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Abstract 15 

 16 

Background: An enhanced International Prognostic Index (NCCN-IPI) was built to better discriminate 17 

diffuse large B-cell lymphoma (DLBCL) patients in the rituximab era. However, there is an urgent need to 18 

identify novel valuable biomarkers in the context of targeted therapies, such as immune checkpoint blockade 19 

(ICB) therapy.  20 

 21 

Methods: Gene expression data and clinical information were obtained from The Cancer Genome Atlas 22 

(TCGA) and Gene Expression Omnibus (GEO) datasets. 73 immune-related hub genes in DLBCL patients 23 

with different IPI levels were identified by weighted gene co-expression network analysis (WGCNA), and 4 24 

genes were selected to construct an IPI-based immune-related prognostic model (IPI-IPM). Afterward, the 25 

genetic, somatic mutational and molecular profiles of IPI-IPM subgroups were analyzed, as well as the 26 

potential clinical response of ICB in different IPI-IPM subgroups.  27 

 28 

Results: The IPI-IPM was constructed base on the expression of LCN2, CD5L, NLRP11 and SERPINB2, 29 

where high-risk patients had shorter overall survival (OS) than low-risk patients, consistent with the results 30 

in the GEO cohorts. The comprehensive results showed that a high IPI-IPM risk score was correlated with 31 

immune-related signaling pathways, high KMT2D and CD79B mutation rates, high infiltration of CD8+ T 32 

cells and macrophages (M1, M2), as well as up-regulation of inhibitory immune checkpoints including PD-33 

L1, LAG3 and BTLA, indicating more potential response to ICB therapy. 34 

 35 

Conclusion: The IPI-IPM has independent prognostic significance for DLBCL patients, which provides an 36 

immunological perspective to elucidate the mechanisms on tumor progression and drug resistance, also sheds 37 

a light on developing immunotherapy for DLBCL. 38 

 39 

Keywords: DLBCL, NCCN-IPI, Immune prognostic model, Nomogram, Immunotherapy 40 
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Introduction 43 

Diffuse large B-cell lymphoma (DLBCL) accounts for about 40% of non-Hodgkin B-cell lymphoma (NHL), 44 

usually presents with advanced stage, both in nodal and in extra-nodal symptomatic disease, with a median 45 

age of 601, 2. Although current frontline DLBCL therapy (the standard R-CHOP chemotherapy regimen) is 46 

associated with a high complete response rates of 70–80%, 10% to 15% of DLBCL patients are refractory, 47 

and almost 40% of cases experience relapse within 2–3 years after initial response3, 4. An enhanced 48 

International Prognostic Index (NCCN-IPI) was built to better discriminate low- and high-risk subgroups in 49 

the rituximab era, which still needs to be further investigated on the robust capacity for risk stratification in 50 

the context of targeted therapies5, 6. Therefore, there is an urgent need to explore potential molecular 51 

mechanism and identify more key biomarkers and therapeutic targets.  52 

 53 

Accumulating evidence has shed light on the prognostic role of tumor microenvironments (TME) in immune 54 

checkpoint blockade therapy (ICB), which was mostly composed of a variety of immune cells (T-, NK-, and 55 

B-cells as well as macrophages) and stroma (blood vessels and extra-cellular matrix)7-9. The TME in DLBCL 56 

could be categorized as “inflamed” (with two main subtypes: immune suppressed and immune evasion) and 57 

“non-inflamed” (“immune excluded”), which are not equally represented among cases of DLBCL, with the 58 

majority of DLBCLs in a “non-inflamed” landscape10, 11. Here, we applied Estimation of STromal and 59 

Immune cells in Malignant Tumors using Expression data (ESTIMATE) to investigate the fraction of stromal 60 

and immune cells in tumor samples using gene expression signature, which helps in elucidating the 61 

facilitating roles of TME to tumor initiation and progression12. 62 

 63 

In this study, we identified immune-related hub genes in DLBCL patients with different IPI levels by 64 

weighted gene co-expression network analysis (WGCNA), and constructed an IPI-based immune-related 65 

prognostic model (IPI-IPM). We then characterized the genetic, somatic mutational and molecular profile of 66 

IPI-IPM subgroups, investigated the expression of several inhibitory immune checkpoints between low- and 67 

high-risk subgroups, and applied tumor immune dysfunction and exclusion (TIDE) and Immune Cell 68 

Abundance Identifier (ImmuCellAI) to roughly predict clinical response of ICB in different IPI-IPM 69 

subgroups. The results showed that IPI-IPM was a promising prognostic biomarker, which also had potential 70 

for use in patient management. 71 

 72 

Results 73 

Identification of immune-related genes in DLBCL patients with different IPI levels 74 

A flowchart was diagramed to demonstrate the procedure and result of our study (Figure 1). Clinical 75 

information of 566 DLBCL patients were obtained from the TCGA database (TCGA-DLBC, CTSP-DLBCL1, 76 

NCICCR-DLBCL).  Among DLBCL patients, 321 (56.71%) were male and 245 (43.29%) were female. Age 77 

of the patients at initial diagnosis ranged from 14 to 92 (median = 62). Other clinical characteristics including 78 
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follow-up period, Ann Arbor stages, LDH ratio, ECOG performance status, number of extranodal sites and 79 

therapy were all documented (Supplementary material 1). Because gene expression data was collected from 80 

3 projects, the principal component  analysis was performed to show there was no obvious batch effect among 81 

the samples (Figure S1A). After excluding samples without IPI score or with IPI score crossing low/high 82 

groups (such as 1-5 or 2-3), 458 DLBCL patients were divided into low-IPI groups (n = 231, 112 at low risk 83 

(IPI = 0-1) and 119 at low-intermediate risk (IPI = 2)), and high-IPI groups (n = 227, 82 at high-intermediate 84 

risk (IPI = 3), 145 at high risk (IPI = 4-5)).  85 

A total 2334 genes (713 up-regulated and 1621 down-regulated) were detected significantly differentially 86 

expressed in the RNA-Seq data (Figure 2A-B and Supplementary material 2). Besides, all genes with the 87 

top 50% variance among samples were included in WGCNA. All clinical characteristics were enrolled as 88 

trait variables, and the best β value in the co-expression network was calculated to be 9 (Figure S2B). Index 89 

for clustering of module eigengenes was modified to be 0.65, so as to construct reasonable number of merged 90 

modules (Figure S2B). As shown in the Module-trait relationship, 10 modules were significantly correlated 91 

with IPI group (Figure 2C), 6 modeules (Tan, Lightcyan, Royalblue, Midnightblue, Skyblue3, Darkgreen) 92 

out of which were significantly associated with gene significance of IPI group (Figures 2D).  93 

Moreover, we collected 4686 immune-related genes in the combination with 6 independent databases 94 

(Supplementary material 3), and identified 73 genes as the IPI-based immune related genes for further 95 

analysis (Figure S2C). 96 

 97 

Construction and validation of an IPI-based immune-related prognostic model  98 

In the training cohort (n = 563), 21 out of the 73 genes were significantly correlated with OS in the univariate 99 

Cox regression analysis (Supplementary material 4). Next, we applied the Lasso penalized Cox regression 100 

to identify the optimal number of genes (n = 5) for risk score model (Figure 3A-B). As a result of stepwise 101 

multivariate Cox regression and AIC analysis, 4 out of 5 genes were selected to construct the most optimal 102 

IPI-based immune-related prognostic model (IPI-IPM) (Figure 3C). Risk score = (expression level of LCN2 103 

* 0.001866 + expression level of CD5L * 0.007183 + expression level of NLRP11 * (-0.046541) + expression 104 

level of SERPINB2 * 0.027145). According to the ROC curve of the median survival time, we identified 105 

1.07 as the cut-off value (Figure S3A-B). Then we calculated the risk score of each patient and divided them 106 

into high and low risk groups. As shown in Figure 3D, Kaplan-Meier survival analysis showed shorter OS 107 

of patients in the high-risk score group (log-rank P = 5.223e-06). The distribution of the risk score, survival 108 

status and the 4-gene expression levels between low- and high-risk score groups was shown in Figure 3E. 109 

As shown in the time-dependent ROC curves, AUCs were 0.694, 0.733, 0.705 for the 1, 3, 5-year, respectively 110 

(Figure 3F). With 1000 cycles of bootstrapping, the C-index of the risk score model was 0.65 (95% CI: 0.60-111 

0.69, P = 1.87e-09). The results showed that IPI-IPM endowed a good capacity in OS prediction. 112 

Moreover, 335 patients with all available clinicopathologic parameters were enrolled for further analysis. 113 

The risk scores, along with age, LDH ratio and number of extranodal site were shown to be independent 114 

prognostic factors for OS (Figure 4A), which were integrated to construct a nomogram model showing IPI-115 
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IPM with the highest risk points (ranging from 0 to 100, Figure 4B). As shown in Figure 4C, AUCs were 116 

0.875, 0.799, 0.808 and 0.837 for the 1, 3, 5-year and the median survival time, respectively. The C-index for 117 

the nomogram was 0.74 (95% CI: 0.689-0.796, P = 1.19e-18). Moreover, the bias-corrected lines for the 118 

nomogram were shown close to the ideal line in 1,3,5-year and the median survival time periods (Figure 119 

S3C). As shown in the DCA analysis, the nomogram along with risk score from IPI-IPM showed relatively 120 

high net benefit (Figure 4D). Altogether, these results suggested that the nomogram had excellent capacity 121 

and consistency for OS prediction in the training cohort. 122 

414 patients from GEO (GSE10846) with survival data and genome expression microarray data were enrolled 123 

for further validation of IPI-IPM. The risk score for each patient was calculated and all patients were divided 124 

into low and high risk score groups likewise. Kaplan-Meier survival analysis showed significantly shorter 125 

OS of patients in the high-risk score group (log-rank P = 0.003619, Figure 4E). And similar nomogram 126 

model was also constructed, presenting the risk scores as the major contributor. Likewise, relevant analyses 127 

were performed to evaluate the the capacity of IPI-IPM and nomogram model in OS prediction (Figure S3D-128 

I). Taken the results of training and testing cohorts together, the nomogram combining IPI-IPM with clinical 129 

characteristics (age, LDH ratio and number of extranodal site) was an excellent model for predicting short-130 

term or long-term OS in DLBCL patients, which might guide the therapeutic strategy decision and long-term 131 

prognosis follow-up. 132 

 133 

Immune related molecular characteristics of IPI-IPM subgroups 134 

As shown in the Figure 5A, Pearson correlation coefficient of every 2 genes from IPI-IPM was less than 0.1, 135 

suggesting that these 4 genes were independently expressed in DLBCL patients. Compared to the low-risk 136 

group, A total 3103 genes (1281 up-regulated and 1822 down-regulated) were detected significantly 137 

differentially expressed in the high-risk group (Figure 5B-C and Supplementary material 5). Additionally, 138 

t-SNE was applied to show an obvious genetic diversity between samples in the high- and low- risk groups 139 

(Figure 5D). The standard GSEA was performed to display that few gene sets were enriched in the high risk 140 

group. Details were all documented in Figure S4 and Supplementary material 6. Furthermore, GSVA was 141 

applied as the extension of GSEA to show that several immune related signaling pathways were significantly 142 

highly enriched in the high risk group (Figure 5E). Based on the somatic mutational data of 37samples from 143 

TCGA，most mutations in low-risk group were missense mutation, while more nonsense mutations were 144 

identified in high-risk group (Figure 6A). Besides, the mutation frequency of top10 genes in high-risk group 145 

was much higher than that in low-risk group. Furthermore, we investigated specific mutation sites of key 146 

genes corresponding to their amino acids location, including KMT2D, CARD11, CD79B and KIRREL3 147 

(Figure 6B).  148 

To gain further molecular insight into the immune characteristics of IPI-IPM, we selected 412 genes by 149 

intersecting DEGs with immune related gene sets. 79 genes correlating with risk scores were furthermore 150 

identified to be IPI-IPM associated immune genes (absolute Pearson correlation coefficient ≥ 0.2). Over 151 

representation analysis was applied to identify the enriched biological functions and pathways, such as humor 152 
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or mucosal immune response, and leukocyte or granulocyte chemotaxis (Figure 7A-B). Detailed results were 153 

listed in Supplementary material 7. Besides, a PPI network via the STRING database was built to identify 154 

top10 degree genes via the cytoscape cytoHubba plugin, including CXCL1, LCN2, SLPI, S100A7, LTF, 155 

SAA1, S100A12, CXCL5, CRISP3, and MUC7 (Figure 7C). 156 

 157 

Immune related TME characteristics of IPI-IPM subgroups 158 

With the ESTIMATE algorithm the immune scores of high risk group was significantly higher than low risk 159 

group, and there was no significant difference of the ESTIMATE scores or stromal scores between these 2 160 

IPI-IPM groups (Figure 8A). Additionally, CIBERSORT was applied to analyze the infiltrating abundances 161 

of various immune cell types in different IPI-IPM subgroups (Figure 8B). CD8+ T cells, activated memory 162 

CD4+ T cells, resting NK cells, and macrophages (M1, M2) were highly infiltrated in the high risk group, 163 

while regulatory T cells (Tregs), activated NK cells, non-activated macrophages (M0) and resting mast cells 164 

were more abundant in the low risk group (Figure 8C).  165 

Moreover, by exploring the TIMER database for relationship between immune infiltration and gene 166 

expression/mutation, we found that expression of LCN2 was positively correlated with infiltrating of B cells, 167 

and the expression of NLRP11 was negatively correlated with infiltrating of Neutrophils (Figure S5A). 168 

Besides, there was significant correlation between the infiltration of B cells, Macrophages, and the copy 169 

number alteration (CNA) of CD5L, NLRP11 (Figure S5B).  170 

 171 

Immune checkpoint blockage response prediction of IPI-IPM subgroups  172 

The clinical development of cancer immunotherapies, along with advances in genomic analysis, has validated 173 

the important role of TME in predicting for sensitivity to immune checkpoint blockade therapy (ICB). We 174 

investigate the expression of several inhibitory immune checkpoints between high- and low-risk groups using 175 

TMM normalized counts data. As shown in Figure 9A, the expression of PD-L1, IDO-1, IDO-2 and LAG3 176 

were significantly up-regulated in high-risk group, as well as BTLA, VISTA, KIR2DL1, KIR2DL3, 177 

KIR2DS4. 178 

We then used TIDE to assess the potential clinical efficacy of immunotherapy in different IPI-IPM subgroups, 179 

where higher TIDE prediction score (based on T cell dysfunction and T cell exclusion) represented higher 180 

potential for immune evasion, thus less benefit from ICB. As shown in Figure 9B, the high-risk group was 181 

correlated with a lower T cell exclusion score, lower FAP+ CAFs, and higher IFN-γ. Furthermore, we used 182 

another bioinformatic tool based on ssGSEA - ImmuCellAI to predict the abundance of critical TILs that 183 

related to the response to immunotherapy. There were more cytotoxic CD8+ T cells (CTL) and mucosal-184 

associated invariant T cells (MAIT), but less exhausted CD8+ T cells, natural and induced Tregs in high-risk 185 

groups (Figure 9C). 186 

 187 

 188 
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Discussion 189 

Recent groundbreaking insights into the pronounced genomic heterogeneity of DLBCL have identified 190 

potential biomarkers for patient diagnosis, prognostication, and therapy, paving the way for a standardized 191 

application of precision medicine1, 3, 4, 6, 13, 14. The enhanced NCCN-IPI was built to stratify prognostically 192 

relevant subgroups of DLBCL patients with R-CHOP therapy, the robustness of which however needs to be 193 

further investigated in the context of targeted therapies and novel biomarkers. In the current study, we used 194 

WGCNA to profile IPI-based immune-related gene set and constructed a 4-gene IPI-IPM (SERPINB2, CD5L, 195 

LCN2 and NLRP11), with shorter OS in high-risk patients and longer OS in low-risk patients in both TCGA 196 

and GEO cohorts. 197 

 198 

SerpinB2 belongs to a superfamily of serpins, which has diverse roles in cancer development and metastasis 199 

via ECM remodeling15. SerpinB2 has been shown to be associated with the survival in various cancer types 200 

including lung, breast, bladder, colorectal, and ovarian cancers15. Besides, SerpinB2 is upregulated in 201 

activated macrophages, monocytes, and fibroblasts, also exerting a protective effect on the TCDD-mediated 202 

immunosuppression of the B cells16. CD5-like protein (CD5L) is a secreted glycoprotein mainly from 203 

macrophages, which involves in infection, atherosclerosis, and cancer by regulating inflammatory 204 

responses17. Sanjurjo et al. have demonstrated that CD5L drives macrophage polarization toward an anti-205 

inflammatory and pro-resolving phenotype. Moreover, CD5L has been shown to enhance the proliferation of 206 

liver cancer cells and protect them from cisplatin-induced apoptosis, consistent with elevated CD5L 207 

expression favoring worse prognosis18. Lipocalin-2 (LCN2) is a secreted glycoprotein of the adipokine 208 

superfamily, dysregulation of which has been tied to obesity, metabolic syndrome, cardiovascular diseases, 209 

and cancer19. Several studies have revealed elevated LCN2 expression in multiple cancers, and correlated 210 

LCN2 overexpression with the progression and poor prognosis of breast, gastric, and pancreatic cancer. 211 

Additionally, Gomez-Chou et al. firstly showed that LCN2 modulated pro-inflammatory factors production 212 

in pancreatic stromal cells and reduced macrophages infiltration in the stroma of pancreatic ductal 213 

adenocarcinoma (PDAC)20. NLRP11, a primate-specific member of the NOD-like receptor (NLR), is highly 214 

expressed in the testes, ovaries, lungs and other various tissues, with the important role in both development 215 

and immune regulation21. Ellwanger et al. reported that NLRP11 is expressed in a panel of immune cells and 216 

functions as a negative regulator of inflammatory responses by inhibiting NF-κB and IFN pathways. 217 

Furthermore, the differential expression of NLRP11 in B cell lymphoma lines and cancer entities suggested 218 

the potential role of NLRP11 in the malignant transformation process. 219 

 220 

Additionally, we demonstrated that the risk score remained an independent prognostic factor after the 221 

modification of clinical characteristics, suggesting the promising potential of local immune status in accurate 222 

prognosis. Therefore, we developed a nomogram model combining the risk score and other clinical features 223 

(age, LDH ratio and number of extranodal site), to predict OS probability of DLBCL patients in 1-, 3- and 5-224 

year and the median survival time, respectively. And the calibration curve showed satisfactory agreement 225 
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between the observed values and the predicted values in 1-, 3-, 5-year and the median survival time periods. 226 

The result of DCA analysis also presented the nomogram with relatively high net benefit. Moreover, our 227 

nomogram provides a complementary perspective on individualizing tumors and develops an individual 228 

scoring system for patients, thus arising to be a promising tool for clinicians in the future. 229 

 230 

The overall somatic mutational profile showed more nonsense mutations in high-risk group, and the largest 231 

difference in mutations was KMT2D (43.75% in the high risk samples vs. 19.05% in the low risk samples). 232 

KMT2D is a tumor suppressor gene in DLBCL and genetic ablation of KMT2D in a BCL2-overexpression 233 

driven model of B-cell lymphoma promotes a higher penetrance of DLBCL22. Additionally, higher mutation 234 

frequency of CD79B was found in the high risk group, indicating that high-risk DLBCLs promote 235 

proliferation through chronic active B-cell receptor (BCR) signaling and NF-κB constitutive activation23. 236 

Therefore, high-risk DLBCL patients with high KMT2D and CD79B mutations have a worse outcome, in 237 

agreement with our survival results. 238 

 239 

In the GSEA analysis between the low and high risk group patients, few immune-related gene sets, such as 240 

immune response, cytokine/chemokine signaling, and NOD-like receptor signaling pathway, were enriched 241 

for the high-risk group, but not in the low-risk group. Therefore, we speculated that the local immune 242 

signature conferred an intense immune phenotype in the high-risk group and a weaker immune phenotype in 243 

the low risk group. Moreover, 79 immune-related DEGs correlating with risk scores were identified as IPI-244 

IPM associated immune genes sets. Several immune-related pathways including immune response and 245 

chemotaxis were enriched, and top10 degree genes such as CXCL1, CXCL5, LCN2, S100A7, and MUC7, 246 

were identified through a PPI network via the STRING database. 247 

 248 

Moreover, we evaluated the tumor purity and immune/stromal cells infiltration where the immune scores of 249 

high-risk group was significantly higher than that of low-risk group. Additionally, the composition of some 250 

immune cells was different between two IPI-IPM subgroups, where CD8+ T cells and macrophages (M1, 251 

M2) were highly infiltrated in high-risk group, while regulatory T cells (Tregs) and non-activated 252 

macrophages (M0) were more abundant in the low-risk group. Several studies have reported an inferior effect 253 

of tumor-infiltrating cytotoxic cells on the outcome in DLBCL, the reason for which is that malignant cells 254 

with high CD8+ T cells infiltration might be more resistant to cell-mediated killing, and these T cells might 255 

be in a dysfunctional state, thus inducing immune suppression8, 9. Also, an increase in the M2 component of 256 

TAM has been shown to correlate with a poor prognosis in DLBCL, where M2 macrophages demonstrates a 257 

high rate of PD-L1 expression, likely allowing tumor cells to escape immune control.  258 

 259 

Next, we explored the expression of several inhibitory immune checkpoints between IPI-IPM subgroups so 260 

as to predict the response for immunotherapy, where the expression of PD-L1, LAG3 and BTLA were 261 

significantly up-regulated in high-risk group. Although PD-L1 expression was shown to correlate with 262 
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clinical response to PD-1 blockade and prognosis in solid tumors, the expression patterns of PD-1 and PD-263 

L1 are complex and variable in lymphoid malignancies24, 25. Kim et al. has found that high tumoral PD-L1 264 

expression is associated with poor prognosis in primary DLBCL of the central nervous system26. 265 

Combination with PD-L1 blockade, other immune checkpoint inhibitors, such as CTLA4, TIM3, LAG3, and 266 

BTLA, have emerged as the novel strategy for lymphoma immunotherapy10, 27. Keane et al. has reported the 267 

co-expression of LAG3 with PD-1 and TIM-3 on CD4+ Tregs and CD8+ TILs, and high LAG3 expression 268 

is associated with poor outcome of DLBCL patients28. Therefore, the risk score from our model was 269 

compatible with the ability of tumor-infiltrating immune cells to determine the expression of immune 270 

checkpoints, suggesting that the poor prognosis of high-risk group may be due to the stronger 271 

immunosuppressive TME, and high-risk patients will benefit more from immune checkpoint inhibitors than 272 

low-risk patients, thereby resulting in a better prognosis. 273 

 274 

Furthermore, we used TIDE to assess the potential clinical efficacy of immunotherapy in different IPI-IPM 275 

subgroups, where higher TIDE prediction score (based on T cell dysfunction and T cell exclusion) represented 276 

higher potential for immune evasion, thus less benefit from ICB. In our study, there is no significant 277 

difference on TIDE score and T cells dysfunction between these 2 subgroups, while the high-risk group was 278 

correlated with a lower T cell exclusion score (using MDSC, M2-TAM and CAF gene signature). Additionally, 279 

ImmuCellAI was applied to show more CD8+ CTLs, but less exhausted CD8+ T cells and Tregs in high-risk 280 

groups. The complex immune-escape mechanisms in DLBCL may be the most important reason for the 281 

inconsistent results compared to that in most solid tumor data sets2, 3, 10, 11. Besides, Muris el al. has found 282 

that a high percentage of activated CTLs is a strong indicator for an unfavorable clinical outcome in patients 283 

with primary nodal DLBCL29.  Also, more samples are warranted to further validation. 284 

 285 

Our research provides new insights into the TME and immune-related therapies for DLBCL. However, it is 286 

noteworthy that some limitations came out because the conclusion was drawn from data from retrospective 287 

studies, and prospective studies are warranted to further confirm our results. In addition, functional and 288 

mechanistic studies of the genes in our risk model should be conducted to support their clinical application. 289 

 290 

Materials and Methods 291 

Data selection and acquisition 292 

The study reported herein fully satisfies the TCGA publication requirements 293 

(http://cancergenome.nih.gov/publications/publicationguidelines). Gene expression data and the 294 

corresponding clinical data for DLBCL samples (Project: TCGA-DLBC, CTSP-DLBCL1, NCICCR-DLBCL) 295 

were acquired from the Cancer Genome Atlas (TCGA) website (https://portal.gdc.cancer.gov/repository) 296 

through the TCGAbiolinks30 R package in R software (version 4.0.2, https://www.r-project.org) and Rstudio 297 

software (Version 1.3.1073, https://rstudio.com). Among them, available gene expression quantification data 298 

of 570 samples were downloaded using the Illumina HTSeq-Counts and HTSeq-FPKM workflow types. The 299 
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latest Homo_sapiens.GRCh38.101.chr.gtf file (https://www.ensembl.org) was used for gene symbol 300 

annotation. The trimmed mean of M values (TMM) method was applied for the normalization of downloaded 301 

gene expression data by using the edgeR R package31. Sequencing data of low abundance were eliminated. 302 

The Principal components analysis 303 

The Principal components analysis32 for samples of different projects was performed and visualized by using 304 

the psych and factoextra packages of R. 305 

Identification of differentially expressed genes 306 

458 samples were divided to two groups according to IPI scores, and he edgeR R package31 was applied to 307 

identify differentially expressed genes (DEGs) between high- and low- IPI groups. The differential 308 

expression was defined with a |log2 fold-change (FC)| > 1 and the false discovery rate (FDR) value < 0.01.  309 

Gene functional enrichment analysis 310 

The clusterProfiler R package33 was used for both over representation analysis and gene set enrichment 311 

analysis. Analysis of Gene Ontology (GO)34, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway35, 312 

and Reactome pathway36 was contained in the present study. P＜ 0.05 was considered statistically 313 

significance. The standard gene set enrichment analysis was performed by using the normalized counts data 314 

via the GSEA software (http://software.broadinstitute.org/gsea). The threshold for GSEA was set at the 315 

nominal p-value < 0.05, FDR <0.25 and | normalized enrichment score (NES) | > 1.0. The non-parametric 316 

gene set variation analysis was further performed with the GSVA package of R. The annotated Hallmark 317 

gene sets, Canonical pathways gene sets (KEGG and Reactome) and Ontology gene sets (GO biological 318 

process) were selected as the reference gene sets. 319 

Weighted gene co-expression network analysis 320 

Weighted gene co-expression network analysis (WGCNA)37, 38 is commonly used for analyzing high-321 

throughput gene expression data with different characteristics, so as to mine gene co-expression networks 322 

and intramodular hub genes based on pairwise correlations in genomic applications. In the present study, we 323 

applied the WGCNA R package38 to analyze key gene clusters that were most relevant to IPI scores in 324 

DLBCL samples.  325 

Construction and validation of IPI-based immune-related prognostic model (IPI-IPM) 326 

73 IPI-based immune related genes were selected to construct the prognostic risk model. The training cohort 327 

(563 samples from TCGA) was used for the construction of IPI-IPM, while the testing cohort (414 patients 328 

from Gene Expression Omnibus (GEO), GSE10846) was used for external validation. The Survival R 329 

package was utilized to analyze the correlation between the expression of objective gene sets and DLBCL 330 

patients' overall survival (OS). The univariate Cox regression analysis was used to screen genes with P < 331 

0.05. Lasso (least absolute shrinkage and selection operator) regression analysis was applied for variable 332 

selection and regularization to enhance the prediction accuracy and interpretability39. Then the multivariate 333 

Cox regression analysis was carried out to select the optimal gene sets, according to the method of Akaike 334 

information criterion (AIC)40. For each sample, the risk score = SUM (the normalized expression level of 335 
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each gene * the corresponding regression coefficient).  336 

563 DLBCL patients in the training cohort were divided to low- and high- risk score groups according to the 337 

cut-off value identified in the receiver operating characteristic (ROC) curve of the median survival time. 338 

Then, Kaplan-Meier survival analysis and time-dependent ROC curve analysiswere performed to evaluate 339 

the prognostic significance and accuracy of IPI-IPM. Besides, Harrell's concordance index (C-index) was 340 

calculated by using the survcomp R package41.  341 

The univariate and multivariate Cox regression analyses were performed on the risk score and all available 342 

clinicopathologic parameters, such as age, gender, Ann Arbor clinical stage, LDH ratio, ECOG performance 343 

status, number of extranodal site. Then, all independent prognostic factors were retained to construct a 344 

prognostic nomogram for OS probability assessment by using the rms and mstate R packages42. The 345 

discriminative efficacy, consistency and clinical judgment utility of the nomogram was evaluated by time-346 

dependent ROC curve43,C-index, time-dependent Calibration plots, and  decision curve analysis (DCA) using 347 

the rmda R package44. As for the external validation, all above methods were used to evaluate the prognostic 348 

model and nomogram in the testing cohort. 349 

Comprehensive analysis of molecular and immune characteristics in different IPI-350 

IPM subgroups  351 

DEGs between high and low risk score groups were analyzed following the criteria of |log2FC| > 1 and FDR 352 

value < 0.01. The gene expression of samples between IPI-IPM subgroups were analyzed with the t-353 

distributed stochastic neighbor embedding (t-SNE)45 method by using the Rtsne package of R and then 354 

visualized on the 3D map with the scatterplot3d package of R. And the quantity and quality of gene mutations 355 

were analyzed in IPI-IPM subgroups by using the Maftools R package46. The intersection of DEGs and 356 

immune related gene set was used to construct a protein-protein interaction (PPI) network47 based on the 357 

STRING database48, and the Cytoscape plugin cytoHubba was utilized to identify top10 degree genes in the 358 

network49.   359 

The ESTIMATE algorithm (Estimation of Stromal and Immune cells in Malignant Tumor tissues using 360 

Expression data)12, a bioinformatic tool for assessing tumor purity and stromal/immune cells infiltration in 361 

tumor tissues, was used to calculate the corresponding infiltrating scores of the 570 DLBCL samples in the 362 

present study. Besides, the gene expression data of 570 DLBCL samples were imported into CIBERSORT 363 

(HTTPS://cibersort.stanford.edu/)50 and iterated 1000 times to estimate the relative proportion of 22 types of 364 

immune cells. The TIMER database51 was explored to evaluate the correlation between immune infiltration 365 

and critical gene expression/mutation. TIDE52 and immuneAI53 were explored to assess the potential clinical 366 

efficacy of immunotherapy in different IPI-IPM subgroups. 367 

Data Analysis 368 

All statistical data was analyzed in the R software (version 4.0.2. An independent t-test was applied to 369 

compare continuous variables between two groups. Immune scores calculated via ESTIMATE between 370 

groups were compared by the Wilcoxon test). Statistical tests were two-tailed with statistical significance 371 

level set at P < 0.05. 372 
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Figure legends 541 

 542 

Figure 1. A flow chart for the process of the present study. 543 

 544 

  545 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2021.03.03.433839doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.03.433839


 

17 
 

546 

Figure 2. Identification of immune-related genes in DLBCL patients with different IPI levels. 547 

 (A-B) Heatmap and volcano plot of differentially expressed genes between the high and low IPI groups. (C-548 

D) Identification of IPI related gene clusters using WGCNA: Analysis and visualization of Module-trait 549 

relationship (C); and Correlation between gene module membership and gene significance for IPI in six 550 

modules (D). 551 

 552 

Figure 3. Construction and validation of an IPI-based immune-related prognostic model. 553 

 (A and B) Plots of the Lasso penalized Cox regression. (C) A forest plot of the genes that compose the IPI-554 

based immune-related prognostic model. (D) Survival analysis of overall survival between high and low IPI-555 

IPM risk groups. (E) Risk score, survival status and the gene expression of each patient in high and low IPI-556 
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IPM risk groups. (F) time-dependent ROC curves for the IPI-IPM risk score model.  557 

 558 

Figure 4. Construction and validation of an IPI-based immune-related nomogram model. 559 

(A-B) The univariate analysis and multivariate analysis of IPI-IPM risk score and clinicopathologic 560 

parameters. (C) Nomogram for the prediction of the survival probability of 1-, 3-, and 5-year overall survival. 561 

(D) time-dependent ROC curves for the Nomogram. (E) The DCA analysis of all parameters in the nomogram. 562 

(F) Survival analysis of overall survival between high and low risk groups in the testing (GSE10846) cohort. 563 

 564 

Figure 5. Molecular characteristics of IPI-IPM associated immune genes.  565 

(A) Pearson correlation analysis of the genes that compose the IPI-IPM. (B-C) Heatmap and volcano plot of 566 

differentially expressed genes between high and low IPI-IPM risk groups. (D) The t-SNE algorithm were 567 

applied to show the difference of DLBCL patients between the high and low IPI-IPM risk groups. (E) GSVA 568 

heatmaps of IPI-IPM risk groups regarding the Hallmark gene sets, GO biological processes terms, KEGG 569 

pathways and Reactome pathways. 570 
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 571 

Figure 6. Somatic mutational profiles of IPI-IPM subgroups. 572 

(A) Differentially mutated genes between high and low IPI-IPM risk groups. Top 10 Mutated genes (rows) 573 

are ordered by mutation rate. Samples (columns) are be classified into high and low IPI-IPM risk groups. 574 

The color-coding legends indicates the mutation types and survival status of patients. (B) Lollipop plots for 575 

amino acid changes of KMT2D, CARD11, CD79B, and KIRREL3. 576 

 577 

Figure 7. Immune characteristics of IPI-IPM subgroups. 578 

(A and B) Over representative analysis: A Chord map of the enriched biological processes (A) and a Sankey 579 

plot of the enriched pathways (B); (C) a protein-protein interaction network based on the STRING database. 580 
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 581 

Figure 8. Tumor immune microenvironment (TME) characteristics of IPI-IPM subgroups.  582 

(A) Analysis of tumor purity and immune/stromal cells infiltration by using the ESTIMATE algorithm. (B 583 

and C) Analysis of immune cells infiltration by using the CIBERSORT algorithm: Relative proportion of 584 

each type of cells infiltration in DLBCL patients (B) and a bar plot visualizing significantly differentially 585 

infiltrated cells between high and low IPI-IPM risk groups (C). (D) Profile of anticancer immune 586 

microenvironment based on the TIP database between high and low IPI-IPM risk groups. 587 

 588 

Figure 9. Immune checkpoint blockage (ICB) response prediction of IPI-IPM subgroups. 589 

(A) The expression of inhibitory immune checkpoints between high and low IPI-IPM risk groups. (B) 590 

Analysis of T cell dysfunction, T cell exclusion, FAP+ CAFs, and IFN-γ signature between high and low IPI-591 

IPM risk groups based on TIDE algorithm. (C) Prediction of the infiltration of cytotoxic CD8+ T cells, 592 

mucosal-associated invariant T cells, exhausted CD8+ T cells, natural and induced Tregs between high and 593 

low IPI-IPM risk groups based on ImmuCellAI database. 594 

 595 
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