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Abstract 
 
An important challenge in single-cell RNA-sequencing analysis is the abundance of zero 

values, which results in biased estimation of gene-gene correlations for downstream 

analyses. Here, we present a novel graph-based k-partitioning method by merging 

“homology” cells to reduce the number of zero values. Our method is robust and reliable 

for the detection of correlated gene pairs, which is fundamental to network construction, 

gene-gene interaction, and cellular -omic analyses. 

 

Main  

Single-cell RNA-sequencing (scRNA-seq) enables transcriptome profiling at high cell 

resolution and provides unprecedented precision into the molecular mechanisms 

underlying disease1,2. A central challenge to cell type identification and downstream 

analysis is the abundance of zero values, known as “dropout”, in single cells due to 

either low transcript copy number and/or ineffective capture capacity of scRNA-seq 

technology. scRNA-seq typically captures only 5-15% of the transcriptome of each cell3. 

Dropout causes significant zero inflation, increasing background noise, which leads to 

loss of detection of gene-gene correlations crucial to gene network construction and 

determination of lineage relationships among cells. 

Considerable computational effort has been expended to address scRNA-seq 

dropout. One approach is to aggregate cells using small proportions of highly variable 

genes4 that are heavily weighted in analysis. Another approach is to impute zero 

values5-7. For example, DeepImpute employs a deep neural network imputation 

algorithm that uses dropout layers to identify patterns in scRNA-seq data to impute zero 
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values8. Markov Affinity-based Graph Imputation of Cells imputes likely missing 

expression data to detect the underlying biological structure via data diffusion9. A newly 

developed algorithm embraces zero values based on binary zero/nonzero patterns into 

the analysis to improve gene-gene correlation and gene network analysis10. While these 

methods reduce dropout, recovering gene-gene relationships from zero abundant data 

remains challenging due to the noise introduced by imputation of a large number zero 

values or loss of information by simplifying the complexity of data. 

Here we present “scCorr”, a novel graph-based k-partitioning approach to 

address dropout by recovering missing gene-gene correlations. The scCorr algorithm: 

1) generates a graph or topological structure of cells in scRNA-seq data; 2) partitions 

the graph into k multiple min-clusters employing the Louvain algorithm, with cells in 

each cluster being approximately homologous (with similar transcriptional profiles); 3) 

visualizes the series of k-partition results to determine the number of clusters; 4) 

averages the expression values, including zero values, for each gene within a cluster; 

and 5) estimates gene-gene correlations within a partitioned cluster. We demonstrate 

that the graph k-partitioning approach enables the reliable acquisition of cluster-based 

gene-gene correlations in a peripheral blood mononuclear cell (PMBCs) scRNA-seq 

dataset. We applied scCorr to estimate the accuracy of cell type identification in a 

known cell type (i.e. CD4+ T cell) in the dataset and compared the performance of gene-

gene correlation estimation between scCorr and conventional non-clustering single-cell 

gene correlation methods. 

We first confirmed a significant abundance of zero values in the data generated 

from 15,973 PBMCs11. A total of 21,430 genes were annotated; we observed that 95% 
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of the 21,430 genes had zero values in a cell (Figure 1A), and 95% of the 15,973 cells 

showed at least one undetected gene with zero values (Figure 1B), suggesting that 

scRNA-seq captures only 5% of gene expression at the single cell level. For example, 

among the 347 genes that compose 1,532 biologically related gene pairs on 3 Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways (i.e. hsa04010, hsa04115, 

hsa04662) (Table S1), over 70% exhibited zero expression (Figure 1C, 1D), resulting in 

poor gene-gene correlation among these known gene pairs. These data underscore the 

importance of developing a method to minimize zero value inflation to recover gene-

gene correlations. 

We observed that merging transcriptomically homologous cells dramatically 

reduced the proportion of zero values. In a set of 50 merged cells that were randomly 

selected from the 15,973 PBMCs, the percentage of zero values from the same set of 

21,430 genes was reduced from 90% in two to 57.4% (95% confidence interval [CI), 

57.3%, 57.4%] in the 50 merged cells (Figure 1E). Revisiting the same 347 genes from 

the 3 KEGG pathways, the reduction in zero values increased further, from 90% in two 

to 37.6 % (95% CI: 37.5%, 37.8%) in the same 50 merged cells (Figure 1F). Examining 

the impact of the number of merged cells on zero value frequency, focusing on six cell 

populations of 1,000 to 15,973 cells, the reduction of zero value proportion stabilized 

when the merged cells exceeded 100 in a set of 1,000 cells (Figure 1G). Simulation 

analysis of four separate sets of cells and genes further supported the reduction of zero 

values in merged cells (Supplementary Figure 1A and 1B). This property motivated 

the development of the scCorr package. 
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scCorr is based on local optimal modularity (i.e. the Louvain algorithm) to 

partition a graph into k clusters. Figure 1H-1K presents the analytic strategy of scCorr 

on the scRNA-seq data (21,430 genes, 15,973 cells), for which tSNE identifies seven 

major cell types (Figure 1H). The graph edges are weighted by the distances and 

distance matrix, which is converted to a weighted graph determined by a cutoff of three 

as the default (any edge weight > 3 is removed from the graph), and an initial number of 

N clusters is generated with N greater than k. Next, the center of each cluster is 

calculated, and adjacent clusters with the smallest distance are merged one by one until 

N equals k. As presented in Figure 1I (k=100) and 1J (k=1,000), scCorr-partitioned 

clusters do not change the local structure of transcriptomically-defined cell populations. 

A series partitioning process was carried out to determine the desired number of 

clusters (Supplementary Figure 2). Figure 1K displays the cell number distributions 

for each cluster set. For each box plot, the observed number of cells for each cluster 

(median) is close to an expected number of cells per cluster. One of the utilities included 

in the scCorr package is to trace how a cluster evolves during k graph partitioning in 

multiple cluster sets, displaying ladder and circle plots to visualize the evolutionary 

process of each cell cluster in a variety of cluster sizes (Supplementary Figure 3). As 

an example, Figure 1L depicts the evolutionary process for each cluster during graph 

partitioning. 

Next, based on averaged gene expression values in a partitioned cluster we 

computed gene-gene correlations using a generalized linear model. We estimated 

gene-gene correlations in the CD4+ T cell population, focusing on the same 347 genes 

and 1,532 gene pairs defined by the 3 KEGG pathways. In this instance, we present the 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.04.433945doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.04.433945


Xu et al  Nature Methods   

 

results of scCorr-partitioned cluster sizes from 40 to 1,000, which shows greater gene-

gene correlation coefficients and identifies more gene pairs than the conventional 

noncluster single-cell-based method. For example, in a set of 100 clusters, scCorr and 

the noncluster method identified a combined total of 85 of 1,242 possible gene pairs (71 

solely by scCorr, 10 solely by the noncluster single-cell method) with only 4 detected by 

both methods (false discovery rate (FDR)<0.05). Gene-gene correlations were stronger 

among the pairs detected by scCorr than by the noncluster single-cell method (62 of 85   

[73%] of the gene pairs with r>0.5 were detected by scCorr, while 4 of 85 [5%] had 

r>0.1 using the noncluster single cell-based method). Among significant gene pairs 

detected by both methods, approximately 50% of gene-gene correlations were in the 

agreement (blue dot) and the other 50% in disagreement (red dot) in the direction of the 

correlations (Figure 2). As an example, Figure 2A and 2B presents the p-values and r-

values of the top 45 gene pairs selected by p-value (scCorr: 40, noncluster single cell-

based method: 14, 9 overlapping). For example, ATF4 and MAPKAPK2 are a well-

established pair of co-expressed genes. scCorr increased the coexpression of ATF4 

and MAPKAPK2 (r=0.82) (Figure 2C) compared to the noncluster gene-gene 

correlation method (r=0.01) (Figure 2D). Similarly, scCorr outperformed the correlation 

of another co-expressed gene pair, MAPK1 and DUSP2 (scCorr: r=0.586, noncluster 

single cell-based method: r=0.007) (Supplementary Figure 4). Of note, scCorr 

detected no significant correlations for randomly selected genes. These results suggest 

that scCorr shows robust detection of correlated gene pairs by minimizing zero-value 

effects. 
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One key step in scCorr is to establish a reasonable cluster size cutoff. We 

recommend performing a series of correlation analyses with different cluster sizes in 

order to identify the cluster size at which stable p- and r-values in the cluster sets are 

achieved (Supplementary Figure 5). For example, in a set of the top 10 most 

significant gene pairs in a series of cluster sizes from 40 to 1,000 in CD4+ T cells, the p- 

and r-values were relatively stable in cluster sizes from 40 to 100 (Figure 2E and 2F). 

However, gene correlation changed dramatically when the cluster size exceeded 100. 

As a result, a size of 100 clusters each containing 125 homologous cells showed the 

greatest correlation coefficients and smallest p-values in the dataset, indicating that a 

cluster size of 100 is a reasonable cutoff to achieve consistent gene-gene correlations 

in CD4+ T cells.  

Finally, we tested the efficiency of scCorr in predicting cell type classification. We 

performed 10-fold cross-validation to predict CD4+ T cells in our dataset11. The average 

of the Receiver Operator Characteristic area under the curve (AUC) was 0.97 across 

117 (Figure 2G) and 0.96 across 10 (Figure 2H) clusters partitioned by scCorr. In 

contrast, the performance of noncluster single cell-based prediction was poor (i.e., 

AUC=0.55) from the same number of nonclustered cells, suggesting that scCorr-based 

cell type identification is reliable, accurate and outperforms the noncluster single cell-

based approach. 

 scCorr requires a reasonable amount of computational time. Users are able to 

adjust the computational time by estimating a range of scales and k partitioning clusters 

(Supplementary Figure 6A). In a set of 5,967 cells, the estimated computation time for 

a scale of 200 is approximately 10 minutes (Supplementary Figure 6B). The 
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computation time for a scale of 400 is estimated to be 20 minutes for a set of 15,973 

cells (Supplementary Figure 6C). 

In summary, built on the observation that merging homologous cells can 

decrease the number of zero values in a given cell type, scCorr was developed based 

on a graphic structure of cells in homologous cells to estimate gene expression values, 

including zero values, in a local cell community. Unlike imputation methods, which infer 

missing gene expression, possibly introducing noise into the data, scCorr maintains 

local community data organization in single cells by k-partitioning a graph into mini-

clusters in the similar cell-cell matrix based on transcriptomic similarities within the cell 

type. Thus, the merged cells in a partitioned cluster increase the power to recover 

correlated gene pairs. We show that cluster-based analysis by scCorr k-partitioning 

detected more significant gene pairs than noncluster single cell-based analysis, 

suggesting that scCorr is a robust approach to address dropout in scRNA-seq. scCorr is 

robust, simple, fast, and easy to use in the R environment. The method can be broadly 

applied to single-cell genomic analysis and is particularly useful for downstream 

analyses, such as differential gene expression analysis, gene-set enrichment analysis, 

and network construction at single-cell resolution. 

  

 

Methods 

Single-cell RNA-seq data. Single-cell data were downloaded from the NCBI Gene 

Expression Omnibus (GEO) 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130228. The dataset was 
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generated using the 10x Genomics platform and contains 15,973 single cells, 21,430 

genes and seven cell types. Single-cell data quality control, normalization, and cell type 

identification were described previously11. 

Correlated genes in KEGG pathways. A total of 1,532 gene-gene interactions 

from 347 unique genes were selected from the B cell receptor, p53, and MAPK 

signaling pathways in the KEGG database (https://www.genome.jp/kegg/pathway.html) 

(Supplementary Table 2). The 1,532 gene pairs served as a reference in the scCorr 

analysis using the scRNA-seq dataset described above. 

Zero value distribution in merged cells. The distribution of the percentage of 

zeros for each cell (Figure 1B and 1D) and each gene (Figure 1A and 1C) is shown 

using histogram plots. Two different gene sets were used: all 21,430 genes and only 

347 genes on the 3 KEGG pathways from GSE130228. We examined the zero-value 

distribution in different sets of merged cells from GSE130228 and from a simulation 

dataset. We simulated 95% of zero values assuming 23,000 genes and 20,000 cells. 

We randomly selected two cells and calculated the percentage of zero values in 23,000 

genes. Each two-cell selection was performed 1,000 times, and an average of zero 

percentage in 23,000 was determined. The selection of random cell numbers was 

repeated until 200 cells merged. We also simulated different numbers of cells (2,000, 

8,000, and 14,000) and different sets of gene numbers (16,000, 18,000, and 20,000). 

The distributions of zero values were essentially the same (Supplementary Figure 1). 

Zero-value reduction through k-partitioning. The strategy to reduce zero 

values in gene expression involved using a k-partitioning algorithm to group cells into 

clusters and calculate the average gene expression in the cluster instead of in single 
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cells. An adjacency distance matrix of single cells was estimated by the single-cell 

expression profile from the tSNE output and converted into a weighted graph or network 

using the R package igraph. The weight values were the length of the edges in the 

graph. The Louvain algorithm, an efficient graph-clustering method based on the 

modularity measure and a heuristic approach, was used to group cells into a predefined 

number of clusters through iteratively splitting and merging cell processes shown in the 

t-SNT plot of cluster numbers 50, 100 and 1000 (Supplementary Figure 2A). The 

pseudocodes are included at the end of the Methods section. Cell number distributions 

from cluster numbers 10-100 and 100-1000 are displayed using box plots (Figure 1K). 

Visualization of cell clusters using the k-partitioning algorithm. Multiple 

cluster visualization functions were implemented to evaluate the k-partitioning algorithm 

performance to select desired cluster numbers. In the cluster overlay on the t-SNE plot, 

each dot represents a cluster with dot size being proportional to cluster size 

(Supplementary Figure 2B). This provides a convenient function to identify uniformly 

distributed clusters. Using tree-based visualization of clusters, ladder and circle plots 

show the evolution of clusters at the different cluster numbers (Supplementary Figure 

3). Dot size is proportional to the cell number in one cluster and lines between dots 

track the cluster development. Supplementary Figure 3A presents a tree of 20-40 

clusters from top to bottom. The tree can be arranged in a circular shape suitable for 

displaying a large number of clusters (Supplementary Figure 3B and 3C); inner and 

outer circles correspond to the top and bottom trees, respectively. 

Gene-gene correlation analysis. Pearson and Spearman correlation 

coefficients at single-cell and cluster levels were calculated between gene pairs 
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extracted from KEGG pathways, as exemplified in the scatter and violin plots of 

MARPK1-DUSP2 (Supplementary Figure 4). The correlation p-values were estimated 

using generalized linear models (glm). At the cluster level, the average gene expression 

of cells in a cluster was used as the gene expression value. The top 10 correlated gene 

pairs by p-values based on 100 clusters were selected to evaluate the effect of the 

number of clusters on the correlation. A total of 16 cluster sets were used: 40-100 and 

100-1000 in increments of 10 and 100, respectively. The relationships of glm p-values 

and Pearson and Spearman correlation coefficients vs different numbers of clusters are 

illustrated using a line plot (Supplementary Figure 5). 

Time estimation for k-partitioning clusters. We implemented calculation time 

for different numbers of cell clusters. In our analysis, using Rtsne with perplexity=30 and 

max_iter=2000, the x and y coordinate regions were approximately from -50 to 50. 

Before performing graph-based clustering, we suggest that the x and y coordinate 

regions are scaled from -200 to 200 or -400 to 400 in cell numbers 5,967 and 15,973, 

respectively. Supplementary Figure 6 shows estimated times for a range of scaled 

clusters. On a tSNE plot scale of -50 to 50 of 5,976 cells, when the scale range is 200, 

the running time is smallest, regardless of the number of clusters. In a plot of 15,973 

cells, a scale range of 400 appears to be the most rapid option, regardless of the 

number of clusters. The different colors for the lines represent the numbers of clusters. 

 

Codes 

## 

## Pseudocodes for graphical k-partitioning algorithm 
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## Prepare data 

## Make distance matrix from 2D (outputs from tSNE or UMAP or PCA) or 

## high-dimensional data 

Dist  Calculate the distance matrix from N dimensions of a single cell profile 

 

## Make a graph, the distances used as the edge weights 

G   Convert Dist to graph 

 

## Initialize parameters, cluster number K and cutoff value CO 

INITIAL: K, CO 

## Initialize cluster number 

C.num  C.num.i   C.num.j  NULL 

 

## 

# Initialize partition G and CO, 

# Partition G using CO to G in C.num clusters 

GC.num   Partition (G, CO) 

 

IF C.num < K 

   REPEAT 

       # Decrease CO, 0 <  < 1 

       CO  CO *  

       ## Remove edge(s) from G if edge weight > CO and 
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       ## partition G with CO to G with C.num clusters 

       GC.num   Partition (G, CO) 

   UNTIL C.num > k 

 

IF C.num > K 

   REPEAT 

      ## Calculate the center for each cluster 

      ## Merge two clusters with the smallest distance of two cluster centers into 

      ## one cluster, C.num.i and C.num.j in the smallest distance 

       GC.num.j   GC.num.i +  GC.num.j 

   UNTIL C.num.k == K 

 

IF C.num == K 

   ## return G with K clusters 

   RETURN GC.num 

ELSE 

   RETURN error 

 

Data availability 

Sequencing data have been deposited to GEO under the accession GSE130228.   

 

Code availability 
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The scCorr source code is freely available from GitHub under the CBIIT-CGBB 

(https://github.com/CBIIT-CGBB/scCorr). The R package is also available from the 

Nature Research Reporting Summary. 
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Figure Legends  

Figure 1. Study principals and workflow. Data are from single-cell RNA-seq of 

peripheral blood monocyte cells (PBMCs) in healthy participants. A-D present the 

distribution of zero values by individual genes and by single cells. A total of 21,430 

genes had zero values in at least one cell (A), and more than 95% of 15,973 cells 

showed zero values in at least one cell (B). Among a set of 347 genes from 3 KEGG 

pathways, all genes had zero values in at least one cell (C), and 95% of 15,973 cells 

contained zero values in at least one gene (D). E-G show reductions of zero values in 

merged cells. The percentage of zero values of 21,430 genes was markedly reduced in 

merged cells. The zero-value reduction is approximately 50% among 50 merged cells 

(E). Similarly, zero values of the 347 genes were reduced in merged cells (F) and was 

consistently observed in 6 different cell sets (G). H-L present the workflow and features 

of the scCorr method. First, data dimensional reduction and cell classification by tSNE 

and cell type identification using the marker gene approach (H). Second, cell partitioning 

was based on a tSNE plot by using scCorr with different numbers of clusters (I: k=100; 

J: k=1,000). Average number of cells per cluster is shown. The red dot is an expected 

number of cells in a cluster (K). ScCorr enables tracing of the evolution of each 

partitioned cluster (L). 

 

Figure 2. Evaluations of scCorr performance in gene-gene correlations among CD4+ T 

cells (A-F) and cell type identification (G-H). Gene-gene relationships were quantified by 

Pearson correlation. In A and B, gene-gene correlation was separately performed in 
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nonclustered single cells (X-axis) and in scCorr-partitioned cell clusters (K=100) (Y-

axis). Only the top 10 significantly correlated gene pairs are shown. Red dots indicate 

agreement and blue dots indicate opposite directions of gene-gene correlation between 

two methods. Correlated genes are shown as –log10 p- (A) and r- (B) values. scCorr 

detected significant correlation between MAPKAPK2 and ATF4 genes (C) while the 

conventional noncluster single cell-based method showed no significant correlation 

between the two genes (D). Gene-gene correlation varies in different numbers of 

clusters. E and F show the top 10 correlated genes in different numbers of clusters 

partitioned by scCorr among CD4+ T cells evaluated by –log10 p- (E) and r- (F) value. 

The performance of scCorr for cell type identification of CD4+ T cells are shown in G 

(k=117) and H (k=10). The Receiver Operator Characteristic Area Under the Curve 

(AUC) was greater when using scCorr (AUC=0.97 and 0.96) than when using 

nonclustered single cells (AUC=0.55). 
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