. 2018), all 426 MAGs from BASALT 274 

pipelines were annotated spanning 39 bacterial and 8 archaeal phyla. MAGs classified into bacterial 275 

phyla were mainly focused in Patescibacteria, Chloroflexota, Verrucomicrobiota, Bacterioidota, 276 

Proteobacteria and Desulfobacterota, while MAGs classified into archaeal phyla were Halobacteriota, 277 

Thermoplasmatota, Asgardarchaeota, Thermoproteota, Iainarchaeota and Micrarchaeota in archaeal 278 

domain (Figure 3A), representing a unique characteristic of microbial communities in the Salt Lake 279 

sediment. Among these 426 MAGs, 98.9% bacterial MAGs and 100% archaeal MAGs could not be 280 

assigned to any known species from GTDB (ANI < 95%). At genus level, 57.6% bacterial MAGs and 281 

66.7% archaeal MAGs could not be assigned to any known genus from GTDB. This result suggested 282 

that there was a large repository of genetic pool to be uncovered in Salt Lake sediments. 283 

To further validate the MAGs recovered from Aiding Lake sediments, we compared these assembled 284 

genomes with another study by Vavourakis et al. (2018) where samples were collected from several 285 

soda lakes in the Kulunda Steppe (south-western Siberia, Altai, Russia). Generally, the two datasets 286 

shared a vast majority of phyla (Figure 3A), indicating that despite the different geographical location, 287 

bacterial assemblages of the Salt Lakes might be similar. Specifically, diverse bacterial taxa from 288 

phylum Patescibacteria were observed in our study, which paralleled with the study by Vavourakis et 289 

al. (2018). On the other hand, in the unique of phyla observed in two datasets, Acidobacteriota, 290 

Nitrospirota, Zixibacteria, WOR-3 and KSB31 were only present in this study (Figure 3A). In archaeal 291 

communities, MAGs from phyla Halobacteriota, Thermophasmatota, Iainarchaeota and 292 

Nanoarchaeota were observed in both datasets, while phyla Methanobacteriota and PWEA01 were 293 
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only present in Vavourakis et al. (2018) and phyla/superphyla Asgardarchaeota, Thermoproteota, 294 

Micrarchaeota and Aenigmatarchaeota were only present in our study (Figure 3B). In the shared phyla, 295 

a large number of MAGs from phylum Nanoarchaeota found, but only one MAG from phylum 296 

Halobacteriota observed in this study, while a large community of Halobacteriota was observed in 297 

Vavourakis et al. (2018). The difference of the two datasets might be due to the physiochemical 298 

parameters between two contrasting sites of lakes (Sorokin et al. 2014), but such differences could also 299 

be related to the different strategies of assembly, as well as binning pipelines. 300 

 301 

Figure 3. Phylogenetic trees of A) bacterial MAGs from Vavourakis et al. (2018) and this study, B) archaeal 302 

MAGs from Vavourakis et al. (2018) and this study, and C) Maximum-likelihood tree of Asgardarchaeotal 303 

MAGs based on protein encoded genes from the whole genome. The unrooted phylogenetic trees in A) and B) 304 

were constructed with Fasttree, while the Maximum-likelihood tree in C) was constructed with PHYML and re-305 

rooted with superphylum TACK. The two Lokiarchaeota MAGs found in this study were highlighted with red 306 

in C), and all genomes used to create trees that not obtained from this study were listed in Table S2. 307 

 308 

Newly discovered Lokiarchaeota species from a deep-inland non-marine hypersaline lake. 309 

Using four metagenome samples, BASALT pipeline expanded 421 of known species on prokaryotic 310 
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phylogenetic tree with samples from one Salt Lake. Remarkably, two MAGs classified as 311 

Lokiarchaeota belongs to the superphylum Asgardarchaeota, were also observed in our results. 312 

Although previous study has reported Asgardarchaeota phyla found in hypersaline lakes (Bulzu et al. 313 

2019), to the best of our knowledge, this is the first time that archaeal phylum Lokiarchaeota was found 314 

from the deep inland non-marine samples. Comparing with other MAGs/isolates obtained in previous 315 

studies, the two MAGs found in our study were grouped with Loki-2 MAGs/isolates (Figure 3C), next 316 

to Ca. Prometheoarchaeum syntrophicum, a strain isolated from a deep-sea sediment sample at Nankai 317 

Trough, Japan (Imachi et al. 2020). Interestingly, other Loki-2 MAGs were found globally, including 318 

Bin_342 from Shark Bay, Australia (Wong et al. 2020) and B53_G9 from Guaymas Basin, US (Seitz 319 

et al. 2019), suggesting that Loki-2 species were widely distributed not only in marine sediments but 320 

also in the deep-inland terrestrial environment. 321 

 322 

Discussion 323 

BASALT is superior in quality and number of MAGs on low (132 genomes) to medium (596 genomes) 324 

complexity samples. In regards of MAG quality assessment, CheckM (Parks et al. 2015) is widely 325 

used in a vast majority of studies. However, in the presence of standard CAMI datasets, we calculated 326 

the MAG quality against the corresponding genomes that can result in more accurate evaluations. 327 

Notably, our dereplication module implemented in the integration step can efficiently remove 328 

redundant bins that generated in co-assembly and bin selection steps, which was evidenced in the test 329 

analysis using both CAMI-medium and CAMI-high datasets (Figure 2A). Although there are other 330 

redundancy removal methods such as dRep (Olm et al. 2017), result suggested that redundant genomes 331 

cannot be efficiently identified and removed using dRep on CAMI-medium or CAMI-high datasets 332 

(Table S1), suggesting that BASALT Bin Dereplication gains more advantages in removing redundant 333 

bins under higher complexed samples. Due to the scarcity of standard synthesized community with 334 
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high complexity to date, further works testing the efficiency of Bin Dereplication module on the 335 

standardized samples with high complexity are needed. 336 

BASALT-integrated Bin Dereplication module can efficiently remove redundant bins generated by 337 

binning tools. However, due to the major impediments of short-fragmented technology of next-338 

generation sequencing (NGS) and post sequencing algorithm, recovered MAGs cannot specify 339 

differences of genomes at strain level with high similarity. While long read sequencing such as ONT 340 

has become more popular in the current metagenomic studies (Jain et al. 2016), high error rates still 341 

required to be rectified by NGS. In this study, third-generation sequences were innovatively integrated 342 

into our toolkit where long reads can be used to amend sequences and fill gaps on assembled genomes, 343 

which can improve the overall quality of bins and increase the number of high-qualitied MAGs. 344 

Although standard dataset with high complexity is currently not available in the database, our case 345 

study revealed that Salt Lake sediments can be considered as samples with relatively high complexity 346 

(6,993 ZOTUs from 16S rRNA gene amplicons), which was comparable with other studies on soil 347 

samples regardless the primer selection (Fulthorpe et al. 2008, Xiong et al. 2021). In the context of 348 

high complexed samples of Salt Lake sediments, BASALT could also efficiently conduct reads 349 

utilization in metagenomic binning with 26.9% mapped sequences, which to some extent helped to 350 

resolve the difficulty raised in the EMP project (Nayfach et al. 2020). Prospectively, the trend in the 351 

development of third-generation sequencing has inspired that further exploitation of long-read 352 

sequences can increase the resolution of MAGs at strain or single nucleotide polymorphism (SNP), 353 

which may boost the outcome of recovered genomes in high complexity samples. Therefore, future 354 

development should focus on the combination of NGS and TGS to improve the efficiency of binning, 355 

which consequently expand our knowledge on the tree of life. 356 

In addition to the BASALT toolkits introduced in this study, one major finding in the case study was 357 

the discovery of two novel Lokiarchaeota genomes from the sediment samples of Aiding Lake. 358 

Lokiarchaeota belongs to a recently discovered superphylum Asgardarchaeota, which is a hot topic 359 
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linked to the origin of eukaryotes (Spang et al. 2018). To date, candidate species of Lokiarchaeota were 360 

universally found near deep sea hydrothermal vents and marine sediments (Spang et al. 2015, Spang 361 

et al. 2018, Hoshino et al. 2020, Wong et al. 2020, Yin et al. 2020). A recent study has found candidate 362 

Lokiarchaeota present in hypersaline lakes near Black Sea (Bulzu et al. 2019), whereas our study 363 

highlighted the first time that Loki-2 species were found from deep-inland hypersaline lake sediments. 364 

Given the genetic analysis on Lokiarchaeota along with other candidate Asgardarchaeota species 365 

(Zaremba-Niedzwiedzka et al. 2017, Seitz et al. 2019, Imachi et al. 2020, Wong et al. 2020, Yin et al. 366 

2020) have suggested that candidate Lokiarchaeota species were adaptive in marine environment with 367 

distinct metabolic pathway, such as lignin or protein degradations. Thus, it was unlikely that candidate 368 

Loki-2 species were newly emerged in the deep-inland hypersaline lake. Therefore, the discovery in 369 

this study might have provided a landmark that candidate Lokiarchaeota species might exist in the 370 

ancient age before the plate movement event occurred. However, insufficient MAGs/isolates revealed 371 

to date hampered us to make rigid conclusions, that more investigation on this group of archaea is 372 

critically required in the future studies. 373 

 374 

Methods  375 

Overview of BASALT 376 

BASALT is a versatile toolkit that recovers, compares and optimizes MAGs across a series of 377 

assemblies assembled from short-read, long-read or hybrid strategies. We established five homebrew 378 

algorithms to carry out Core Contigs Identification (CCI), Bin Depth Normalization, Outlier Removal 379 

(OR), Contigs Retrieval, and restrained overlap-layout-consensus (rOLC). These algorithms consist 380 

three core modules of BASALT, such as Bin Dereplication, Bin Refinement and Bin Reassembly 381 

modules. Besides, BASALT contains an autobinning module that uses mapping tools (e.g. bowtie2, 382 

Langdon 2015) and binners (e.g. MetaBAT2, Maxbin2, and CONCOCT) to generate a raw hybrid bin-383 
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set after input of assemblies (Figure 1).  384 

 385 

Dereplication of redundant bins 386 

Incompleteness and contamination of MAGs would hinder the dereplication of bins from the hybrid 387 

bin-set. We developed an effectively strategy that can remove most of the potential contaminated 388 

sequences while large number of sequences are still kept to carrying out precise redundancy 389 

identification. Different from previously reported genome-wide ANI-based and marker gene- based 390 

de-replicating methods such as dRep (Olm et al. 2017), the present method firstly generated a core 391 

contig pool by filtering out potentially contaminated contigs of target bins. The depth and 392 

tetranucleotide frequency (TNF) value of the selected contigs ranked from a range of 25 to 75 393 

percentile of all the contigs of target bins. Then, selected bins were grouped into different raw bin-sets 394 

based on overall similarity of core contigs. Secondly, we evaluated the sequencing depth discrepancy 395 

among bins across different bin-sets to ensure the correct identification of redundant bins with relative 396 

low similarity. The average depth of one bin should be equivalent to the average depth of the core 397 

contigs of this bin. For neutralizing the sequencing depth discrepancy yielded by mapping the same 398 

reads to different assemblies, we designed a method to calculate the normalization ratio between two 399 

possibly redundant bins, which identifies near-identical sequences (99.8% similarity across longer than 400 

50% of the whole length of sequence) between two potential redundant bins as candidate bins. A depth 401 

normalization ratio between candidate bins was then calculated by using the depth of these contigs, 402 

which was then used to neutralize the average depth of candidate bins. Those candidate bins with 403 

similar average sequencing depth (delta ≤ 10%) were considered as redundant bins to be removed. 404 

Finally, the bin with better quality value (completeness – 5* contamination) estimated by CheckM 405 

(Parks et al. 2015) was kept being the better bin for further refinement and reassembly. 406 

  407 
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Refinement 408 

BASALT refinement module contains two adversary processes: Outlier Removal (OR) and Contig 409 

Retrieval. To effectively remove contaminated contigs from a certain bin, we designed an outlier 410 

removal algorithm that removes contigs with an outlier value of sequencing depth or TNF based on an 411 

interquartile range (Formula 1), while different thresholds (k) were set (e.g. 1, 1.5, 3) to determine 412 

these contigs. In the context of bin quality, OR keeps bins with higher quality value, while bins with 413 

lower quality were discarded. If no refined bin with higher quality than the original bin was generated, 414 

OR would acquiescently eliminate sequences marked as depth or TNF outliers under the threshold of 415 

3. Notably, the default setting of OR mainly removes contaminated sequences, but it may cause an 416 

unnecessary removal of contigs due to restricted threshold.  417 

Formula 1: 418 

𝑥𝑥𝑖𝑖 > 𝑄𝑄3 + 𝑘𝑘(𝐼𝐼𝑄𝑄𝐼𝐼) ⋁ 𝑥𝑥𝑖𝑖 <  𝑄𝑄1 −  𝑘𝑘(𝐼𝐼𝑄𝑄𝐼𝐼) 419 

In this formula, Q1 and Q3 stands for 25 and 75 percentiles of all contigs, where IQR (interquartile 420 

ranges) was calculated by Q3 – Q1. k ≥ 0. 421 

Contig Retrieval algorithm was designed to retrieve sequences that have not been clustered into the 422 

target bin in the binning process, especially multicopy sequences or unnecessarily removed sequences 423 

by Outlier Removal. Contig Retrieval identifies contigs that potentially connected to existing 424 

sequences in the target bin. These candidate contigs were further assessed by an interquartile range 425 

method to remove depth or TNF outliers as described above and connected to the target bin by paired-426 

end tracking (Albertsen et al. 2013) or long-read mapped method, forming a refined bin. Refined bins 427 

were expected to have higher quality value than target bins which were further selected to form a 428 

refined bin-set for further reassembly. 429 

 430 

 431 
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Reassembly 432 

BASALT reassembly module includes a restrained overlap-layout-consensus (rOLC) process and a 433 

reassembly process. The rOLC algorithm was designed to retrieve sequence which was not included 434 

in the BASALT binning and refinement processes. Specifically, this process re-utilized sequences from 435 

redundant bins identified and removed from the dereplication module to overlap the sequences from 436 

the target bin. Using a loose threshold (overlap length: 300 bp; similarity: 99%), rOLC algorithm 437 

aggressively recorded the redundant candidate sequences removed from the target bin in the previous 438 

steps. As rOLC process may increase the contamination of sequences, a reassembly step was 439 

implemented after rOLC to amend the contamination caused by rOLC, and more importantly, to 440 

precisely elongate the length of sequences in the target bin. In the reassembly process, short-read or 441 

long-read sequences were extracted from datasets by Bowtie2 and Minimap2, respectively (Langdon 442 

2015, Li 2018). Three state-of-art assemblers were implemented in the reassembly step: SPAdes, FLYe, 443 

and Unicycler (Bankevich et al. 2012, Wick et al. 2017, Kolmogorov et al. 2019) to carry out short-444 

read reassembly, long-read reassembly and hybrid reassembly, respectively. A final bin selecting 445 

process was exploited to select the best bins from the reassembly step to form the final bins for post-446 

binning analysis. 447 

 448 

Sample collection 449 

Salt Lake sediment samples were collected in July 2018 from Aiding Lake, an arid region in Turpan 450 

City, Xinjiang Uygur Autonomous Region (42°52′9″ N, 89°03′5″ E). Briefly, about 50 grams of 451 

sediment samples (n = 4) were randomly collected at 0-10 cm depth in the lake into sterile 50 ml falcon 452 

tubes. Samples were immediately placed on dry ice before brought to laboratory and transferred to -453 

80 °C freezer until further DNA extraction was performed. 454 

 455 
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DNA extraction and sequencing 456 

Frozen stored sediment samples (~250 mg dry weight per sample) was used to extract genomic DNA 457 

using DNeasy PowerSoil Kit (Qiagen, Hilden, Germany), following the manufacturer’s instructions. 458 

Extracted DNA was quality checked by NanoDrop 2000 (Thermo Fisher Scientific, Waltham, 459 

Massachusetts, US), quantity checked by Qubit Fluorometer (Thermo Fisher Scientific) and PCR 460 

checked to confirm the amplifiability. 461 

For 16S rRNA gene amplicon sequencing, barcode as a marker for each sample DNA was added at the 462 

5’ end of primers targeting V4 region for bacterial and archaeal communities (515F-806R, Caporaso 463 

et al. 2012). Sequencing was performed at MAGIGENE, Guangzhou, China on an Illumina NovaSeq 464 

6000 platform (2 × 250 bp paired end chemistry). 465 

For shotgun metagenomics sequencing, quantity and quality checked genomic DNA was sent to 466 

Novegene Co., Ltd, Nanjing, China on an Illumina NovaSeq (2 × 150 bp paired end chemistry). 467 

 468 

Sequencing processing 469 

To evaluate the efficiency of BASALT, standard Critical Assessment of Metagenome Interpretation 470 

(CAMI) datasets including a simple-complexity (132 genomes, CAMI-medium) and a medium-471 

complexity (596 genomes, CAMI-high) synthesized communities were downloaded from 472 

(https://data.cami-challenge.org/participate) (Sczyrba et al. 2017). Raw paired-end reads were initially 473 

filtered using fastp (Chen et al. 2018). Fifty percent of bases were filtered based on a minimum quality 474 

score of 5 and sequence length of 150 bp, allowing no ambiguous bases. Clean reads were individually 475 

and co-assembled using SPAdes (version3.14.1, Bankevich et al. 2012) into contigs specifying k-mer 476 

sizes of 21, 33, 55, 77 and finally reserved contigs > 1,000 bps. To compare with other binners/toolkits, 477 

filtered contigs were processed with DASTool, VAMB, metaWRAP and BASALT, respectively. The 478 

redundancy, completeness and contamination of the MAGs were calculated against standard CAMI 479 
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datasets using a homebrew script Bin_quality_evaluation.py available on github 480 

(https://github.com/EMBL-PKU/BASALT) to ensure high accuracy of results obtained from the four 481 

binners/toolkits. High-quality MAGs (completeness - 5*contamination ≥ 50%) were kept for further 482 

statistical analysis, whereas bins did not meet the quality were discarded. 483 

For Aiding Lake sediment samples, raw 16S rRNA gene amplicon sequences were processed using 484 

Quantitative Insights Into Microbial Ecology (QIIME2) pipeline (http://qiime.org) (Caporaso et al. 485 

2010). DADA2 was used to filter low-quality sequences with lengths < 230 bp, remove chimeric 486 

sequences, singletons, and join the quality-filtered paired-end reads. Unique sequences (100% 487 

similarity) were taxonomically assigned using Naive Bayes classifier against the SILVA 16S rRNA 488 

gene reference alignment database (release 123) (Pruesse et al. 2007). To compare the complexity of 489 

Salt Lake sediment samples with other high-complexed samples such as soil, sequences were rarefied 490 

to an even sampling depth at 10,000 reads per sample, before singleton was removed from the 491 

generated OTU table. Overall, a total number of 6,993 ZOTUs (Zero-radius OTUs) were obtained. 492 

For shotgun metagenomic sequences of Aiding Lake sediment samples, sequences were processed 493 

following the same procedure on CAMI-medium and CAMI-high datasets using BASALT. The 494 

completeness and contamination of the MAGs were then estimated using CheckM version 1.1.3 (Parks 495 

et al. 2015) with lineage-specific marker genes and default parameters, with only high-quality MAGs 496 

(completeness - 5*contamination ≥ 50%) were kept for further analyses. 497 

 498 

Phylogenetic analysis 499 

The GTDB-Tk version (version1.4.1, Chaumeil et al. 2020) program was used to assign taxonomic 500 

classifications to the MAGs (release r95). To make comparison with another study of soda lake samples 501 

(Vavourakis et al. 2018), dereplicated MAGs were downloaded from NCBI Assembly database and 502 

phylogenetic analyses were conducted based on MAGs from both studies using Fasttree (Price et al. 503 
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2010). For phylogenetic analysis of Asgardarchaeota, MAGs/isolates were downloaded from other 504 

studies listed in Table S2, and Maximum-likelihood tree was constructed using PHYML version 3.0 505 

(Guindon et al. 2010) with 1000 bootstrap iterations. Phylogenetic trees were visualized and edited in 506 

the iTOL (https://itol.embl.de) online platform (Letunic and Bork 2019). 507 

 508 

Code availability 509 

All BASALT codes including homebrew scripts for quality checking against standard datasets are 510 

available at (https://github.com/EMBL-PKU/BASALT). 511 

 512 
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