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 ABSTRACT  18 

Rift Valley fever (RVF) has been linked with recurrent outbreaks among humans and livestock in 19 

several parts of the globe. Predicting RVF's habitat suitability under different climate scenarios 20 

offers vital information for developing informed management schemes. The present study 21 

evaluated the probable impacts of climate change on the distribution of RVF disease in East Africa 22 

(E. A.), using the maximum entropy (MaxEnt) model and the disease outbreak cases. Considering 23 

the potential of the spread of the disease in the East Africa region, we utilized two representative 24 

concentration pathways (RCP 4.5 and RCP 8.5) climate scenarios in the 2050s and 2070s (average 25 

for 2041-2060, and 2061-2080), respectively. All models had satisfactory AUC values of more 26 

than 0.809, which are considered excellent. Jackknife tests revealed that Bio4 (temperature 27 

seasonality), land use, and population density were the main factors influencing RVF distribution 28 

in the region. From the risk maps generated, we infer that, without regulations, this disease might 29 

establish itself across more extensive areas in the region, including most of Rwanda and Burundi. 30 

The ongoing trade between East African countries and changing climates could intensify RVF 31 

spread into new geographic extents with suitable habitats for the important zoonosis. The predicted 32 

suitable areas for RVF in eastern Kenya, southern Tanzania, and Somalia overlaps to a large extent 33 

where cattle keeping and pastoralism are highly practiced, thereby signifying the urgency to 34 

manage and control the disease. This work validates RVF outbreak cases' effectiveness to map the 35 

disease's distribution, thus contributing to enhanced ecological modeling and improved disease 36 

tracking and control efforts in East Africa.  37 

Keywords: Ecological niche modeling, East Africa, Climate change, Outbreak cases, Maxent; Rift 38 

Valley fever 39 
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Introduction  41 

Industrial civilization progress fosters human society's growth (1) and poses many global 42 

challenges, including economic, energy, population, environmental challenges, and climate 43 

change (2). Climate change, defined as the gradual alteration of climatic properties or weather 44 

patterns in a statistically identifiable manner, may occur naturally or be mainly anthropogenic (3). 45 

Human activities have been shown to have facilitated about 1.0°C of global warming (4), and it is 46 

projected that these temperatures may rise to 1.5°C by the 2050s if the present trend continues (5). 47 

This, in essence, will lead to cycles of extreme weather, heatwaves, and flooding.  48 

Fluctuations in climate have been related to many prevalent diseases triggered by floods and 49 

heatwaves, which alter the transmission of infectious diseases (6-7). Diseases transmitted by 50 

vectors have a propensity for association with specific environmental conditions,  following their 51 

sensitivity to those conditions (8-9). The vector limit of climate tolerance constrains the occurrence 52 

and distribution of viral zoonosis (5, 10). Indeed, climate change will likely affect vector-borne 53 

disease (VBD) distribution and their emergence in areas where the diseases have not been observed 54 

before due to human movement, animal transportation, and vector range expansion (11-12). 55 

Climate and weather may also influence pathogens' ecology as pathogens replicate at ambient 56 

temperatures (13). 57 

Rift Valley fever (RVF), which has intricated multispecies epidemiology, is a mosquito-borne 58 

zoonosis caused by the Rift Valley fever virus (RVFV). Previous studies have revealed that many 59 

vectors are responsible for RVFV transmission in Africa, including Culex sp., Aedes sp., and 60 

Mansoni sp. (14-15). RVF disease is known to cause recurrent epidemics in Africa, especially in 61 
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the East African region (16-17), where it has led to significant economic losses due to livestock 62 

deaths and human illness (18). 63 

The extent and frequency of weather events are projected to change with global climate change 64 

(19), which will, in turn, increase the risk, frequency, and distribution of RVF (18, 20). Climate 65 

variations in areas with similar conditions could result in new RVF outbreaks and overburden in 66 

RVF endemic regions (21-22). Besides, future climate change effects have proven to be 67 

challenging to evaluate, but infectious zoonotic diseases will undoubtedly have an increased 68 

impact on global health (7). Therefore, improved mitigation and management strategies of climate-69 

sensitive zoonosis are unreservedly essential (23), and the effective modeling of the climate change 70 

impacts on their spread is vital for understanding the disease and will help future interventions 71 

(24). 72 

Previous studies have utilized different modeling approaches to determine the influence of 73 

climate change on RVF distribution. For instance, the SEIR model has been used to assess the 74 

climate change impact on RVF dynamics by combining both vertical transmission and human to 75 

mosquito transmission with climate-driven parameters, i.e., temperature and precipitation (21). 76 

Mathematical models, e.g., the Liverpool RVF model, have been used to describe the intricate 77 

relationship between the host epidemiology, the vector's life cycle coupled with climatic factors 78 

(25). Ecoepidemiological mechanistic models have been utilized to explain how vectors' ecology 79 

and RVF's epidemiology are influenced by temperature and the presence of water bodies (15). 80 

Bayesian models have been implemented to produce risk maps of RVF using spatial and seasonal 81 

environmental drivers, together with the effects of climatic oscillations (18). Predictive models, 82 

e.g., the Species distribution models (SDMs), commonly reffered to as Ecological Niche Models 83 
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(ENMs), have been applied to assess the distribution of RVF in Africa using environmental 84 

covariates; either regionally (26) or locally (27-29).  85 

The fine-scale assessment of RVF disease outbreak and distribution in East Africa in an ENM 86 

approach has been scantly assessed under a climate change context (17), and limited information 87 

is available on the influence of global climate change on RVF distribution under future projections. 88 

It has otherwise been overscored by the overall modeling of the disease's distribution across the 89 

African continent reported elsewhere (18). Therefore, we build upon the previous studies 90 

framework to bridge this knowledge gap by conducting the fine-scale distribution of RVF using 91 

environmental covariates (i.e., bioclimatic, land-use, livestock, and human density variables) to 92 

assess their influence on the distribution of RVF. Here, we used the Maximum Entropy (MaxEnt) 93 

in an ENM approach to evaluate the RVF current range dynamics, identified potential hotspots for 94 

the emergence and re-emergence, predicted its future climatic suitability, and assessed the 95 

potential spread risks of RVF in East Africa. The standard and efficiency of mitigation strategies 96 

against RVF in East Africa are vital in light of the risks posed by the spread of this important 97 

zoonotic.  98 

We (a) tested the advantages of integrating RVFV outbreaks, livestock, and human population 99 

densities in ENMs to locate areas of high environmental suitability for the disease in East Africa, 100 

and (b) generated a risk map of the suitable RVF niches. The present results highlight the 101 

importance of integrating outbreak cases to simulate zoonotic habitat suitability and assess a 102 

restricted region compared to a broader one by providing the potentially missed information or 103 

risk areas that could be otherwise overlooked, thus refining the appropriateness of ENMs. 104 

  105 
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Results 106 

RVF risk distribution 107 

We retained 233 RVF outbreak records after initial data cleaning and 186 after a spatial rarefying 108 

approach (Figure 1). Package ENmeval results submitted the usage of hinge features for RVFV 109 

modeling. A model is good when with AUC values above 0.8. The current distribution model for 110 

RVF had an average AUC of 0.886, signifying the model's good performance (Figure 2). 111 

Significant predictors of RVF risk distribution were temperature seasonality (Bio4), land use, 112 

population density, precipitation of coldest quarter (Bio19), elevation, and cattle, which 113 

cumulatively contributed to 55.3% of the distribution of RVF in East Africa. Of the six factors, we 114 

observe that temperature seasonality has the highest contribution (10.6%) to the final model (AUC 115 

= 0.886) (Table 2; Figure S1). Jackknife analysis showed that cattle density, sheep density, goat 116 

density, and human population density had the most significant gain when used alone, revealing 117 

that each has valuable information when used independently. When the sheep density variable is 118 

excluded, we observe that the most gain is decreased, inferring that this variable has a lot of 119 

information absent in the other variables (Figure S2). The mean temperature of the wettest quarter 120 

(Bio8) and goats were marginally important in determining the distribution of RVF in East Africa, 121 

and excluding them did not rigorously influence the performance of the model. The model 122 

predictions for the current potential distribution for the RVF were high in Kenya and Tanzania. 123 

We also identified that high RVF suitability areas concur with low elevation areas 10 - 1500 m 124 

a.s.l. (Figures 1 and 2).  125 

The geographic distribution of predicted habitat suitability for RVF across East Africa is 126 

defined in more detail below and outlined in Figure 2. The highest probability occurrence is 127 
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estimated for eastern Kenya and southern Somalia, east-central to southern Tanzania,  north of 128 

Lake Malawi, central Rwanda, southwestern Uganda, south of Mt. Kilimanjaro, and along the 129 

coastline from Somalia to Tanzania through Kenya. The lowest habitat suitability for RVF in the 130 

current period are projected for a large area of Tanzania Plains, northern Uganda, and northwestern 131 

Kenya towards Lake Turkana.  132 

 133 

Future predicted RVF probable distribution for 2050 and 2070 134 

The model performance of future RVF potential distribution was assessed according to the AUC 135 

values. All the AUC values for the period 2050 and 2070 under the two RCPs gave satisfactory 136 

values, ranging between 0.809 and 0.895, the highest (Table 2). The general distribution patterns 137 

throughout East Africa between the present-day and future models outlined realistic resemblances 138 

apart from some areas. Additionally, our model projections for 2050 and 2070 revealed that RVF 139 

differs in potential risk areas among both the RCPs, with an increase and decrease in its habitat 140 

suitability (Figure 3). Under RCP 8.5 and RCP 4.5 scenarios in the period 2050 and 2070, RVF's 141 

habitat suitability was observed to expand in the Somalia border with Kenya, Southern parts of 142 

South Sudan, and contract in southwestern parts of Uganda (Figure 4).  There was a sizeable 143 

expansion in habitat suitability for RVF in southern and central Uganda in the period 2050 and 144 

2070 under RCP 4.5 and RCP 8.5. A large area in northern Zambia in the period 2050 was 145 

projected to expand under both RCP 4.5 and RCP 8.5 scenarios. In contrast, RVF's habitat 146 

suitability in Rwanda was observed to contract in all future scenarios under both periods. 147 

  148 
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Discussion 149 

Knowledge of zoonotic diseases' prevalence is usually the main driving force behind evaluating 150 

how they thrive. Developing species distribution models of such diseases may help researchers 151 

quantify the magnitude, extent, and risks posed to humans, plants and animals, and their potential 152 

impacts on communities (30-31). In this study, we present the main results of MaxEnt modeling 153 

using environmental covariates and RVF outbreak cases on the disease distribution in East Africa. 154 

This is, to our knowledge, one of the most comprehensive studies about the topic in the region.  155 

Uncertainty of the results 156 

Predictive habitat suitability in an ENM approach for any zoonotic is efficient as this helps to 157 

inform applied management (29). Regardless, several demerits still exist to niche modeling, for 158 

instance, low transferability in the future and the high differences between simulation results and 159 

the suitable niches for the diseases, which might lead to biased conclusions drawn from the models. 160 

Therefore, improving the simulated model transferability may generate relevant reference data for 161 

management and disease tracking and accurately predict potential niches.  162 

Previous studies have utilized MaxEnt models that have proved to outperform other models 163 

(32). The present study models were validated by AUC statistics of the ROC, which showed high 164 

reliability. Nevertheless, few uncertainties still existed that could not be avoided in the simulations 165 

of the models, just like any other model. For instance, for some points that lacked absolute 166 

coordinates, online gazetteers and Google earth were used to geo-reference these localities using 167 

the available descriptions. 168 

Potential distribution and importance of variables 169 
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A set of bioclimatic variables, elevation, and animal and human population densities contribute to 170 

RVF distribution in East Africa. The variables Bio4 (temperature seasonality), land use, and 171 

population density contributed strongly to defining the distribution RVF. The variations in 172 

temperature (temperature seasonality) appeared to favor the expansion of the distributional ranges 173 

of RVF from lowlands to highlands or mountainous regions. The results are consistent with 174 

previous reports that RVF persists in the middle to low land areas in southern Africa and Eastern 175 

Africa (18) and occupies areas with dynamic temperature conditions and varying habitats ranging 176 

from wet to dry (17, 21). 177 

The highest suitable areas for the distribution of RVF were located in eastern Kenya and 178 

southern Somalia, southern Tanzania and along the Indian Ocean coastline, and in some patches 179 

on the borders between Uganda and Kenya, and central Rwanda. These areas were observed to be 180 

low to midland areas. Livestock keeping is mainly practiced in the lowlands to midlands or plains, 181 

where grasslands are denser than forests (17, 27); as such, livestock densities were specified by 182 

the models as important variables affecting RVF distribution. Therefore, these areas are ideally 183 

suitable niches for the persistence of RVF and correspond to areas where cattle keeping is practiced 184 

with altitude ranging from 0-3000asl and with varying microclimates with low to high temperature 185 

and low to high precipitation. Consequently, from the results, we deduce that livestock densities 186 

seemingly were essential components for all RVF model distributions. 187 

Our results agree with various zoonosis characteristics that can reappear and emerge in newly 188 

established areas (31). For instance, previous reports have shown that in the Indian Ocean coasts 189 

of E.A, the Chikungunya epidemic emerges after warm and dry conditions preceded by heavy rains 190 

(33-34). These heavy rains are observed to replenish water reserves during drought periods, and 191 

in turn, vectors breed successfully and cause risks for Chikungunya circulation (34).  192 
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Future distributions 193 

Future projections showed that suitable niches would expand in the 2050s and the 2070s under 194 

most climate change scenarios, while in some areas, the niches would contract. Under the RCP8.5 195 

scenario of no mitigation of greenhouse gas emission in the 2050s and the RCP4.5 of controlled 196 

greenhouse gas emission, we observe the highest range expansion (Figure 4). We also observe 197 

RVF niches' contraction in northern Kenya, southern Tanzania in the region bordering Zambia, 198 

the coastal areas in all scenarios. Similarly, RVF ranges are observed to decrease most under 199 

RCP4.5 in the 2050s. Under all RCP scenarios except RCP8.5 in the 2050s, parts of central and 200 

western Uganda, southern Rwanda, and northern Burundi obverse significant reduction of the 201 

suitable RVF niches. These results are comparable to a previous study by Bett et al. (17).  Changes 202 

in rainfall and temperatures will likely make high elevation regions more susceptible to global 203 

warming, which will have an adverse impact on the RVF niches (15). Range expansion under 204 

climate change is typical of VBDs, which are favored by an increase in temperatures and an 205 

increase in precipitation (35-36). The West Nile virus ranges were also predicted to expand in the 206 

future in a previous study (32).  207 

Undoubtedly, most RVF ranges in East Africa will increase due to climate change, pastoralism, 208 

human movement, anthropogenic practices, and trade in the East Africa region (37, 38, 39). Due 209 

to the alteration of rainfall and temperatures, the RVF’s vector limits are largely susceptible to 210 

global warming, which will have a considerable impact on their habitat preferences and 211 

reproduction sites' availability (24, 35). Global climate change is projected to influence vectors, 212 

hosts, and VBDs distributions since they are all affected by temperatures (24). Therefore, VBDs 213 

will likely move polewards and to higher elevations as rapid changes in temperature drive species 214 

migrations to higher elevations (39). In addition, the gradual population growth and convention of 215 
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non-agricultural areas in highlands could pose risks of RVF vectors establishment in higher 216 

elevations and latitude gradients.  217 

The recurrence of pathogens by opportunistic host switching may persist as a significant cause 218 

of human transmittable diseases (20). The present-day niche assessment for RVF ranges and their 219 

habitat preference changes due to global climate change demonstrates concern for the public health 220 

status and further damage to livestock production. Strategies for improving public health have 221 

concentrated on enhancing monitoring in places with suspected high prevalent areas (40). With 222 

each successive outbreak, RVF has shown to be expanding; this could be attributed to the 223 

establishment of favorable climate in new areas through climate change and the introduction of 224 

vectors into new territories with favorable environments.  225 

While climate is known to structure the ecology and distribution of species (35), other factors 226 

also come into the picture, for instance, vector abundance and distribution, land use; a sensible 227 

assumption is that climate is a significant driving force. It is estimated that RVF overburden may 228 

cause significant losses in cattle production in East Africa; however, monetary losses arising from 229 

it have not been accurately quantified and have continually risen over the years (41). To mitigate 230 

the losses brought about by VBDs, and effectively control their re-emergence, the epidemiology 231 

of the vectors and pathogens, hosts, and transmission modes for these diseases and realized niches 232 

must be understood (42, 43). 233 

Implications of the study 234 

The current study that included RVF modeling in East Africa is essential in disease management, 235 

especially in regions likely to experience reoccurrence and re-emergence. Therefore, this study 236 

supports the attentiveness and management schemes of the RVF virus spread potential under 237 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2021.03.03.433832doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.03.433832


climate change. Specifically, our results highlight the significance of using the disease outbreak 238 

cases to simulate the potential niches for the RVF disease in East Africa in an ENM approach, 239 

thereby revealing regions that would be otherwise overlooked when tracking the disease. The 240 

current study also highlights some areas at higher risks and prevalence of the disease, especially 241 

in Kenya and some adjacent regions in Somalia. While we cannot ascertain this from the current 242 

models, we infer that human population movement, cattle movement, and Bio4 (temperature 243 

seasonality) will play a significant role in spreading RVF in the near future (35).  244 

Anthropogenic activities and cattle practicing, especially in densely populated areas, are likely 245 

to enhance RVF spread (37). Similarly, the vector fitness is affected directly or indirectly by 246 

temperature and increases typically with an increase in temperature, although results may differ 247 

among RVF vectors (24, 35). In addition, temperature also significantly affects vectors' life history 248 

traits at their developmental stages, including behaviors like mating and blood-feeding (24 249 

Approximately 30% of the total population across the East Africa region inhabits areas with 250 

suitable climatic conditions and competent mosquito vectors for the persistence and transmission 251 

of RVF (45). 252 

The present study offers a comprehensive investigation of the effects of environmental factors 253 

linked with RVF distribution in East Africa. Our results infer that the present distribution could be 254 

due to the contemporary climate jointly with human population density and land use.  255 

Nevertheless, the absolute contributions of climate change are not apparent. Our models also 256 

indicated that climate (Bio4) had the strongest effect on the niche models developed for RVF, 257 

followed by land use and population density in that order. These results are in line with previous 258 

reports that RVF is mainly affected by environmental factors (21, 25, 29). It is not clear whether 259 
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these categories' predictions result from the locations selected for this study; however, the models 260 

were developed impartially and represent the known biology of RVF. 261 

The forecasted increases in RVF niches will affect livelihood in E.A, particularly pastoralists 262 

who might suffer substantial losses in their livestock. Therefore, more detailed analyses are 263 

especially required to assess the localized influence of anthropogenic activities and movement 264 

within the region. We also note that the predicted contraction in RVF ranges in some areas is not 265 

guaranteed. This is primarily due to the continued urbanization and human growth, as well as the 266 

convention of the forested regions into farmlands, which might increase the potential sites for the 267 

persistence of RVF vectors. Therefore, improved surveillance in these regions is imperative to 268 

mitigate the risks that would otherwise be overlooked (22).  269 

  270 
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Conclusions 271 

Forecasting how future climate change will impact the transmission of VBDs has proven to be 272 

challenging. This is because the relationships between nature, human activities, and climate are 273 

complex. The current research discourses the biological response of RVF considering different 274 

climate scenarios in the current and future timeframes and its potential habitat suitability. The 275 

present climate scenario shows that RVF's distribution is mainly in drier areas, plains, and 276 

highlights where most animal farming and pastoralism are practiced. The temperature seasonality 277 

(Bio4), land use, and population density play an important role in controlling the biogeographic 278 

patterns of RVF in the East Africa region. Thus, ENMs play an essential role in determining 279 

potential ranges suitable for RVF establishment and where the disease is most sensitive to climate 280 

change.  281 

Although a sizeable number of studies have been utilized and developed in assessing the 282 

distribution of zoonotic diseases and the results yielded a vital contribution to the field, the present 283 

study has shown usefulness in presenting the diseases' distribution using their actual range 284 

outbreaks. This helps to directly capture the relevant information on biotic and abiotic factors 285 

surrounding the spread of such diseases. Particularly, modeling the RVF distribution using vectors 286 

may sometimes be problematic, especially since a vector does not directly translate to RVF's 287 

presence, and these intermediate interactions between the vectors and disease are at times less 288 

suitable descriptors of zoonotic diseases. Thus, using the disease outbreak data from the hosts may 289 

improve the species distribution of zoonotic diseases.  290 

As a result of the increased anthropogenic activities, livestock movement, urbanization, and 291 

predicted climate change, there is a real risk that these factors might jointly enable the spread of 292 
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RVF in East Africa. East Africa continues to be an endemic region for RVF, and the ongoing trade 293 

partnerships (38) could lead to the introduction of the virus to new non-endemic regions, e.g., in 294 

Uganda and Burundi. Therefore, it is vital to assess its effect on RVF distribution and spread to 295 

successive suitable areas to help design timely mitigation measures and decrease the negative 296 

impacts of future climate change. The models generated here suggested that in the future, as a 297 

result of climate change, there would be more outbreaks in new areas that were less infested by 298 

the disease, e.g., regions in Rwanda and southern Tanzania. Our present findings might help track 299 

the zoonosis in East Africa and help guide targeted management of an outbreak of the disease in 300 

marginalized and least thought regions.   301 

  302 
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Materials and methods 303 

Study Area 304 

East Africa is the eastern region of the African continent lying between the latitudes 5.2°N, 305 

11.77°S, and longitudes 28.8°E, 41.2°E, and includes five countries: Kenya, Tanzania, Uganda, 306 

Rwanda, and Burundi. The East Africa region has a generally tropical climate. Highlands have 307 

lower average temperatures compared to areas with low elevation. There are two main rainfall 308 

seasons, the long rains season from October to December and the short rains season from March 309 

to May (46). East Africa precipitation is exceptionally heterogeneous, and this is attributed to the 310 

differing topography, maritime influence, lakes, tropical circulation, and elevation (46). Mean 311 

annual rainfall in a large part of the region falls between 800-1200 nm. East Africa’s vegetation 312 

can be classified into; forest, grassland, woodland, bushland, thicket and scrub, permanent swamp 313 

vegetation, wooded grasslands, and semi-desert (47). The region covers 3,678,394 square km, and 314 

the highest peak is Mt Kilimanjaro at 5000 m a.s.l. One feature that stands out in East Africa is the 315 

Rift Valley that cuts through the region from Kenya southward to Tanzania through Uganda. The 316 

most common animal practice is cattle herding, especially in Kenya, followed by Tanzania. 317 

 318 

Occurrence and environmental data 319 

The availability of localities or occurrences is critical in ecological niche modeling when the 320 

simulation of climatically suitable areas of a target disease is intended. Therefore, we obtained the 321 

presence data (geographical coordinates) for RVFV outbreak cases during 2004-2020 from the 322 

Global Animal Disease Information System (EMPRES-i; http://empres-i.fao.org/), and previously 323 

published literature. For records that were only provided on the District level and descriptions of 324 
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the RVF reported cases, we used the Online Gazetteer and Google Earth software to geo-reference 325 

them to nearest centroids. In total, we obtained 300 coordinates for RVFV cases. Duplicate records 326 

and fuzzy records were manually filtered in Microsoft Excel, followed by spatial rarefying of the 327 

remaining coordinates to exclude the correlated points within 10 by 10 km grid cells using 328 

SDMToolbox (48). Spatially correlated occurrence points would otherwise cause overfitting of the 329 

models (49). Lastly, the Excel file was converted to the “.csv” format usable in MaxEnt. The 330 

spatially rarefied points used for RVF modeling in the present study are provided in Supplementary 331 

Table 1 (Figure 1).  332 

Bioclimatic variables for performing RVF distribution modeling were derived from 333 

Worldclim2 (http://www.worldclim.org) at 2.5arc-min (50). This data includes nineteen predictor 334 

variables with precipitation and temperature dependent information within a year. The current 335 

period was represented by bioclimatic variables spanning 1970-2000. Besides, for future periods, 336 

we utilized the global circulation models (GCM)—community climate system model version 4 337 

(CCSM4; 51), obtained from WorldClim, to simulate the habitat suitability of RVF (period 2050 338 

average for 2041-2060, and 2070 average for 2061-2080), at a spatial resolution of 2.5arc-min. 339 

For this GCM, we selected two representative concentration pathways (RCPs) to represent 340 

intermediate and extreme greenhouse gas emissions (RCP 4.5 and RCP 8.5), respectively, 341 

therefore adequately accounting for future climate uncertainties. These RCPs are consistent with 342 

the Intergovernmental Panel's 5th report on climate change (4)(IPCC; 2014). Modeling climate 343 

change impacts on VBDs has broadly used the CCSM4 model (17). All the raster layers were 344 

clipped to match our study area, then converted to ASCII format in ArcGIS 10.5.  345 

Spatially correlated variables may sometimes lead to inaccurate results of model simulations 346 

(52). Therefore, a Pearson correlation of the 19 Bioclimatic variables was implemented on 347 
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ENMtools to eliminate highly correlated climatic variables at a threshold of r ≥ 0.8. Eventually, 348 

eight variables were selected for the subsequent analyses following their collinearity: Bio2 Mean 349 

Diurnal Range (Mean of monthly (max temp - min temp), Bio4 (temperature seasonality), Bio7 350 

(Temperature Annual Range (Bio5-Bio6)), Bio8 (Mean Temperature of Wettest Quarter), Bio13 351 

(Precipitation of Wettest Month), Bio14 (precipitation of the driest month), Bio18 (Precipitation 352 

of Warmest Quarter), Bio19 (Precipitation of Coldest Quarter) (Table 1). Further, elevation was 353 

derived from Shuttle Radar Topography Mission (http://glcf.umiacs.umd.edu). The elevation layer 354 

was used to calculate “slope” on ArcGIS 10.5. In addition, we added livestock (viz. cattle, goat, 355 

sheep) and population density layers obtained from Geo-Network with a 10 × 10 km resolution 356 

(http://www.fao.org/geonetwork/srv/en/metadata.show). These datasets were resampled to match 357 

the bioclimatic variables spatial resolution of 2.5arc-min. 358 

Ecological Niche modeling and validation. 359 

The present-day niches for RVF were modeled for the three periods (total of five models): The 360 

current period, the year 2050 (RCP 4.5 and 8.5), and the year 2070 (RCP 4.5 and 8.5) using MaxEnt 361 

3.4 (53). We divided our data into a training dataset, including 80 percent and 20 percent test data, 362 

to reduce uncertainty and errors from the data. The model was run with background points of 363 

10,000 and allowed to converge at 10ˆ5, after 5,000 iterations. The MaxEnt models were made 364 

based on the 10-fold replicates, where cross-validation was allowed (52). Over prediction bias and 365 

model validation were performed by assessing the area under curve (AUC) stats of the Receiver 366 

Operating Characteristics (ROC) in MaxEnt (54). All averaged ASCII files were converted to TIFF 367 

format using ArcGIS 10.5.  368 

The multivariate environmental similarity surfaces (MESS) analysis was run in MaxEnt to 369 

increase the models' reliability for future projections (55). This function (MESS) examines the 370 
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multivariate extrapolation under various climate scenarios in the future, checks for potential new 371 

climatic environments, and assesses if the future predictions are out of range, with the current 372 

projections as the baseline. In addition, distributional changes between the current and future 373 

periods were evaluated to determine the impact of climate change on RVF. To achieve this, we 374 

converted all the thresholded ASCII files into binary maps in SDMToolbox (48). For converting 375 

the ASCII files, we implemented the Maximum training and sensitivity thresholds, as suggested 376 

by Liu et al. (56). Finally, the RVF niche gains or losses were calculated by assessing the difference 377 

between the current and future suitable areas.  378 
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Table 1 Environmental variables selected for modeling the distribution of Rift Valley fever in East Africa using MaxEnt 561 

Category Code Variables Unit Source 

Bioclimatic Bio2 Mean Diurnal Range (Mean of monthly 

(max temp - min temp)) 

°C * 10 WorldClim 

 Bio4 Air temperature seasonality - WorldClim 

 Bio8 Mean Temperature of Wettest Quarter °C * 10 WorldClim 

 Bio13 Precipitation of Wettest Month mm/month WorldClim 

 Bio14 Precipitation of the driest month mm/month WorldClim 

 Bio18 Precipitation of Warmest Quarter mm/quarter WorldClim 

 Bio19 Precipitation of Coldest Quarter mm/quarter WorldClim 

Topographic Elevation Elevation m. a.s.l. SRTM 

 Slope Slope % degree Derived from elevation 

Social Land use -        - Geo-Network 

 Population density - People/km2 Geo-Network 

 Green land cover - Vegetation cover/km2 Geo-Network 

 Cattle - Cattle/km2 Geo-Network 

 Goats - Goats/km2 Geo-Network 

 Sheep - Sheep/km2 Geo-Network 
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Table 2 AUC statistics for the MaxEnt’s model performance for Rift Valley Fever in East Africa 563 

Scenario 

 

Current 2050s 2070s 

 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

AUC mean 0.866 0.895 0.809 0.867 0.885 

Standard Deviation 0.009 0.011 0.147 0.027 0.016 

 564 

 565 

Table 3 Relative contributions (%) and permutation importance of environmental variables to 566 

the MaxEnt model under the current conditions of the Rift Valley fever virus in East Africa. 567 

Variable Percent contribution Permutation importance 

Bio4 10.6 8.8 

Land use 9.9 8.4 

Population density 9.8 9.6 

Bio19 8.8 10.5 

Elevation 8.7 10.1 

Cattle 7.5 2.9 

Green land cover 6.4 7.5 

Soil type 6.3 4.4 

Bio2 5.0 3.7 

Slope 5.0 2.8 

Bio14 4.7 6.5 

Bio13 4.5 6.8 

Sheep 4.4 7.4 

Bio18 4.2 4.2 

Goats 2.4 3.1 

Bio8 1.9 3.2 
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