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Abstract 
 
Despite the frequency of mood disorders in the population our understanding of neuronal 
markers of mood remains elusive which stalls the development of targeted brain-based 
treatments for these problems.  
Computational models can help identifying likely parameters affecting self-reported mood 
during mood induction tasks. Here we test if our previously proposed computational model 
dynamics of self-reported mood during monetary gambling can be used to identify trial-by-trial 
variations in neuronal activity. To this end we shifted mood in healthy (N=24) and depressed 
(N=30) adolescents by delivering individually tailored reward prediction errors whilst recording 
magnetoencephalography (MEG) data. Following a pre-registered analysis we hypothesize that 
expectation (defined by previous reward outcomes) would be predictive of beta-gamma 
oscillatory power (25-40Hz), a frequency shown to modulate to reward feedback. We also 
hypothesize that trial variations in the evoked response to the presentation of gambling options 
and in source localized responses to reward feedback. Through our multilevel statistical analysis 
we found confirmatory evidence that beta-gamma power is positively related to reward 
expectation during mood shifts, with possible localized sources in the posterior cingulate 
cortex. We also confirmed reward prediction error to be predictive of trial-level variations in 
the response of the paracentral lobule and expectation to have an effect on the cerebellum 
after presentation of gambling options. To our knowledge, this is the first study to relate 
fluctuations in mood on a minute time-scale to variations in neural oscillations with non-
invasive electrophysiology.   
 
Significance Statement  
 
Brain mechanisms underlying mood and its relationship with changes in reward contingencies 
in the environment are still elusive but could have a strong impact on our understanding and 
treatment of debilitating mood disorders. Building on a previously proposed computational 
mood model we use multilevel statistical models to find relationship between trial-by-trial 
variations in model components of mood and neural responses to rewards measured with non-
invasive electrophysiology (MEG). Through confirmatory analysis we show that it is possible to 
observe relationships between trial variations in neural responses and computational 
parameters describing mood dynamics. Identifying the dynamics of mood and the neural 
processes it affects could pave the way for more effective neuromodulation treatments. 
 
 
 
Introduction  
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Humans report on their moods in their everyday conversations and subjective mood reports 
form the basis of clinical assessment and much of research in affective neuroscience. Advances 
in computational modeling lend support to the idea that mood is intricately linked with reward 
processing and that it serves to integrates over a person’s history of rewards and punishers 
(Keren et al., 2020; Nettle and Bateson, 2012; Rutledge et al., 2014). Yet, despite its ubiquity 
and importance, the brain mechanisms underlying mood and its relationship with changes in 
reward contingencies in the environment are surprisingly understudied. Here, we use 
magnetoencephalography (MEG) to understand the temporal course and coordinated neural 
activity that characterize mood responses to changes in reward with a pre-registration 
approach to ensure reproducibility of results. 
 
The temporal resolution of MEG offers the opportunity to describe the temporal structure—
including very early responses—to changes in environmental incentives that influence mood. 
Furthermore, it can offer insights to important questions about the relationship between timing 
of change in the environment and mood response, such as the different roles of expectation 
and reward feedback on mood changes during development, especially during adolescence 
when mood is highly dynamic (Klimstra et al., 2016), and in the genesis and remission of mood 
disorders. This is important for a better understanding of mood itself and can inform the timing 
of potential interventions (such as through transcranial magnetic stimulation) that aim to 
modify it for clinical purposes (Tremblay et al., 2019; Zrenner et al., 2020). 
 
Moreover, mood is understood to integrate over events in the environment and is a potentially 
emergent property of the coordinated activity of many neural populations. Such activity is 
thought to manifest as the synchrony of oscillations which supports functional connections and 
communication in the brain. In this context, it is noteworthy that oscillatory power is correlated 
with treatment-induced changes that have been described to occur in mood disorders 
(Fingelkurts and Fingelkurts, 2015; Kaiser et al., 2015; Nugent et al., 2019a, 2019b). Therefore, 
understanding the role of oscillations in the interplay between mood and environmental 
incentives is key and MEG offers a great opportunity to do so non-invasively.   
 
Importantly, our study uses a pre-registered approach alongside a traditional hypothesis-testing 
approach to try to answer whether we can see neural correlates of mood in neuronal 
oscillations and stimulus evoked responses. This is to do justice to major recent concerns about 
false positive results in neuroscience in general, but also specifically for results derived from 
methods with a potentially vast range of features and therefore statistical testing space, as is 
common in electrophysiology. 
 
In the exploratory analysis of (n= 14, age 16.22 years, described in supplementary materials), 
we collected MEG data with a monetary gambling task developed by (Keren et al., 2020) to 
parametrically shift mood by manipulating reward prediction errors (RPEs) and tested with a 
linear mixed effect model whether brain oscillations and trial-level changes in evoked responses 
would show a relationship with mood or its model components. 
 
This approach allowed us to build and pre-register the following hypotheses which we test in 
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the paper (pre-registered analysis available at https://osf.io/djw8h, more detail background on 
the hypotheses formation is available in the supplementary material): 
 
1. We hypothesize that beta-gamma oscillatory power (25-40Hz) measured by MEG in the time 
interval preceding mood rating will be positively correlated with reward expectation term 
derived from the primacy mood model, with a source space cluster covering the frontal 
superior and medial cortex and the ACC.  
 
2. RPE and self-reported mood will be correlated with the variability in the evoked response to 
the gamble outcome (feedback), in right precuneus and paracentral lobule (at ~500ms) for RPE 
and in the right insular cortex (at ~400ms after feedback presentation) for mood.  
 
3. The reward expectation term from the primacy mood model will be predictive of the signal in 
posterior MEG sensors during the period 250-400ms after presentation of gambling options.  
 
While previous studies have looked at influence of mood on trial-averaged responses (Paul and 
Pourtois, 2017), to our knowledge this is the first study to relate the temporal dynamics of 
mood to trial level variations in evoked responses and oscillatory power with non-invasive 
electrophysiology in humans. Characterizing the neural substrates that link mood and reward is 
essential to understanding how disrupted reward processing contributes to mood disorders and 
may be instrumental in predicting symptom trajectory and response to treatment.  
 
 
Materials and Methods 
 
 
Sample 
 
Subjects are adolescent volunteers (age 12 to 19 years) recruited through mail, online 
advertisement and direct referrals from clinical sources. Subjects completed questionnaires and 
an in-person evaluation with a medical practitioner at the NIH clinical center to guarantee their 
suitability to enroll in the study. Both healthy volunteers (not satisfying criteria for any 
diagnosis according to DSM-5) and patients with a primary diagnosis of major depression 
(MDD) or sub-threshold depression were included. The full list of inclusion and exclusion 
criteria is outlined in the supplementary document.  
 
Following in-person screening, MEG data were collected with a 275-channel CTF scanner (272 
working channels, sampling at 1200Hz, 3rd order synthetic gradiometer configuration) and a 
structural MRI (MPRAGE, 1mm isotropic resolution) of the subject’s head was acquired with a 
3T GE MRI scanner (collected within 6 months of the MEG scan), both housed in the NMR suite 
of the NIH clinical center.  
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We collected MEG data from 56 volunteers that passed our inclusion criteria. Of this sample 2 
subjects were excluded from all reported analysis, one due to artifacts during data collection, 
and one from reporting to have misunderstood task instructions when debriefed at the end of 
the scanning session. Of the included 54 subjects (age 16.3 ± 1.8 years, 30 MDDs, 35 females), 
all were included in sensor based analyses, and 51 (age 16.3 ± 1.8 years, 29 MDDs, 33 females) 
were included in our source space analysis (two subjects did not have a structural MRI due to 
laboratory shutdown in March 2020 and one subject had large errors >>5mm in the initial 
localization of the MEG fiducial coils). 14 subjects were initially analyzed as an exploratory 
sample to inform the study hypotheses (as reported in our preregistration available at 
https://osf.io/djw8h), leaving a separate confirmatory sample of 40 subjects for analyses at the 
sensor level and a subsample of 37 subjects at the source level.   
 
 
Task description 

 
Figure 1: Structure of the closed loop gambling task 
 
 
The task consists of three blocks, where in each block a closed-loop mood controller delivers 
reward prediction errors to try to move the participant's mood to a target value (see (Keren et 
al., 2020) for details on the task design). The targets of the controller are to reach the highest 
(first block), lowest (second block), and then highest mood again (third block). Participants 
report their mood on a sliding scale with the words "Unhappy" on the left end and "Happy" on 
the right end of the scale. Within each block 70% of trials are congruent (delivering positive RPE 
in the high mood target blocks and negative RPE in the low mood block) and 30% are 
incongruent (delivering negative RPEs in the high mood target blocks and positive RPEs in the 
low mood block).  
  
Before entering the scanner, participants are instructed on how to perform the task. 
Participants are told that the final amount they win in the task will be converted to a 
proportional amount of money, but they are not aware of the mood manipulation. 
  
Each block consists of 27 trials, for a total of 81 trials. An example of a task trial selecting the 
gambling option is shown in Figure 1. In each trial participants are presented with a certain 
amount (displayed on the left side of the screen) and two possible gambling outcomes (on the 
right side of the screen). The gambling amounts are selected by the closed loop controller 
based on the mood target and the participant’s self-reported mood. Participants are given 3s to 
decide to either gamble or select the fixed outcome, by pressing the right or left button on a 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.04.433969doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.04.433969


fiber optic response pad (FORP). When participants do not make a selection in time, the task 
controller selects the gambling option. 
After choice selection there is a 4s waiting period, then (for the gamble selection) the gamble 
outcome is revealed and remains on the screen for 1s. After each trial there is a 2s inter-trial-
interval time when only a fixation cross is displayed. Every 2 or 3 trials participants are 
prompted to rate their current mood on a horizontal slider. The cursor on the slider can be 
moved continuously by pressing and holding the right and left buttons on the FORP.   
 
At the end of each block participants are given a break from the task while remaining in the 
scanner and can proceed to the next block by pressing a button on the FORP. 
At the end of the MEG scanning session participants are debriefed to ask about their experience 
in the scanner.   
 
 
Mood model 
 
Participants rate their mood with a slider between a value of 0 and 100 (with 0 being the lowest 
and 100 being the highest) every 2 to 3 trials of the gambling task. Reward prediction error and 
expectation are estimated according to the primacy mood model proposed by (Keren et al., 
2020) defining the mood at time 𝑀! as: 
 

𝑀! = 𝑀" + β#η! + β$ρ! + ϵ! 
 
where 𝑀" is the participant’s baseline mood, β#and β$  represent the sensitivity to expectation 
and surprise (prediction error) respectively, and ϵ! is the error term. 
 
Given a trial outcome value 𝐴! the expectation term from the model is calculated as the 
average of all previously received outcomes: 

𝐸! =
1

𝑡 − 1-𝐴%

!&'

%('

 

 
The reward prediction error is then defined as the difference between the outcome and the 
expectation: 

𝑅! = 𝐴! − 𝐸!  

 
Finally the contributions of expectation and RPE to mood at time 𝑡 are defined as: 

η) =
1
𝑡-𝛾!&*𝐸*

!

*('

	,								ρ! =
1
𝑡-γ!&*

!

*('
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The model parameters M", 𝛾, β#  and β+ are derived by fitting the self-reported mood to the 
mood model with python's TensorFlow package as described in (Keren et al., 2020). 
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All trial dependent parameters obtained from the model fit are sampled at every trial, but 
subjects report mood every 2-3 trials during the gambling task. In order to use self-reported 
mood in our linear mixed model to test variability over all trials, mood ratings are interpolated 
with a Piecewise Cubic Hermite Interpolating Polynomial implemented in Matlab. 
 
MEG data 
 
MEG data analysis is performed on the NIH HPC Biowulf cluster (http://hpc.nih.gov) with 
Matlab (The MathWorks, Inc., Natick, Massachusetts, United States) and functions from the 
FieldTrip toolbox ((Oostenveld et al., 2011); http://fieldtriptoolbox.org ). MEG data are initially 
visually inspected and pre-processed with the CTF software: third-order synthetic gradiometer 
configuration is applied; segments with motion exceeding a threshold of 5mm or including 
noticeable artefacts are eliminated; data are bandpass filtered between 0.5 and 300Hz, 
baseline corrected, and a 60Hz notch filter is applied to reduce power line noise. Data are then 
corrected for eye movements and heartbeat artifacts with ICA fastica algorithm (30 
independent components are calculated and a maximum of 4 components, 2 heartbeat and 2 
eye movement ICs, are eliminated for each dataset).  
 
Data Processing  
 
Source data reconstruction is achieved by a beamformer approach and a forward model based 
on Nolte’s spherical approximation (Nolte, 2003; Veen et al., 1997) implemented in FieldTrip 
with subjects’ individual brain MRIs co-registered to the MEG data. Source level activity is 
reconstructed on a 5mm grid based on the MNI brain and warped to individual anatomy. 
Beamformer weights are calculated based on the data covariance over the whole task with a 
covariance regularization equal to 5% of its maximum singular value (a high regularization is 
selected to improve SNR and increase spatial smoothness (Brookes et al., 2008); the effects of 
matrix regularization and forward model selection is explored in supplementary analysis). 
 
Beta-gamma power 
Following our pre-registered hypotheses, we estimate beta-gamma oscillatory power in the 3s 
waiting period preceding mood-rating. MEG signal is first band pass filtered in the frequency 
band of interest (25-40Hz) then, for sensor space analysis oscillatory power is estimated by 
measuring the signal variance in each 3s window. For source space analysis oscillatory power in 
each voxel 𝑖 is estimated as 
 

w,Cw,

w,Σw,
 

 
where w, are the beamformer weights, 𝐶 is the data covariance matrix in the 3s window of 
interest, and Σ the estimated noise covariance matrix. 
 
Evoked responses 
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For the analysis of evoked responses, a low-pass filter of 30Hz is applied following the pre-
processing steps before calculation of the beamformer weights.  
 

- Gamble feedback 
Regions of interest (ROI) are defined by the Automated Anatomical Labelling (AAL) atlas 
available in fieldtrip. The signal from an ROI is estimated from its geometrical centroid. We 
select a time window -200 to 1000 ms with respect to the presentation of the gamble feedback. 
The source data time course is estimated and then downsampled to 300Hz to reduce the 
number of time points to test. 
 

- Gamble option 
We select the average response in the time window of 250 to 400 ms with respect to the 
presentation of the gambling options for the analysis of the evoked responses at both sensor 
and source level. For source space analysis the data time course is first reconstructed at each 
source voxel and then the evoked response for each trial is estimated as the average signal in 
the 250 to 400ms time window.  
 
It is important to note that with beamforming the sign of evoked responses in source space is 
uncertain (i.e. sign may be flipped between participants). For each participant the sign of the 
source signal for an ROI or voxel is estimated by maximizing the correlation over subjects of 
their trial averaged evoked response to the stimulus (gambling option or feedback 
presentation). 
 
 
Statistical models 
We apply linear mixed effects models to estimate the contribution of trial level mood, 
expectation and reward prediction error to response variability in the MEG data. The use of 
linear mixed effect models allows us to analyze data from all participants in a single model 
while accounting for inter-subject differences.  
 
Hypothesis 1:   

The effect of expectation on beta-gamma power is tested for 2 separate predictors 𝐸! 
and η!.  
Our formulation is as follows (here presented for the 𝐸 fixed effect):  
 
𝑆(r) ∼ 𝐸 + (𝐸|𝑠𝑢𝑏𝑗𝑒𝑐𝑡) + 1|𝑡𝑟𝑖𝑎𝑙 + 1|𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔, 
 
where 𝑆(r) indicates the MEG signal at location 𝑟 (either sensor or source voxel).  
𝑆(r)  is a vector with dimension 1 × N- , where N- is the number of mood rating trials 
from all subjects.  
 

Post-hoc analyses: 
The following post-hoc analyses are run with the whole sample of available subjects 
(N=51 at the source level). 
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Mediation analysis 
We hypothesize that beta-gamma power variability over trials is related to reward 
expectation, as defined by the primacy mood prediction model. Expectation, by its 
definition (see equation 1) is a predictor of self-reported mood. In order to test if self-
reported mood is at all directly related to beta-gamma power we run a mediation 
analysis with beta-gamma power as the independent variable, the expectation term as 
the mediator variable and mood as the dependent variable.  
 
Comparison with previous fMRI results 
 
Keren et al. previously published results using the same gambling task and primacy 
mood model with fMRI data. They reported a significant cluster of BOLD activation in 
the ACC correlating with the subject specific expectation weight, β#  (see equation 1). 
Following our hypothesis that trial variations in beta-gamma power are related to 
reward expectation we then test if the subject average beta-gamma power is correlated 
to β#  in an analogous analysis to (Keren et al., 2020). For this analysis the average beta-
gamma power is calculated at the voxel level by averaging the previously estimated 
MEG power in the 3s pre mood rating period over all available trials for each subject.  
A Pearson correlation between subject average beta-gamma power and β#  is then run 
and significant clusters are calculated. Null distributions are obtained by calculating 
maximum TFCE value in random permutations (N=5000).  
The significant cluster from Keren et al. is then compared to the MEG cluster in MNI 
space to check for congruent cross-modality results.  

 
 
Hypothesis 2:  

In order to test the effect of mood and RPE on the evoked response following gambling 
feedback we run models independently for 3 separate fixed effects: self-reported mood, 
trial RPE as defined in the primacy model (R)) and the primacy weighted RPE term (ρ)).  
Our formulation is as follows (here presented for the 𝑚𝑜𝑜𝑑 fixed effect):  
 
𝑆(𝑡, 𝑟) 	∼ 𝑚𝑜𝑜𝑑	 +	(𝑚𝑜𝑜𝑑|𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 	+ 	1|𝑡𝑟𝑖𝑎𝑙,  
 
where 𝑆(t, r) indicates the source reconstructed MEG signal in ROI 𝑟 and at time 𝑡 with 
respect to the task event. 𝑆(𝑡, 𝑟) is a vector with dimension 1 × 𝑁. , where 𝑁. is the 
number of feedback trials from all subjects.  
In our confirmatory analysis we test if mood predicts MEG signal in the right insula, and 
if the two RPE parameters predict response variation in the right paracentral lobule and 
precuneus as defined by the AAL atlas.  
In addition, as a post-hoc analysis, the data from all available subjects is combined 
(exploratory + confirmatory sample) and each predictor is tested on all 116 ROIs from 
the AAL atlas. For this post-hoc analysis, temporal clusters are corrected for multiple 
comparisons over all ROIs and the 3 predictors.  
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Hypothesis 3:  

We test the effect of trial expectation, as defined by the primacy model (𝐸!), and the 
primacy weighted expectation term (η!) on the average evoked response in the 250-
400ms window following gamble options presentation. 
Our formulation is as follows (here presented for the 𝐸 fixed effect):  
 
𝑆(𝑟) ∼ 𝐸 + (𝐸|𝑠𝑢𝑏𝑗𝑒𝑐𝑡) + 1|𝑡𝑟𝑖𝑎𝑙 + 1|𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔, 
 
where 𝑆(𝑟) indicates the MEG signal at location 𝑟 (either sensor or source voxel).  
𝑆(𝑟) is a vector with dimension 1 × 𝑁/ , where 𝑁/ is the number of task trials from all 
subjects.  
We run our statistical model at each sensor and source space voxel. 

 
 
For all linear mixed effect models we test for statistical significance over multiple voxels or 
sensors by applying Threshold Free Cluster Enhancement (TFCE) spatial clustering with 
parameters E=0.5, H=2, dh = 0.1 as indicated in (Smith and Nichols, 2009).  
 
Null distributions are obtained by running the same linear mixed model after random 
permutation of S over trials for each subject (10,000 random permutations will be used for the 
sensor space analysis, 2,000 random permutation will be used for the voxel space). Each 
random permutation is used for all sensors/voxel, TFCE is applied on the t-values for the fixed 
effect and the maximum (and minimum) spatial cluster value is included in the null distribution.  
We then use a 2-tailed t-test against the null distribution to infer statistical significance of the 
spatial clusters (𝛼 = 0.05) corrected with false discovery rate for the multiple fixed effects we 
are testing. 
 
 
Results 
 
Hypothesis 1: trial variations in beta-gamma oscillatory power measured in the 3s time 
interval preceding mood rating will be positively correlated with 𝑬𝒕. 
 
For our first hypothesis we set to test if trial variations in beta-gamma (25-40Hz) oscillatory 
power are affected by reward expectation. 
We report results for the linear mixed model analysis with trial expectation (𝐸!) and primacy 
weighted expectation (η!)  as fixed effects of the model. At the sensor level we found a 
significant cluster of sensors (Figure 2), for both 𝐸! (peak on channel MRC22, fixed effect t-stat 
= 3.94, uncorrected p-value=8.6e-05) and η! (peak on channel MRC25, fixed effect t-stat = 3.64, 
uncorrected p-value=2.8e-04). 
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Figure 2: Maps of MEG sensors where expectation parameters 𝐸! (A) and η! (B) significantly 
predict beta-gamma power preceding mood rating in confirmatory sample. Sensors surviving 
clustering correction (𝛼 < 	0.05, two-tailed, 10,000 random permutations) are shown in color. 
Color bar indicates t-statistc of the fixed effect.  
 
 
At the source level we found a significant cluster where 𝐸! predicted beta-gamma power in the 
mid to posterior cingulate cortex and extending to the paracentral lobule (Figure 3A, cluster 
peak at MNI coordinate [-2, -40, 34]mm, T-stat=5.21, uncorrected p-value=2.3e-07). A similar, 
but less significant cluster appeared for η! (Figure 3B cluster peak at MNI coordinate [-2, -40, 
30]mm, T-stat=4.78, uncorrected p-value=2.0e-06).  Other significant clusters were present in 
the occipital cortex, caudate and the ACC. By exploration of the covariance regularization 
parameter (5%, 1% and 0.2% of the maximum singular value of the covariance matrix) we found 
significant clusters to be highly dependent on regularization, with clusters in supplementary 
motor cortex and frontal superior cortex becoming prominent at lower regularization values 
(Figure S4 in supplementary material). 
Over our explored range of regularization values the mid-posterior cingulate cortex cluster 
remained present.  
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Figure 3: Source space maps showing brain regions where expectation parameters 𝐸! (A) and η! 
(B) predict beta-gamma power preceding mood rating in confirmatory sample. Color bar 
indicates t-statistc of the fixed effect. Top row shows cluster peak in coronal and sagittal views. 
The plot on the bottom shows the significant cluster over multiple axial slices.  
Both predictors show similar significant clusters with a peak in the left posterior cingulate cortex 
(MNI coordinate [-2, -40, 34]mm for 𝐸! and [-2, -40, 30]mm for η!) extending to mid cingulate, 
parietal cortex and the caudate.  
 
We found that subject average beta-gamma power in the pre mood rating period was 
significantly correlated with the subject expectation weight from the primacy mood model 
(Figure 4C,D). We found significant clusters with peaks in the ACC, caudate and occipital cortex. 
By comparing Keren et al. (Keren et al., 2020) previous fMRI work we found overlap in the ACC 
cluster between MEG average beta-gamma power and BOLD fMRI activation.  
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Figure 4. Post-hoc analysis of beta-gamma power with all available subjects (N=51). A. Trial-
level analysis: source space maps showing brain regions where expectation parameters 𝐸! 
predicts beta-gamma power preceding mood rating (see confirmatory results in figure 3A). 
Color bar indicates t-statistic of the fixed effect. B. Mediation model where the reward 
expectation 𝐸! mediates the relationship between beta-gamma power 𝑃! and subject’s self-
reported mood 𝑀!. At the source cluster peak we found evidence of complete (𝑎𝑏/𝑐 = 1.1973 ) 
inconsistent mediation (significant indirect effect 𝑎𝑏 = 0.0686	± 0.018 (𝑍 = 3.6271)). C. 
Subject level analysis: axial view of regions where the subject level expectation weight β#  
significantly (𝛼 < 0.05, 5,000 random permutations) correlates with subject average beta-
gamma power preceding mood rating. Color bar indicates Pearson’s correlation (r), source map 
has been masked with cortical and subcortical regions included in the AAL atlas. Subject beta-
gamma power shows significant correlation clusters in subgenual ACC, caudate and occipital 
cortex. D. Regions where β#  correlates with brain activity in MEG (C) and fMRI (significant 
region from Keren et al.). MEG source localization is displayed in the heat color map, voxels of 
overlap between MEG and fMRI results are displayed in green and voxels where only fMRI 
showed significant correlation are in blue. 
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In order to test if beta-gamma power is reflective of subject’s mood we tested whether this 
relationship could be mediated by our expectation parameter. We found that indeed reward 
expectation 𝐸! significantly mediated (significant indirect effect 𝑎𝑏 = 0.0686	± 0.018 (Z =
3.6271)) the relationship between beta-gamma power 𝑃! and subject’s self-reported mood 𝑀! 
with a complete (𝑎𝑏/𝑐 = 1.1973 ) inconsistent mediation (Figure 4B). 
 
Hypothesis 2: self-reported mood and RPE from the primacy model can predict changes in the 
response to reward. 𝑹𝒕 and 𝛒𝒕 will be correlated with the variability in the evoked response 
in right precuneus and paracentral lobule (at ~500ms) and for 𝒎𝒐𝒐𝒅𝒕 in the right insular 
cortex (at ~400ms after feedback presentation).  
 
In order to test the effect of mood and RPE on the evoked response following gambling 
feedback we ran models independently for the three separate fixed effects. From our 
exploratory analysis we hypothesized to find significant clusters in the right insula cortex for the 
mood predictor and right precuneus and paracentral lobule for 𝑅! and ρ!. In our confirmatory 
analysis we found no significant effect of self-reported mood on the evoked response source 
localized to the right insula.  
Both 𝑅! and primacy weighted ρ! parameter were confirmed to predict the response on the 
right paracentral lobule at 500ms, with ρ! also predicting an earlier peak at ~250ms (Figure 5, 
Table 1). Neither parameter predicted the response in the right precuneus at 500ms, but we 
saw a significant effect of 𝑅! on an earlier peak (100ms).  
From our further post-hoc analysis we found that both 𝑅! and ρ! significantly predicted the 
response in the left angular cortex (peak at ~250ms). Moreover the ρ! parameter significantly 
predicted a late response (~600ms) in the left paracentral lobule and a peak in the right para 
hippocampal gyrus (~430ms) (Figure 6, Table 2). Self-reported mood did not significantly 
predict the response to reward feedback in any ROI. 
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Figure 5: Response to reward feedback in regions of interest (ROIs) from the AAL atlas 
hypothesized to vary with mood or with the reward prediction error parameters. A. ROIs with 
significant temporal clusters to the 𝑅! fixed effect. Average response is in blue, t-statistic of the 
fixed effect is in black and significant temporal clusters are in red. 𝑅! significantly predicts trial 
level variations in reward feedback evoked response in right precuneus (cluster peak at 101ms, 
not supporting our initial hypothesis) and right paracentral lobule (cluster peak at 489ms, in 
agreement with hypothesis).  B. Response to feedback in the right insula cortex and prediction 
from self-reported mood. No significant temporal clusters were found in the confirmatory 
sample. C. ROIs with significant temporal clusters to the ρ! fixed effect. ρ! was confirmed to 
predict responses in right paracentral lobule (cluster peaks at 248ms and 502ms). No significant 
effect of ρ! was found in the right precuneus. 
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Figure 6. Regions of interest (ROIs) from the AAL atlas significantly predicted by reward 
prediction error in post-hoc analysis (including all available subjects, N=51). A. ROIs with 
significant temporal clusters to the 𝑅! fixed effect. Average response is in blue, t-statistic of the 
fixed effect is in black and significant temporal clusters are in red. B. ROIs with significant 
temporal clusters to the ρ! fixed effect. In addition to the confirmed effect on the right 
paracentral lobule (see figure 6), we found that both parameters predicted trial variations in the 
left angular gyrus and ρ! in the right para-hippocampal gyrus and left paracentral lobule.  
 
 
 

ROI Predictor Window(ms) Peak time(ms) T-stat p-value 
Insula Right 𝑚𝑜𝑜𝑑 Not significant    
Precuneus Right 𝑅 97-111 101 -3.98 7.1e-05 
 𝜌 Not significant    
Paracentral Lobule Right 𝑅 472-502 489 3.33 8.7e-04 
 𝜌 225-278 248 -4.33 1.5e-05 

 𝜌 [465-515, 629-
639] 

502 3.13 1.8e-03 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.04.433969doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.04.433969


Table 1: Summary of results from the confirmatory analysis for hypothesis 2 (time courses in 
figure 5). We tested the responses to reward feedback presentation in the right insula to self-
reported mood, and the right precuneus and right paracentral lobule to reward expectation.  
 
 

ROI Predictor Window(ms) Peak time(ms) T-stat p-value 
Angular Left 𝑅 255-265 255 -4.45 8.9e-06 
 𝜌 248-255 248 -4.34 1.5e-05 
Para Hippocampal Right 𝜌 418-438 428 -4.52 6.4e-06 
Paracentral Lobule Left 𝜌 589-606 596 4.76 2.0e-06 
Paracentral Lobule Right 𝑹 469-499 485 4.94 8.2e-07 
 𝛒 225-271 245 -5.27 1.5e-07 
 𝛒 462-509 482 4.42 1.0e-05 

 
Table 2: Summary of results from the post-hoc analysis over all ROIs on responses to reward 
feedback presentation (time courses in figure 6). Significant peaks in the right paracentral 
lobule, highlighted in bold, are also seen in the confirmatory analysis (table 1).  
 
 
Hypothesis 3: the reward expectation parameters from the primacy mood model (𝑬𝒕 and 𝛈𝒕) 
will be predictive of the signal in posterior MEG sensors during the 250-400ms time window 
after the presentation of gambling options.  
 
For our last hypothesis we tested whether the trial level variation in evoked response 250-
400ms after presentation of gambling options could be predicted by the model expectation 
parameters.  
Agreeing with our initial hypothesis we found that both 𝐸! and η! significantly predicted signal 
response in clusters of MEG axial gradiometers (figure 7D). At the source level we found a 
significant cluster in the right cerebellum (figure 7E) only for the 𝐸! predictor.  

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.04.433969doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.04.433969


 
Figure 7: Expectation predicts the evoked response 250-400ms after presentation of gambling 
options. A. Maps of MEG sensors where expectation parameter𝑠 𝐸! (left) and ρ! (right) 
significantly predict MEG response 250-400ms following presentation of gambling options. 
Sensors surviving clustering correction (𝛼 < 0.05, two-tailed, 10,000 random permutations) are 
shown in color. Color bar indicates t-statistic of the fixed effect. B. Source space clusters where 
expectation parameters 𝐸! predict MEG signal response. Predictor ρ! did not show any 
significant clusters. Color bar indicates t-statistic of the fixed effect. Top row shows cluster peaks 
in coronal and sagittal views. The plots on the bottom show the significant clusters over multiple 
axial slices. The expectation parameter was predictive of activity in the right cerebellum. C. 
Topographic map of the z-scored average MEG signal over all trials and subjects in the 250-
400ms time window after presentation of gambling options. D. Time course of the evoked 
response (average over all trials and subjects in confirmatory sample) over all significant sensors 
(clusters in figure 7A). The average of the left sensors (n=11) is in blue. The sign of the right 
sensors (n=9) in red has been flipped for easier comparisons. The time window of interest is 
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highlighted in grey. E. Time course of the evoked response (average over all trials and subjects in 
confirmatory sample) in the significant area of the right cerebellum from figure 7B.  
 
 
 
Discussion  
 
With a confirmatory sample of 40 participants, we found support in our pre-registered 
hypothesis that reward expectation, defined by the computational primacy mood model, is 
positively related to beta-gamma power over central MEG sensors. The same linear mixed 
effect analysis at the source space analysis localized the main significant cluster over the 
posterior cingulate cortex (PCC), extending to mid cingulate and paracentral lobule and parietal 
cortex. Unlike the exploratory sample no clusters were found in superior or medial frontal 
cortex. The cingulate cortex is thought to have an important role in integrative brain functions, 
being involved in emotional processing, memory and learning. The PCC in particular is involved 
in memory processes and strongly connected to the hippocampus as well as being a key node in 
the resting state network. 
It is interesting to note that from our model definition, reward expectation is the equivalent to 
the average of all experienced rewards during the gambling task, a mental representation that 
we expect to involve memory processes. Our results do not link directly beta-gamma power 
with self-reported mood, but to reward expectation, which previous work has found to be a key 
component in mood processes. Through a post-hoc mediation analysis we found that reward 
expectation fully mediates any relationship between mood and beta-gamma power, meaning 
that self-reported mood by itself would not explain any variation in the same MEG data. This 
highlights how it may be important to identify the separate mental processes that conflate to 
shift mood over time if we hope to understand the integrative function of mood as a whole. 
 
With this result we also identify that brain oscillations may have an important, and measurable, 
role in mood dynamics, as previously found in studies involving pharmacological manipulation 
(e.g. ketamine) and group comparisons between MDDs and HVs showing in particular how 
reduced frontal gamma oscillations may be a marker of depression (Fitzgerald and Watson, 
2018; Nugent et al., 2019a).     
Brain oscillations are believed to be key to brain communication (supported by an expanding 
literature in MEG functional connectivity) and the function of brain oscillations is dependent on 
frequency, which in conjunction with other techniques (PET, MRS), can be used to explore the 
specific function of neuronal assemblies (e.g. glutamatergic excitatory vs GABAergic inhibitory 
processes). This is key to determine possible dysfunctions in mood disorders such as 
depression, and possibly developing more effective pharmacological therapies than current 
antidepressants.  
Beta-gamma oscillations have been observed in multiple EEG studies, synchronizing in response 
to positive feedback (Hosseini and Holroyd, 2015; Marco-Pallarés et al., 2015). We initially 
selected the 25-40Hz band based on these studies and following test in our exploratory sample 
with standard frequency bands. The naming of the band in the literature is unclear, with 
different authors also referring to it as high-beta or low-gamma bands. It is worth exploring if 
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changes in beta-gamma power can be observed in direct response to reward presentation (as 
observed in EEG following reward feedback) and their precise localization through different 
MEG task designs or by combination with fMRI techniques (for example with Representation 
Similarity Analysis (RSA)). 
We found confirmatory evidence that RPE (a predictor of mood as defined from the primacy 
model) modulates the evoked potential in the paracentral lobule. We had hypothesized that 
the response of the insular cortex to reward feedback would be correlated with self-reported 
mood. The insular cortex is thought to be a key area for reward processes, interoception and 
mood (Preuschoff et al., 2008; Singer et al., 2009) with multiple studied identifying changes in 
insula function in depressed patients. While we observed activation of the right insular cortex 
following reward feedback (both positive and negative), in this study we could not find 
significant evidence that insula response is directly influenced by participants’ self-reported 
mood.  
In a post-hoc analysis testing the response to reward feedback of all ROIs we found evidence 
that following presentation of gambling feedback, reward prediction error affects even early 
responses in the left angular gyrus between 200-300ms (part of the visual stream, contralateral 
to side of the screen where feedback is displayed).  
We did not find an evoked response changing with RPE equivalent to the feedback related 
negativity, extensively observed in EEG. (Doñamayor et al., 2012) localized the FRN from the 
MEG data to the PCC. Other studies combing EEG and fMRI localized the FRN to the dorsal ACC 
(Hauser et al., 2014). Evoked responses are affected by both reward magnitude and 
expectation. It is likely that the relatively low number of negative feedback trials and high 
variance of reward amounts presented to each subject might have affected this.  
 
We confirmed our pre-registered hypothesis and found evidence that cerebellum activity is 
correlated with reward expectation 250-400ms following the presentation of gambling options. 
Several papers have highlighted the involvement of cerebellum in reward processing and its 
connection to basal ganglia (Bostan et al., 2010; Pierce and Péron, 2020; Wagner et al., 2017). 

 
Although we tried to mitigate statistical bias by pre-registering our approach, our analysis still 
has some technical limitations. We found evidence that beta-gamma power is positively 
correlated with expectation at the sensor level and again at the source level. This confirms our 
initial hypothesis we set with the pre-registration. We want to point out that we are analyzing 
the change of oscillatory power over trials: this gives lower signal to noise compared to a 
standard beamformer localization where multiple trials are averaged together. We are 
compensating from this by using a linear mixed effects model to include all our available data 
into one statistical test. This still doesn’t obviate to the determination of beamformer weights 
(which are highly dependent on regularization and choice of forward model as can be seen in 
our post-hoc analysis in supplementary material).  
Uncertainty in the source localization is due to the ill posed nature of the inverse problem in 
M/EEG: source localization is an estimate dependent on our head model, signal SNR and co-
registration accuracy (Jaiswal et al., 2020). 
We suggest that for applying a similar analysis technique in future it might be beneficial to 
apply an adaptive regularization as proposed in (Woolrich et al., 2011) or test localization 
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accuracy at similar SNR level with computational models to determine the best beamformer 
parameters.  
 
We can see how key features of rewards that influence mood dynamics (i.e. expectation, and 
reward prediction error) are encoded in multiple brain regions at different times and with 
different mechanisms (both stimulus evoked responses and oscillations).  
To our knowledge this paper offers new evidence that it is possible to track the effect of 
changes in mood predictors in neuronal activity (non-invasively) at the minute time scales. 
Based on our pre-registered exploratory analysis, within our task we only expected to see direct 
correlates of mood on neural activity on the insula, but this was not confirmed by our results. 
While univariate analysis did show significant effects of mood, multivariate analysis (like 
mediation) may be more suited to reveal of our perceived mood affects brain function. We 
believe mood to be an integrative function, which cannot be accurately reflected by the activity 
of a single brain area but is the result of activity and communication between multiple cortical 
and sub-cortical regions. Mood may not be measured as activation of a brain region, but rather 
a shift in baseline activity and functional connectivity of brain networks, priming the brain to 
respond more strongly to certain stimuli (and/or “inhibiting” the brain to respond less strongly 
to others), similar to the effect of attention and arousal (Bowrey et al., 2017). We hope this 
start may help laying some of the groundwork to determine possible causality in reward and 
mood processes in humans in vivo by identifying both ROIs and accurate timing.  
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