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Abstract 7 

While the investigation of the epigenome becomes increasingly important, still little is known about the 8 

long-term evolution of epigenetic marks and systematic investigation strategies are still withstanding. 9 

Here, we systematically demonstrate the transfer of classic phylogenetic methods such as maximum 10 

likelihood based on substitution models, parsimony, and distance-based to interval-scaled epigenetic 11 

data (available at Github). Using a great apes blood data set, we demonstrate that DNA methylation is 12 

evolutionarily conserved at the level of individual CpGs in promotors, enhancers and genic regions. Our 13 

analysis also reveals that this epigenomic conservation is significantly correlated with its transcription 14 

factor binding density. Binding sites for transcription factors involved in neuron differentiation and 15 

components of AP-1 evolve at a significantly higher rate at methylation than at nucleotide level. 16 

Moreover, our models suggest an accelerated epigenomic evolution at binding sites of BRCA1, CBX2, 17 

and factors of the polycomb repressor 2 complex in humans.  For most genomic regions, the 18 

methylation-based reconstruction of phylogenetic trees is at par with sequence-based reconstruction.  19 

Most strikingly, phylogenetic reconstruction using methylation rates in enhancer regions was ineffective 20 

independently of the chosen model. We identify a set of phylogenetically uninformative CpG sites 21 

enriching in enhancers controlling immune-related genes.  22 
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Introduction 23 

Sequence based methods for phylogenetic tree reconstruction developed more than half a century ago 24 

(Sokal and Michener 1958; Fitch and Margoliash 1967; Jukes and Cantor 1969; Fitch 1971), have laid the 25 

methodological foundation for much of the progress in evolutionary genetics. In addition to determining 26 

sequences of speciation events, they have allowed to associated genotypes with phenotypes and to 27 

investigate critical selection pressures (Pennacchio, et al. 2006; Kosiol, et al. 2008; Ge, et al. 2013; Gaya-28 

Vidal and Alba 2014; Roux, et al. 2014; Reichwald, et al. 2015; Webb, et al. 2015; Sahm, et al. 2018; Cui, 29 

et al. 2019).  30 

It becomes increasingly clear that the heritable information does not solely consist of the sequence of 31 

the four nucleobases adenine, cytosine, guanine and thymine (Boffelli and Martin 2012; Burggren 2016; 32 

Yi 2017; Lind and Spagopoulou 2018). While the functional analysis of chemical DNA modifications and 33 

its associated proteins is gaining pace, little is known about the long-term evolution and conservation of 34 

epigenomic signals. Among the most important of these epigenetic modifications are DNA methylation 35 

and post-translational modifications of histones (Chen, et al. 2017; Michalak, et al. 2019). DNA 36 

methylation marks, for instance, are copied to newly synthesized DNA strands by DNA methylation 37 

transferases targeted to the replication foci (Leonhardt, et al. 1992; Vertino, et al. 2002; Kar, et al. 2012). 38 

Importantly, epigenetic information may not only be passed on from cell to cell in the soma, but also 39 

through the germline from generation to generation (Verhoeven, et al. 2016; Perez and Lehner 2019).  40 

However, it is not necessary to invoke these findings to take an interest at phylogenetic information 41 

conveyed by the epigenome. The evolution of epigenomic readers and writers themselves ultimately 42 

affects their function and changes in the epigenomic landscape may thus be understood as a 43 

consequence of this very process. While it is clear that the presence or absence of epigenetic marks in 44 

principle has a major influence on gene expression and cell identity, it is still largely open which marks 45 
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have which functional significance where in the genome (Barrero, et al. 2010; Kim and Costello 2017; 46 

Xia, et al. 2020). As in many other examples (Bergmiller, et al. 2012; Luo, et al. 2015; Arun, et al. 2016), it 47 

is plausible that the degree of conservation would be a strong indicator for functional relevance. 48 

Furthermore, it could contribute to the elucidation of the molecular causes of phenotypic difference. To 49 

date, comparatively few studies have compared the epigenome of different species, e.g. to identify 50 

pairwise differentially methylated regions (Molaro, et al. 2011; Zeng, et al. 2012; Mendizabal, et al. 51 

2016; Böck, et al. 2018)). To learn more about the long-term evolution of epigenomic marks, it appears 52 

necessary to develop new models allowing systematic evolutionary analyses - as is the case at the 53 

genetic level (Xiao, et al. 2014; Lowdon, et al. 2016). Obviously, the central question is whether the 54 

evolutionary information of individual marks is sufficient to allow meaningful analyses. Thus, it remains 55 

to be established which epigenomic marks are conserved well enough over longer evolutionary 56 

distances to allow the reconstruction of phylogenetic relationships.  57 

That correct tree topologies can in principle be reconstructed from methylation data was shown by 58 

Martin et al. using blood samples from several primate species and a simple distance based tree method 59 

to reconstruct a single tree from the methylome (Martin, et al. 2011). Also, Qu et. al, whose main focus 60 

was on hypomethylated regions however, reconstructed a single tree from the whole methylome using 61 

a broader species set and a sophisticated time-continuous Markov chain model (Qu, et al. 2018). Their 62 

results indicated faster epigenomic evolution in rodent than in primate sperm. The work of Hernando-63 

Herraez et al. was mainly concerned with differentially methylated regions resulting from pairwise 64 

comparisons, but also demonstrated, using a simple hierarchical clustering approach and great apes 65 

blood data, that genomic regions that showed incomplete lineage sorting on the nucleotide level 66 

recapitulated this on methylation level.  67 
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Building on these results, we systematically investigate different models of epigenomic evolution to 68 

facilitate insights into functions of single genes or pathways. Specifically, we transfer tree reconstruction 69 

such as Maximum Parsimony, Maximum Likelihood (based on substitution models), and distance-based 70 

methods to the level of DNA methylation. Subsequently, models are applied to simulated data as well as 71 

a publicly available real data to analyze their ability to reconstruct correct phylogenetic trees based on 72 

DNA methylation information. Substitution models arguably promise the greatest potential regarding 73 

functionally relevant analyses such as positive selection or accelerated epigenetic evolution in 74 

comparison to the genetic level. To this end, we are evaluating different evolutionary scenarios for 75 

different genomic features (e.g. enhancers, gene bodies).  76 

Materials and methods 77 

Real data set 78 

To test the developed methods, we used publicly available whole-genome bisulfite sequencing data 79 

from blood samples of four primate species: Homo sapiens (hereafter, human), Pan troglodytes 80 

(chimpanzee), Gorilla gorilla (gorilla) and Pongo abelii (orangutan) (PRJNA286277,(Hernando-Herraez, et 81 

al. 2015)). The data set consisted of 286 to 324 million read pairs per species. With a length of 90 base 82 

pairs per read this amounts to 17-fold to 25-fold genome coverage, assuming a genome size of 3 giga 83 

base pairs per species (Table S1). Fig. S1 summarizes the processing of the real data, details are given in 84 

the supplementary material. 85 

Identification of orthologous defined regions and annotations 86 

Our study distinguishes between four classes of genomic regions (Fig. 1A). The gene body class, 87 

reflecting the translated part of the genome, is differentiated from regulatory regions embedded in 88 

enhancer and two promoter-related regions reflecting potential differences in selection pressures of 89 
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methylation in coding and non-coding sequences. Specifically, we consider promoter-near regions 2000 90 

base pairs upstream and downstream the translation initiation site (TIS), respectively. In practice, the 91 

2000-Up-TIS class covers the promotor and untranslated regions. Coordinates of the translation 92 

initiation and end sites of the human protein-coding genes (n=19,374) were obtained from the Uniprot 93 

track of the University of California, Santa Cruz (UCSC) table browser for the genome version hg38 94 

(Karolchik, et al. 2004). Coordinates of enhancers were obtained from UCSCs geneHancer track retaining 95 

only “double elite” enhancers with known interactions (n=25,572). Coordinates were of 9,679 genes and 96 

20,327 enhancers were successfully translated to the three non-human primates using the UCSC liftover 97 

tool (Kent, et al. 2010). For practical reasons, analysis was restricted to elements with a maximum length 98 

of 100,000/50,000 base pairs, respectively (Fig. 1A). For functional analyses, the UCSC hg38 99 

Transcription Factor ChIP-seq Clusters track, aggregating transcription factor binding sites (TFBS) from 100 

more than 1,200 experiments in human samples for 340 transcription factors (TF) were incorporated 101 

into this study. 102 

 103 
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Fig. 1. A) Classes of genomic regions examined in this work. The region classes were defined using the Uniprot annotation of all 104 
human protein-coding genes (2000-Up-TIS, 2000-Down-TIS, Gene body, n=19,374) or geneHancer annotation (Enhancer, 105 
n=25,572). The corresponding genome regions in chimpanzee, gorilla, and orangutan were acquired based on a genome 106 
alignment strategy. B) Workflow and evaluation strategy. i) For each region defined in A) of each gene a multiple sequence 107 
alignment of the four species studied in this work was created and the methylation fractions measured from blood samples 108 
mapped to the alignment. ii) From this, the methylation fraction alignment (MFA) was extracted. iii) We merged these gene-109 
wise alignments to region-wise alignments. iv) From the region-wise methylation fraction alignments, we sampled 100 times N 110 
columns. v) From each of the 100 drawings, we reconstructed a phylogenetic tree. vi) As evaluation criteria, we used, on the 111 
one hand, the proportion of trees that correspond to the known great ape topology. On the other hand, we quantified the 112 
dispersions of the branch lengths. The procedure from iv) to vi) was performed for different values of N to consider the 113 
evaluation criteria as a function of the amount of input data. 114 

CpG alignment 115 

For each region instance, the respective four orthologous sequences were aligned using Clustalw2, 116 

version 2.0.10 (Larkin, et al. 2007). Since the alignment of effectively non-homologous bases in poorly 117 

conserved regions may lead to false phylogenetic inference (Jordan and Goldman 2012), we used trimAl, 118 

version v1.4.rev15  with the parameter “-strictplus“ removing unreliable alignment columns (Capella-119 

Gutiérrez, et al. 2009). In addition, only those alignments were considered for further analysis for which 120 

at least 25 evaluable CpGs remained. The methylation fractions previously determined in the individual 121 

species were then mapped to the CpGs of the alignment using the known coordinates. This led to 122 

methylation fraction alignments (MFA), forming the empirical data basis of this work (Fig. 1A). 123 

Evaluation strategy 124 

The quality of individual tree reconstruction methods under different parametrizations was measured 125 

with increasing input sizes using two benchmarks: (i) the ability to correctly reconstruct the known 126 

primate tree topology and (ii) the degree of dispersion of the determined branch lengths. For these 127 

purposes, all methylation alignments of a region class were first concatenated (pooling). From this pool, 128 

𝑁 alignment columns were drawn for each combination of the used tree reconstruction approaches (see 129 

below) and 𝑁 ∈ {100, 200, … ,1000, 2000, … ,10000}. The procedure was repeated 100 times. 130 

Subsequently, it was determined how many of the 100 repetitions led to the correct tree topology (Fig. 131 

1B). To measure dispersion in terms of standard deviation of branch lengths from the mean length, the 132 
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correct topology was fixed. Briefly, we expect to observe that the proportion of correct topologies 133 

should increase with increasing 𝑁 and the dispersion of branch lengths should decrease.   134 

Tree reconstruction methods 135 

We used three main strategies to reconstruct phylogenetic trees from the aligned methylation fractions: 136 

(i) Markov process based maximum likelihood, (ii) parsimony, and (ii) a distance-based methods. Here, 137 

we particularly focused on maximum likelihood and investigated different models, parameterizations, 138 

and assumptions based on this method. For simplicity, one combination is termed default method in the 139 

further and all alternative methods and parametrizations are compared against it. Fig. 2 summarizes the 140 

different tree reconstruction methods used. The developed methods for tree reconstruction from 141 

methylation (or more generally interval scaled) data were implemented in R and are available on Github. 142 

 143 

Fig. 2. Applied tree reconstruction methods. Most of the analyses in this work were performed with a maximum likelihood tree 144 
reconstruction method based on a Markov model of the evolution of methylation fractions. The model is based on a 145 
discretization of the floating-point methylation fractions into 5 states. No molecular clock is assumed. The design of the 146 
transition rate matrix Q assumes that a methylation fraction status cannot evolve into a non-adjacent status within short time 147 
spans (No Jump Model). This means that when the methylation fraction changes from a state A to a non-adjacent state B during 148 
evolution, all states between A and B have been passed through. The combination of the tree reconstruction method and the 149 
described model properties is called the default method in the context of this work for simplification. To better assess the 150 
effects of the assumptions of the default method, we compared this method with variations of itself: different number of 151 
states, molecular clock or a transition rate matrix that allows the direct change to distant states. In addition, we have also 152 
applied two tree reconstruction methods that differ fundamentally from maximum likelihood. For this, either evolutionary 153 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2021.03.03.433796doi: bioRxiv preprint 

https://github.com/Hoffmann-Lab/PhyloEpiGenomics
https://doi.org/10.1101/2021.03.03.433796
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

distances based on the model of the default method were determined and then neighbor joining was applied or a parsimony 154 
approach was used. 155 

Maximum likelihood 156 

We propose substitution models for the analysis of DNA methylation fractions analogous to the 157 

frequently used continuous-time Markov process models at nucleotide (e.g. (Jukes and Cantor 1969; 158 

Kimura 1980; Hasegawa, et al. 1985)), codon (e.g. (Goldman and Yang 1994))  and amino acid (e.g. 159 

(Kishino, et al. 1990)) level. In contrast to nucleotides, codons, and amino acids measured on a nominal 160 

scale, methylation fractions are measured on an interval scale. To address this difference, we introduce 161 

a discretization function 162 

𝑑: [0,1] → {1, … , 𝑛}  163 

with 𝑛 ∈  ℕ being the number of model methylation states and ∀ 𝑥 > 𝑦:  𝑑(𝑥) ≥ 𝑑(𝑦).  164 

Let a model 𝑀 be defined by the pair 𝑀 = (𝜋, 𝑄) consisting of an initial (and equilibrium) distribution 165 

𝜋 ∈ [0,1]𝑛 and an 𝑛 𝑥 𝑛 transition probability rate matrix 𝑄 = (𝑄𝑠,𝑡) with 1 ≤ 𝑠 ≠ 𝑡 ≤ 𝑛. As usual, the 166 

transition probability matrix 𝑃(𝜏) for a given branch length 𝜏 is determined by numerically finding a 167 

solution to 168 

𝑃(𝜏) = 𝑒𝑄∗𝜏 169 

The likelihood of a given phylogenetic tree can then be determined by Felsenstein's method assuming 170 

independent evolution of CpG sites (Felsenstein 1981). Branch lengths of a given tree topology are 171 

estimated by maximizing the likelihood and the optimal topology is that with the highest likelihood. For 172 

likelihood maximization we use an optimized version of the Broyden-Fletcher-Goldfarb-Shanno method 173 

(Broyden 1970; Byrd, et al. 1995).  174 

In this paper, we propose two flavors of evolutionary models that we call No Jump Model and Co-175 

occurrence Model. The No Jump Model assumes that the methylation fractions change smoothly during 176 
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evolution, i.e. within short time intervals the methylation state of a CpG site can only change to one of 177 

the neighboring states (see Fig. 2). In contrast, the Co-occurrence Model also allows transitions to 178 

distant states in short time intervals. Here, the transition probabilities between two states are made 179 

dependent on how often these two states could be observed empirically within an alignment column. 180 

To formally define these models, let 𝑋 = (𝑋𝑖,𝑗) be a given 𝑘 𝑥 𝑙 matrix with the rows corresponding to 𝑘 181 

homologous CpG-sites, the columns corresponding to 𝑙 indices of the examined species and each entry 182 

𝑋𝑖,𝑗 ∈ [0,1] being the measured methylation fraction of the ith CpG-site in the species with the index 183 

𝑗;1 ≤ 𝑖 ≤ 𝑘,  1 ≤ 𝑗 ≤ 𝑙. Here, 𝑋 will either be drawn from real data, i.e. the concatenated alignments of 184 

a region class, or from simulated data (see below).  185 

Subsequently, the number of each methylation state 𝑠 in each species 𝑎 is counted using the function 186 

𝑜𝑎: {1,  … ,  𝑛} → ℕ0 with 1 ≤ 𝑎 ≤ 𝑙  187 

𝑜𝑎(s) = ∑ 𝛿𝑠,𝑑(𝑋𝑟,𝑎)

𝑘

𝑟=1

 188 

with 𝛿𝑝,𝑞 being the Kronecker delta 𝛿𝑝,𝑞 = {
0 if 𝑝 ≠ 𝑞
1 if 𝑝 = 𝑞

 189 

Based on this, we define the equilibrium frequency 𝜋 = (𝜋𝑠) for both, the No Jump and the Co-190 

occurrence Model as  191 

𝜋𝑠 =
∑ 𝑜𝑎(𝑠)𝑙

𝑎=1

∑ ∑ 𝑜𝑎(𝑢)𝑙
𝑎=1

𝑛
𝑢=1

 192 

Accordingly, for the No Jump Model, we define 𝑄 = (𝑄𝑠,𝑡) as 193 

𝑄𝑠,𝑡 = {
0 𝑖𝑓 |𝑠 − 𝑡| > 1

𝜋𝑡  𝑒𝑙𝑠𝑒
 194 
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with 1 ≤ 𝑠 ≠ 𝑡 ≤ 𝑛. For the Co-occurrence Model, the number of co-occurrences of all combinations of 195 

methylation states s and t and species 𝑎 and 𝑏 is counted using a function 𝑐𝑜𝑎,𝑏: {1,  … ,  𝑛}2 →196 

ℕ0 with 1 ≤ 𝑎 ≤ 𝑙,  1 ≤ 𝑏 ≤ 𝑙,   𝑎 ≠ 𝑏 197 

𝑐𝑜𝑎,𝑏(𝑠, 𝑡) = ∑(𝛿𝑠,𝑑(𝑋𝑟,𝑎) ∗ 𝛿𝑡,𝑑(𝑋𝑟,𝑏) + 𝛿𝑡,𝑑(𝑋𝑟,𝑎) ∗ 𝛿𝑠,𝑑(𝑋𝑟,𝑏))

𝑘

𝑟=1

 198 

Let, γ𝑠,𝑡 = γ𝑡,𝑠 =
∑ ∑ 𝑐𝑜𝑎,𝑏(𝑠,𝑡)𝑙

𝑏=𝑎+1
𝑙−1
𝑎=1

∑ ∑ ∑ ∑ 𝑐𝑜𝑎,𝑏(𝑢,𝑣)𝑙
𝑏=𝑎+1

𝑙−1
𝑎=1

𝑛
𝑣=𝑢+1

𝑛−1
𝑢=1

 be the fraction observed co-occurrences of the states 𝑠 199 

and 𝑡 across the alignment. 200 

Finally, we define 𝑄 = (𝑄𝑠,𝑡) for the Co-occurrence Model as 201 

𝑄𝑠,𝑡 = γ𝑠,𝑡 ∗ 𝜋𝑡 202 

with 1 ≤ 𝑠 ≠ 𝑡 ≤ 𝑛. As usual, for both models 𝑄𝑠,𝑠 are fixed such that 203 

𝑄𝑠,𝑠 = − ∑ 𝑄𝑠,𝑡

𝑡≠𝑠

 204 

For this study, we tested the models with different parameters and technical settings. Detailed 205 

parametrizations for the No Jump and Co-occurrence models are shown in Figures S2 and S3. 206 

Specifically, we tested models with different state numbers 𝑛, and we used the models both with and 207 

without the assumption of a molecular clock.  208 

Maximum Parsimony 209 

The basic idea of Fitch's Maximum Parsimony algorithm (Fitch 1971) is to find a set of sequence states at 210 

the inner nodes minimizing the number of necessary changes along the edges of the tree. We adapted 211 

the algorithm to work on the interval scale. Figures S4-S6 illustrates the differences between the 212 

algorithm and our modification. 213 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2021.03.03.433796doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.03.433796
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

In the bottom-up post-order tree traversal, an interval 𝐼(𝑚) is assigned to each node 𝑚. Leaves are 214 

initialized with  215 

𝐼(𝑙) = [observed number at 𝑙, observed number at 𝑙] 216 

Then, for each inner node m with children 𝑥 and 𝑦, 𝐼(𝑚) is determined by 217 

𝐼(𝑚) = {
𝐼(𝑥) ∩ 𝐼(𝑦),  if 𝐼(𝑥) ∩ 𝐼(𝑦) ≠ ∅

[min(max (𝐼(𝑥)), max (𝐼(𝑦))), max(min (𝐼(𝑥)), min (𝐼(𝑦)))], else
 218 

 219 

In the top-down pre-order tree traversal, each node 𝑚 is assigned a number 𝑖(𝑚) ∈ 𝐼(𝑚). For the root 220 

𝑟, 𝑖(𝑟) is chosen as an arbitrary number within 𝐼(𝑟); for all other inner nodes with parent node state 𝑝  221 

𝑖(𝑚) = {
𝑝,  if 𝑝 ∈ 𝐼(𝑚)

arg min
𝑥 ∈ 𝐼(𝑚)

 |𝑝 − 𝑥|,  else 222 

As with the original algorithm, the optimal tree topology is the one that explains the sequence 223 

alignment with the lowest number of necessary changes overall. 224 

Distance-based methods 225 

Distance matrices were determined based on the No Jump Model described above. Each distance matrix 226 

𝑇 = (𝑇𝑎,𝑏)  with 1 ≤ 𝑎 ≤ 𝑙,  1 ≤ 𝑏 ≤ 𝑙 was determined by maximizing the likelihood for the pairwise 227 

distances in the usual way 228 

𝑇𝑎,𝑏 = 𝑇𝑏,𝑎 = arg max
𝜏∈ℝ∗+

∏ (𝜋𝑋𝑖,𝑎
∗ 𝑃𝑎,𝑏(𝜏))

1≤𝑖≤𝑘

 229 

for 𝑎 ≠ 𝑏; and 𝑇𝑎,𝑎 = 0 for 1 ≤ 𝑎 ≤ 𝑙. For each distance matrix 𝑇 the corresponding phylogenetic tree 230 

was reconstructed using the Neighbor Joining algorithm (Saitou and Nei 1987).  231 
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Simulations 232 

Artificial alignments were generated based on the known tree topology and divergence times of the 233 

great apes (Locke, et al. 2011). For each artificial alignment column, the tree was traversed in pre-order. 234 

For each node 𝑚, a state was drawn from (1, … , 𝑛) using a probability vector 𝜑(𝑚). For the root 𝑟, 𝜑(𝑟) 235 

was set to the equilibrium distribution 𝜑(𝑟) = 𝜋. For every other node 𝑚 with the incoming edge 𝑒 with 236 

length 𝜏𝑒 and the parent node in state 𝑠, 𝜑(𝑚) was set to the 𝑠-th row of the matrix 𝑃(𝜏𝑒) (Fig. S7). The 237 

simulated alignment column then results from the states assigned to the leaves of this tree. This 238 

simulation approach has been widely used at nucleotide and codon level, e.g.(Rambaut and Grassly 239 

1997; Yang 1997; Fletcher and Yang 2009). 240 

This general scheme has been extended for the different concrete analyses. For the comparison of real 241 

and simulated data, noise of different orders of magnitude was added to the simulated data. For the 242 

analyses of long-branch attraction and resolution limits for reconstruction depending on the branch 243 

length the tree used for the simulation was changed. (see Supplement methods for details, also for the 244 

analysis of site-specificity that was conducted on real data).  245 

Results and Discussion 246 

On nucleotide data, maximum likelihood based Markov models are critical tools for formal testing of 247 

evolutionary hypothesis. This includes the detection of sequences under positive selection on certain 248 

branches of a phylogeny. In order to address such questions in the epigenome, we first focused on the 249 

evaluation of maximum likelihood reconstructions in this work.  Specifically, we investigated different 250 

flavours of this methodology. A discretization of CpGs according to their methylation levels is at the 251 

heart of the default method and derivatives thereof. Depending on the methylation, in our models, a 252 

single CpG can assume on of two, five (default method), or ten states. 253 
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CpG Methylation varies widely between regions but little between species 254 

To test the functionality of the developed methods, we used a public whole-genome bisulfite 255 

sequencing data set generated from blood samples of four great apes: human, chimpanzee, gorilla, and 256 

orangutan (Hernando-Herraez, et al. 2015) as well as to simulated data. On a genome-wide level, 257 

methylation patterns are extremely similar in all species and apparently dominated by the functional 258 

aspects of the four selected classes of regions (see Fig. 1A for region definition): In the gene body, the 259 

distribution of methylation fractions assume a shape resembling a beta distribution with prominent 260 

peaks at both ends of the unit interval. The peak for high to complete methylation rates is substantially 261 

higher than the peak for low to missing methylation (Fig. 3A). As methylation rates in the gene body 262 

positively correlate with gene expression, this observation may be explained with the transcriptional 263 

activity of the genes (Zemach, et al. 2010; Yang, et al. 2014). However, more than a quarter of the CpGs 264 

in the data set still show intermediate methylation between 0.2-0.8. After discretization, these levels 265 

correspond to the three intermediate states in the five-states model of the default method (Fig. 2). The 266 

methylation landscape of gene bodies is characterized by a sharp increase of average CpG methylation 267 

at the 5’-end and remains relatively stable at about 80% from this point on (Fig. 3B). On average, the 268 

gene body shows the highest methylation levels amongst all compared regions, but at the same time 269 

lowest CpG density by far: apart from small areas in vicinity to the 5' and 3' end, it is stable below 0.5% 270 

(Fig. 3B). For comparison: the genome-wide CpG fraction is 1% (Stevens, et al. 2013). The gene body also 271 

shows the lowest pair-wise methylation rate similarity among species (Table 1). Given the above-272 

mentioned dependency of methylation and expression levels, this finding may reflect individual short-273 

term expression changes, e.g. in the context of diurnal rhythms. In line with a characteristic 274 

hypomethylation in promotor regions, the distribution in the 2000-Up-TIS class moves towards a 275 

unimodal shape with more than 80% of the CpGs having a methylation content between 0 and 0.2 (Fig. 276 

3A). The few methylated CpGs are predominantly found at the 5' end of this region class (Fig. 3B). 277 
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Conversely, and in addition to the 2000-Down-TIS also the enhancer class exhibits a bimodal shape.  278 

Here, approximately two thirds of the CpGs are within the range of 0 to 0.2, one sixth between 0.2 to 0.8 279 

and another sixth between 0.8 to 1 (Fig. 3A). The 2000-Down TIS region class shows a strong increase in 280 

methylation on CpGs from the 5' to the 3' end (Fig. 3B) - not surprising given it is, by construction, a 281 

cutout on the left edge of the gene. Enhancers are the only class of regions to exhibit a symmetrical 282 

pattern in terms of methylation percentage and CpG density (Fig. 3B).  283 

Expectedly, the average similarity of the methylation fractions varies more between the regions under 284 

consideration than between species pairs – reflecting the distinct functional roles of the regions. 285 

Interspecies similarity ranges from 87.2-90.0% in the gene body to 94.6-95.4% in the 2000-Up-TIS region 286 

(Table 1).  287 

To model a null-hypothesis for the analysis of region-specific similarities, we repeatedly uniformly 288 

(n=1000) drew random pairs of methylation rates from the class-specific background distributions and 289 

calculated expected differences. Based on this, we found that the level of region-specific similarity 290 

between species pairs is significantly higher than expected (p < 10−3, Table 1). These initial, descriptive 291 

results suggest that the methylation data contains evolutionarily conserved, phylogenetically analyzable 292 

signals. Despite a high degree of similarity probably dominated by region-specific biological functions, 293 

differences at this rather coarse grained level already reflect the phylogeny of the great apes. 294 
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Fig. 3. A) Distributions of methylation fractions in the examined regions and species. B) Methylation and CpG fractions by 296 

relative position in region class.  C) Comparison of examined regions by the fraction of correctly inferred tree topologies. The 297 

total number of reconstructed trees per fixed amount of input data (i.e., Number of CpG loci) was always 100.  D) Dispersion of 298 

branch lengths in the examined regions. The dashed line indicates the probability of randomly reconstructing the correct tree 299 

topology (one third). A,B,D) The given numbers of CpG loci were drawn from the respective region-wise methylation fraction 300 

alignments with the following total numbers of evaluable CpG loci: Up-TIS-2000 – 126,560; Down-TIS-2000 – 134,686; Gene 301 

body – 441,286; enhancer – 271,195. 302 

Table 1. Average similarity of methylation fractions between and within species in percent. 303 

  2000-Up-TIS 2000-Down-TIS gene body enhancer 

Interspecies – comparison of species‘ consensi 

human-chimpanzee 95.4 93.5 90.0 92.9 

human-gorilla 94.9 92.7 87.9 92.0 

human-orangutan 94.6 92.6 88.7 91.8 

chimpanzee-gorilla 95.0 92.8 87.6 92.1 

chimpanzee-orangutan 94.7 92.7 88.7 91.9 

gorilla-orangutan 94.6 92.5 87.2 91.3 
 304 

Tree reconstruction works best for TIS-downstream and gene body classes 305 

To get a more detailed view, we compared the classes of regions in terms of their potential to 306 

reconstruct correct tree topology using the methylation data. With the default method, the 2000-Down-307 

TIS region contains the highest phylogenetic signal (Fig. 3C). Notably, this class has by far the highest 308 

proportion of hemi-methylation (0.2-0.8). It seems plausible that CpGs, which are neither fully 309 

methylated nor demethylated across the tissue, also have the technical ability of being phylogenetically 310 

most informative. It is well documented that an increase in methylation downstream of the 311 

transcription start site and thus potentially overlapping with translated regions  may have a strong 312 

suppressive effect on gene expression (confer Fig. 3 of (Ehrlich and Lacey 2013); (Appanah, et al. 2007)). 313 

At the same time, the region overlaps with proximal parts of the gene body where a hypermethylation is 314 

frequently associated with  strong expression (Zemach, et al. 2010). In conjunction with the high level of 315 
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global similarity established above, these results provide further evidence that specific phylogenetic 316 

information is embedded in this regulatorily relevant region. In addition to informative signals in 317 

regulatory regions, also inter-species expression differences may contribute to the surprisingly high rate 318 

of correct reconstructions. The observation that tree reconstruction based on the gene body works 319 

second best supports this notion.  320 

With the notable exception of enhancers, the proportion of correctly reconstructed tree topologies 321 

converges clearly towards 1 in all region classes, depending on the amount of available data (Fig. 3C). 322 

The result is similar concerning the second benchmark, i.e. whether the determined branch lengths 323 

converge with increasing data volume. This is the case for all branches of the great apes in all regions 324 

studied (Fig. 3D).   325 

Methylation-based tree reconstruction may outcompete nucleotide-based reconstruction 326 

For comparison, we juxtaposed methylation based reconstruction with classical nucleotide based 327 

reconstructions. For the gene body and Up-TIS-2000 classes, the fraction of correctly inferred trees is 328 

almost identical for methylation and nucleotide data. Most strikingly, using methylation data from the 329 

Down-TIS-2000 class reconstruction clearly outcompeted nucleotide-based reconstruction. Conversely, 330 

reconstruction based on methylation data obtained from enhancer regions essentially failed (Fig. 4A). In 331 

the light of high similarities of methylation fractions in this region (Table 1), this result is most surprising. 332 

To additionally quantify the performance of methylation based reconstruction, we generated artificial 333 

MFAs in complete analogy to nucleotide- or amino acid based alignments frequently used in the 334 

assessment of reconstruction algorithms or evolutionary models (e.g. (Rosenberg and Kumar 2001; 335 

Zhang, et al. 2005; Shavit Grievink, et al. 2010; Zaheri, et al. 2014). Using these MFAs, we reconstructed 336 

phylogenetic trees and determined the fraction of correct topologies (Fig. 4A). The procedure was 337 

repeated after adding different levels of artificial noise to the simulated methylation fraction 338 
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alignments. At a noise level between 0.1 and 0.2 standard deviations the reconstruction performance of 339 

simulated data is at par with real data derived from gene body and Up-TIS-2000. Consistently, enhancers 340 

perform worse with values corresponding with noise between 0.2 and 0.4 standard deviations, while the 341 

Down-TIS-2000 class shows substantially better benchmarks with values between 0.05 and 0.1 standard 342 

deviations. 343 

 344 

 345 

Fig. 4.  A) Model vs reality. The performance difference between the simulated data and the real data gives an estimate of how 346 
well the model matches reality. We first pretended that the model of the default method perfectly reflects reality: this model 347 
and the known phylogenetic tree of the great apes were used to generate artificial alignments. We then reconstructed 348 
phylogenetic trees from these alignments using the same model and applied the quality scale of fraction of correctly 349 
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reconstructed tree topologies. To quantify the difference of model and reality, we additionally applied defined error terms, i.e. 350 
fractions of the standard deviation of the standard normal distribution, to the artificial alignments before tree reconstruction.  351 
B) Comparison of the different methods (or deviations of our standard method) by fractions of correctly reconstructed tree 352 
topologies. The given numbers of CpG loci were drawn from the respective region-wise methylation fraction alignments with 353 
the following total numbers of evaluable CpG loci: Up-TIS-2000 – 126,560; Down-TIS-2000 – 134,686; Gene body – 441,286; 354 
enhancer – 271,195. A-B) The total number of reconstructed trees per fixed amount of input data (i.e., Number of CpG loci) was 355 
always 100. The dashed line indicates the probability of randomly reconstructing the correct tree topology (one third). 356 

In summary, the reconstruction of phylogenetic trees from DNA methylation data seems to work well. 357 

The performance compared to nucleotide data is astonishing since methylation can be expected to be 358 

subject to frequent changes. Unlike DNA sequences, they are influenced by circadian rhythms, 359 

environmental factors or diseases. Clearly, in practice, the success of a methylation based 360 

reconstruction critically depends on the amount of available data, e.g. the read coverages achieved in 361 

WGBS experiments, the quality of reference genomes and sequence alignments. Furthermore, the 362 

reconstruction of phylogenies in single genes is naturally limited by the number of available data points. 363 

While the body of a protein coding gene has often more than 10,000 nucleotides, the measurement of 364 

the methylome is restricted to only 200 CpGs (Fig. S8). Experimental or biological noise may thus easily 365 

lead to faulty reconstructions. Unlike the genome, which is almost identical in all cells of an individual, 366 

the epigenome may reflect tissue-specific phylogenetical information. Thus, inter-species comparisons 367 

yield the potential of gaining insights into the evolution of tissues as opposed to the entire organism. 368 

The incorporation of other epigenetic data, e.g. histone modifications, will be helpful to illuminate such 369 

processes.  370 

Failure of tree reconstruction at enhancers 371 

Triggered by the surprisingly bad tree reconstruction with enhancer methylation data, we characterized 372 

all sites individually with respect to their phylogenetic information. Theoretically, enhancers may escape 373 

our evolutionary models because of their functional heterogeneity, the concrete effect of enhancer-374 

methylation on gene expression and their plasticity in terms of tissue-specificity or circadian effects 375 

(Angeloni and Bogdanovic 2019). Specifically, we assigned a score to each site quantifying its support of 376 

the correct tree topology and analyzed the score distributions. Compared to the most similar down-TIS-377 
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2000 class (cf. Table 1; Fig. 3A), the enhancers clearly contain more sites with negative information 378 

scores. Replacement of the least informative 10% of enhancer CpGs with the bottom Down-TIS-2000 379 

CpGs (see Methods, Fig. S9), confirms the disproportionate impact of these sites on tree reconstruction. 380 

Un-informative CpG-sites show a significantly higher methylation fraction than the average enhancer 381 

class site (almost 0.6 vs. 0.4, p<2.2*10-16, Wilcoxon test). Furthermore, these sites are slightly enriched 382 

at 5’ and 3’ ends of enhancers (Fig. S10). The analysis of genes significantly affected by un-informative 383 

signals (FDR<0.1, Fisher-Test, 1092 out of 6328 significant,  Table S2) reveals an enrichment of the IL12 384 

pathway (BIOCARTA_IL12_PATHWAY, FDR = 0.03; BIOCARTA_NO2IL12_PATHWAY, FDR = 0.05) as well as 385 

leukocyte and lymphocyte differentiation (GO_LEUKOCYTE_DIFFERENTIATION, FDR = 0.01; 386 

GO_LYMPHOCYTE_ACTIVATION, FDR = 0.09). Since immunity-related genes themselves are targets of 387 

rapid evolutionary changes (Shultz and Sackton 2019), it is tempting to speculate that also sudden 388 

methylation changes within associated regulatory elements contribute to shaping the evolution of the 389 

immune response. Our data supports this hypothesis, as CpG methylation would be phylogenetically 390 

informative only at very short evolutionary distances.  391 

Non-binary models of CpG methylation work best for tree reconstruction 392 

As shown in Fig. 4B, the model selection has a critical impact on phylogenetic reconstructions based on 393 

methylation data. The default No Jump Model is based on the idea that within short periods of time it is 394 

only possible to switch to adjacent states (Fig. 2).  If a change from state A to a non-adjacent state B is to 395 

be made over a longer period of time, all intermediate states between A and B must be transited. With 396 

the alternative Co-occurrence Model, we permit sudden changes to non-adjacent states. Interestingly, 397 

the Co-occurrence Model consistently performs much worse than the No Jump Model across all regions. 398 

This behavior immediately raises the question to which extent such states are also functionally relevant. 399 

In contrast, when increasing the number of states to 10 typically no or only minimal improvement is 400 

observed. Naturally, the precise resolution of tissue-wide methylation fractions critically depends on the 401 
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read coverage. Thus, for the data used in this study, a ten-state model likely is too fine-grained and over-402 

specified.  403 

Tree reconstruction from DNA methylation data faces similar challenges as for nucleotide data  404 

The presented default method builds on assumptions frequently made in the analysis of evolutionary 405 

relationships. To investigate the influence of those assumptions, we added a model with a molecular 406 

clock (1), used Neighbor Joining as a distance-based method for tree reconstruction (2), and applied the 407 

Maximum Parsimony principle (3; Fig. 2). All of the three models consistently perform better than the 408 

default method across all regions as measured by the proportion of correctly reconstructed topologies 409 

(Fig. 4B). For several reasons, it is frequently assumed that Maximum Likelihood is preferable to 410 

Maximum Parsimony or distance-based methods like Neighbor Joining (Felsenstein 1978; Hasegawa, et 411 

al. 1991; Kuhner and Felsenstein 1994; Guindon and Gascuel 2003). On the other hand, simulation and 412 

empirical studies at the nucleotide level have demonstrated that the fraction of correctly reconstructed 413 

topologies is often smaller as compared to other methods (Kolaczkowski and Thornton 2004; Yoshida 414 

and Nei 2016). Since the phylogenetic reconstruction for great apes clearly benefits from the molecular 415 

clock assumption on the nucleotide level (Moorjani, et al. 2016; Besenbacher, et al. 2019)  and that the 416 

evolutionary rates at CpG dinucleotides are the most similar (Kim, et al. 2006), it  can be expected that 417 

the molecular clock also improves the reconstruction performance based on MFAs. However, similar to 418 

the situation on the nucleotide level, this observation may not be generalized. Therefore, we have 419 

investigated the performance of the three methods in a scenario in which the evolutionary rates of the 420 

species diverge more strongly. Specifically, we carried out the simulations described above with a 421 

substantially higher evolutionary rate for one species than for the others (Fig. S11). Similar to the 422 

situation on the nucleotide level, maximum parsimony, and models that assume a molecular clock fail 423 

under this condition (Felsenstein 1978; Bergsten 2005). Also, the Neighbor Joining method performs 424 

significantly worse than our default method in these scenarios (Fig. 5A).  425 
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 426 

Fig. 5. A) Comparison of selected methods in a long-branch attraction scenario. We generated artificial alignments using the 427 
model of our default method and a modified version of the great apes’ phylogenetic tree. The tree used for alignment 428 
generation was modified in such a way that one terminal branch was given a multiple of its original length. Then, trees were 429 
reconstructed from the alignments and the scale of the fraction of correctly inferred topologies applied. B) Resolution limits 430 
depending on the branch length. The same procedure as in A) was followed. The known phylogenetic tree of the great apes was 431 
used, however, for alignment generation, whereby all branch lengths were multiplied by fixed factors (Edge factor). C) 432 
Methylation similarity as a function of CpG neighborhood. We define the x-neighborhood of a CpG as the set consisting of the x-433 
nearest CpG upstream and the x-nearest CpG downstream. Shown are the average similarities (solid line) and standard 434 
deviations (dashed line) of the methylation fractions for all corresponding x-neighborhood pairs. For comparison, the average 435 
similarity of the orthologous human-chimpanzee methylation fractions is also shown (dotted line, see also Table 1). D) Local 436 
signal resolution/alignment sensitivity. Phylogenetic trees were reconstructed from the real data set (great apes) using 437 
modified methylation fractions alignments. The alignments were modified so that methylation fractions were exchanged with a 438 
certain probability for a random methylation fraction of the same species within the given exchange distance. A, B, D) The 439 
dashed line indicates the probability of randomly reconstructing the correct tree topology (one third). A-D) The total number of 440 
reconstructed trees per fixed amount of input data (Number of CpG loci) was always 100. The region examined here was the 441 
gene body. The total number of evaluable CpG loci in this region is 441,286. 442 

Based on the above-justified assumption that the default method sufficiently recovers the “true” 443 

phylogeny of species, we tried to obtain a rough estimate about the evolutionary distances to which it 444 

can be applied. For this purpose, we carried out a benchmarking where the branch lengths of the trees 445 

used for simulation were multiplied by a fixed factor. Our results indicate, that the default method 446 

should work similarly well for evolutionary distances ranging from one percent to 10 times the real data 447 
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scenario (great apes) (Fig. 5B). Given the evolutionary rates of the great apes' example and assuming 448 

that their last common ancestor lived about 15 million years ago (Locke, et al. 2011), one can cautiously 449 

estimate that the method would be suitable for distances of several 100 thousands to more than 100 450 

million years.  451 

DNA methylation is conserved at the individual CpG site level 452 

To investigate the degree of local conservation of methylation fractions, we determined the similarity of 453 

methylation for neighboring CpGs, defined as 1 − |𝑋𝑖,𝑎 − 𝑋𝑗,𝑎|, where 𝑋𝑖,𝑎 and 𝑋𝑗,𝑏 are the methylation 454 

fractions at CpG-site 𝑖 and 𝑗 in species 𝑎, respectively. This similarity is contrasted with similarities of 455 

fractions in the spacial neighborhood of each individual species. Specifically, we define the 1-456 

neighborhood of a CpG as the set of the next upstream CpG upstream and the next downstream CpG 457 

(without the CpG in the middle). The 2-neighborhood consists of the next but one CpGs in both 458 

directions (without the three CpGs in the middle) and so on. Expectedly, the average similarity of 459 

methylation decreases with growing neighborhoods towards a baseline level in all classes of regions. In 460 

the 2000-Down-TIS region, for instance, a similarity level of about 93% in the 1-neighborhood, decreases 461 

to about 80% in the 25-neighborhood and remains almost constant from then on (Fig. 5C, Fig. S12A). 462 

Strikingly, the class-dependent relationship between neighborhood and methylation similarities is 463 

practically identical in all of the investigated species. To put this observation into context, we contrasted 464 

the averaged neighborhood similarities with the similarity of methylation rates between two species at a 465 

given CpG, i.e. the in-between similarity. In any given class, the in-between similarity is at least as strong 466 

as the 3-neighborhood across all species. For the species pair human-chimpanzee, for instance, the in-467 

between similarity is greater than that of the 1-neighborhood. In other words, our data indicates that, 468 

although separated by millions of years of evolution, the methylation rate of a CpG in humans is on 469 

average more similar to its orthologous CpG in chimpanzees than to that of its closest neighboring CpG. 470 

(Fig. 5C, Fig. S12A). To further investigate this, we have randomly swapped the methylation fractions of 471 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2021.03.03.433796doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.03.433796
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

the real ape data set within defined exchange distances before reconstructing the phylogenetic trees. 472 

Even an exchange distance of one results in a significant decrease in the proportion of correct 473 

topologies, which continues to increase as the exchange distance is enlarged (Fig. 5D, Fig. S12B). This 474 

clearly indicates that the methylation on the DNA strand is conserved with high local resolution. On the 475 

flipside, this result also underscores the dependency of such methylation based studies on high-quality 476 

alignments – very much similar to studies based on the nucleotide or codon level (Jordan and Goldman 477 

2012). 478 

Transcription factors preferentially bind to epigenetically conserved gene loci 479 

Based on the observations of high inter-species similarity of CpG methylation (Table 1, Fig. 3A, 3B) and 480 

successful tree reconstruction using these data (Fig. 3C, 4A), we calculated a gene-wise estimates of the 481 

evolutionary rates to illustrate potential benefits of studies into epigenomic conservation. As described 482 

above, studies on a single gene level critically depend on the amount of evaluable data. With the data 483 

set at hand, the criteria for a thorough single-gene-based hypothesis testing are limited. In the context 484 

of this work we restrict ourselves to representative examples. CASTOR1 codes for a component of the 485 

MTORC pathways (Saxton, et al. 2016) and is an example of a modestly conserved gene according to our 486 

epigenomic measure (Fig. 6A), i.e. the estimated rate of evolution is almost exactly that of the region 487 

average. Upon closer inspection, however, we observe that the local methylation level is anticorrelated 488 

with the transcription factor binding density, i.e. the number of different binding transcription factors 489 

normalized by gene length, which we determined based on publicly available data (Karolchik, et al. 490 

2004). We also found that the rate at which a genes’ methylation level evolves is globally anticorrelated 491 

with the binding density of the transcription factors (ρ = -0.22, p < 2.2*10-16, Table S3).  As a second 492 

intuitive measure for assessing functional aspects of epigenomic conservation, we determined how 493 

much the respective gene tree deviates from the average tree of the region class (see Supplement 494 

methods for details). C16orf86 codes for a probably functional but so far uncharacterized protein and an 495 
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example of a strong deviation (Fig. 6B). According to the described measure and our used filter 496 

criterions, the gene shows the highest deviation from the expected tree. According to our model, this 497 

deviation can be attributed almost exclusively to an increased evolutionary speed in humans. 498 

Interestingly, however, methylation levels in humans were only locally significantly different to other 499 

species between nucleotide positions 180 and 530. This sequence between the mentioned nucleotide 500 

positions is partly coding for a fully conserved domain of unknown function (pfam15762, DUF4691) and 501 

shows a relatively high TFBS density in humans. It is tempting to speculate that in the other great apes 502 

the relatively higher methylation may leads to a lower transcription factor binding density in this region.   503 

 504 

Fig. 6 A) Measured methylation fractions and estimated local transcription factor binding density in the gene body of CASTOR1. 505 
The total number of evaluable CpG loci is 81. 19 CpG loci were skipped due to low read support (<10 reads in at least one 506 
species). B) Measured methylation fractions and estimated local transcription factor binding density in the gene body of 507 
C16orf86. The total number of evaluable CpG loci is 45. 4 CpG loci were skipped due to low read support (<10 reads in at least 508 
one species). 509 

Hints of accelerated epigenomic evolution for PRC2 protein binding sites 510 

Based on our finding that transcription factor binding density appears to be negatively correlated with 511 

our measures for epigenomic evolution we were specifically interested to characterize individual 512 
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transcription factors in terms of their evolutionary rates. To do this, methylation rates of aligned gene 513 

body CpGs overlapping with a specific TF were combined. In total, 297 out of 340 transcription factors 514 

comprised at least 1.000 CpG sites - the chosen minimum to include a TF in this analysis. The strongest 515 

deceleration on the human branch has been observed for RNA-binding-protein 34, RBM34. While little is 516 

known about the function of this gene, its binding to DNA might be influenced by the CpG-methylation.   517 

Significantly accelerated rates (FDR <= 0.01; see Methods) were found for about a third of TFs (n=98) in 518 

humans (Fig. 7A). Strikingly, this set appears to enrich critical components of the polycomb repressive 519 

complex 2 (PRC2) complex, namely, YY1, EZH2, HDAC1, HDAC2, BMI1, and SUZ12 (BIOCARTA PRC2 520 

pathway; FDR=0.092). Binding sites of the two histone deacetylases are also components of the 521 

significantly enriched telomerase pathway (Pathway Interaction Database; FDR = 0.0026) additionally 522 

comprising accelerated TFBS of XRCC5, MAX, SP1, IRF1, MYC, NBN, NR2F2, E2F1, SAP30, SIN3A and 523 

SIN3B. The strongest accelerations with a more than 50% increased evolutionary rate on methylation 524 

level were found for ZZZ3, CBX2, MYB, CDC5L, MIER1 and BRCA1. The zinc-finger ZZZ3, a component of 525 

the Ada-two-A-containing (ATAC) histone acetyl-transferase complex, has recently been described to 526 

function as a reader of histones regulating ATAC-dependent promoter histone H3K9 acetylation (Mi, et 527 

al. 2018). It is tempting to speculate that evolutionarily driven changes of ZZZ3 binding characteristics 528 

could have a decisive impact on species-specific gene expression. The chromobox homolog protein 2 529 

(CBX2), also a reader of histone modifications, is a member of the polycomb repressive complex 1 530 

(PRC1) (Vandamme, et al. 2011). It contributes to the repression of genes by binding to H3K9me3 and 531 

H3K27me3.  532 

One of the strongest evolutionary accelerations on the methylation level can be observed at the TFBS of 533 

BRCA1. Notably, the gene itself has been found to undergo a rapid evolution driven by positive selection 534 

altering its amino-acid composition as well its non-coding parts (Pavlicek, et al. 2004; Lou, et al. 2014).  535 
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Involved in double strand break repair, BRCA1 is frequently mutated in hereditary forms of human 536 

breast cancers. Thus, our data suggests that the accelerated evolution of BRCA1 in humans compared to 537 

other great apes (Fig. 7A) has a measurable impact on the methylation landscape around its binding 538 

sites. At the same time, on the sequence level, BRCA1 binding sites evolution appears to be substantially 539 

decelerated (Fig. 7B). This marked lack of co-variance potentially supports the functional effects of 540 

changes in the BRCA1 gene itself. Notably, BRCA1’s direct interaction partner, the estrogen receptor 541 

ESR1, exhibits a comparably high evolutionary rate across all primates on the methylation level as 542 

compared to the sequence of its binding sites (Fig. 7A, 7B). The systematic comparison of sequence-543 

based and methylation-based evolutionary rates reveals an acceleration of binding sites for transcription 544 

factors involved in neuron differentiation (GO_NEURON_DIFFERENTIATION, FDR = 0.03) and two highly 545 

connected pathways, AP-1 (FDR = 0.03, PID_AP1_PATHWAY) and FRA (ii, FDR = 0.02, 546 

PID_FRA_PATHWAY), due to the constitutive components of the heterodimeric AP-1, including, e.g., 547 

FOS, the ATF family, GATA2 and JunB (Fig. 7B). The proteins belonging to the AP-1 family play a critical 548 

role in numerous cellular processes. Notably, in cooperation with other cell-type specific factors it is 549 

involved in the activation of cell-type specific enhancers (Madrigal and Alasoo 2018). Hence, this result 550 

may be explained by species-specific cell compositions, systematic environmental or nutritional 551 

differences. Nevertheless, it is tempting to speculate that the enrichment of these factors may point to 552 

combinatorial changes of AP-1 composition during evolution.  553 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2021. ; https://doi.org/10.1101/2021.03.03.433796doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.03.433796
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

 554 

Fig. 7. A) Estimated evolutionary rate of transcription factor binding sites on CpG-methylation level in great apes vs relative 555 

slow-down/acceleration of this rate in humans. Triangles mark transcription factor binding sites with statistically significant 556 

deviation of the human evolutionary rate (FDR<0.01, maximum likelihood ratio test, see Methods chapter Methylation at 557 

transcription factor binding sites). The color codes the mean methylation level across all evaluable CpG sites in the binding sites 558 

of the respective transcription factor. B) Estimated evolutionary rate of transcription factor binding sites on nucleotide vs CpG-559 

methylation level. The dashed line indicates a simple linear regression of the two evolutionary rates. Color-coded are all names 560 

of transcription factors that are part of the pathways that are listed by the legend (Pathway Interaction Database (Schaefer, et 561 

al. 2009)). A, B) Shown are those 297 out of 340 transcription factors from the UCSC hg38 Transcription Factor ChIP-seq Clusters 562 

track (Karolchik, et al. 2004) that comprised at least 1.000 evaluable CpG sites. 563 

Conclusions 564 

Here, we have systematically transferred classical methods of phylogenetics used to analyse nucleotide 565 

and amino acid sequences, to the field of epigenomics. Using empirical data from great apes, we 566 

demonstrate that phylogenetic trees can be correctly reconstructed from methylation data based on the 567 

fundamental principles of maximum likelihood, parsimony, and distance-based approaches. The 568 

problems and challenges are similar in many respects to tree reconstruction from nucleotide data, e.g. 569 
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that parsimony and distance based methods are prone to long branch attraction. Nevertheless, we 570 

found that all examined regions with the notable exception of enhancers contain enough of 571 

phylogenetic information on CpG-methylation level to outcompete reconstruction with nucleotide data. 572 

The ability of the enhancers to escape the evolutionary model can be attributed to a relatively small set 573 

of CpG sites. The enrichment of these sites in quickly evolving immune-related genes highlights the 574 

importance of the epigenome for short-term evolutionary changes.  Based on the empirical data and 575 

simulations, we showed that methylation levels are conserved at single CpG resolution. The methylation 576 

fraction of a CpG can usually be better predicted from the methylation fraction of an orthologous CpG in 577 

a species separated by millions of years of evolution than even from the methylation fraction of the 578 

closest CpG in the same species. We also found evidence that epigenetic conservation is associated with 579 

enhanced transcription factor binding density. Evolutionary rates on the nucleotide level were, as 580 

expected, found to be highly correlated with those CpG methylation level across transcription factor 581 

binding sites.  However, significant deviations from this general trend are observed for binding sites of 582 

transcription factors associated with neuron differentiation and components of the heterodimeric AP-1 583 

evolving significantly faster on the methylation level. Multiple examples provide hints that epigenomic 584 

re-modellers themselves could be critical components in the evolution of the human lineage. 585 

Significantly elevated evolutionary rate on methylation level in humans as compared to other great apes 586 

were found at TFBS of BRCA1, CBX2, ZZZ3, MIER1 and MYB. On a global level, critical components of the 587 

polycomb repressive complex 2 and members of the telomerase pathway show an accelerated CpG 588 

methylation evolution in humans.  589 

In the future, when data will be collected for different epigenetic marks across multiple tissues, these 590 

methods would be helpful to test for accelerated or slowed epigenetic evolution affecting individual 591 

genes.  This promises new insights into the evolution of ontogenesis, mechanisms of epigenetic gene 592 

regulation and possibly the formation of phenotypes based on these mechanisms.  593 
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Supplemental methods 594 

Read mapping and quantification of methylation at individual CpGs 595 

The soft masked versions of the following reference genomes were downloaded from ensemble release 596 

95: GRCh38 (human), Pan_tro_3.0 (chimpanzee), gorGor4 (gorilla), PPYG2 (orangutan). Only 597 

chromosome entries from the reference genomes were considered for further analysis. Reads from the 598 

test data set were adapter clipped using TrimGalore (https://github.com/FelixKrueger/TrimGalore, 599 

version 0.4.5_dev, (Martin 2011)) mapped against the respective reference genome using segemehl, 600 

version 0.3.4 (Hoffmann, et al. 2014) with the parameter “-F 2” for the bs-seq protocol that was also 601 

used in the original study (Hernando-Herraez, et al. 2015). Subsequently, only unique mapping reads 602 

were considered as indicated by the NH:i:1 tag and duplicons were removed using samtools markdup, 603 

version 1.10  (Li, et al. 2009) (see Table S1 for mapping and duplicon rates). Methylation fractions at 604 

individual sites were determined using the haarz program from the segemehl package. Only methylation 605 

fractions within a CpG-context were considered for further analysis.  606 

Phylogenetic information of methylation values 607 

To better elucidate the impact of individual methylation values for the reconstruction of the correct tree 608 

topology, we consider the phylogenetic information score 𝑃𝐼𝑆𝑖 of site 𝑖. Let ℒ𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦  be the maximized 609 

likelihood of the complete regions class’ data (with 𝑘 CpG sites) and the unrooted 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦, i.e. 610 

ℒ𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 = ∏ ℒ𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦
𝑖𝑘

𝑖=1 .   Then, we define 𝑃𝐼𝑉𝑖 as follows: 611 

𝑃𝐼𝑆𝑖 = ln(ℒ𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦
𝑖 ) −

ln(ℒ𝑤𝑟𝑜𝑛𝑔_𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦_1
𝑖 ) + ln(ℒ𝑤𝑟𝑜𝑛𝑔_𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦_2

𝑖 )

2
 612 

First, for each region class, sites are sorted with respect to their phylogenetic information. Subsequently, 613 

methylation values for sites within the lowest or highest quantiles are replaced with values from other 614 
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classes. For instance, by removing 5% enhancer sites with lowest phylogenetic information with the 615 

same amount of sites sampled from the lowest 5% of Down-TIS-2000 class. Here, the performance of 616 

these mixed sets are evaluated by the correct tree topology benchmark (Fig. S9).  617 

Specifically, we tested which enhancers were enriched for the 10% sites with lowest phylogenetic 618 

information score using the Fisher-test, a significance threshold of FDR < 0.1, and all examined 619 

enhancers as background.  Corresponding interaction genes were counted as affected only if all their 620 

known enhancers showed an enrichment of those sites. Pathway/gene set enrichment was performed 621 

as described in Methylation at transcription factor binding sites.   622 

Methylation at transcription factor binding sites 623 

To reveal potential functional consequences of epigenomic conservation, we focused on the 624 

methylation at known transcription factor binding sites (TFBS). For each of the 340 transcription factors, 625 

all CpG sites within the gene body class covering the binding sites of an individual 𝑇𝐹, were combined 626 

into a methylation fraction alignment 𝑋𝑇𝐹. In addition, a methylation fraction alignment 𝑋𝑇𝐹𝑠_𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 627 

was created from the union of all CpG sites of the 340 transcription factors. To obtain a suitable 628 

reference, a phylogenetic tree was reconstructed from 𝑋𝑇𝐹𝑠_𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 using the default method and the 629 

known great ape tree topology.  Subsequently, for each individual transcription factor 𝑇𝐹, the default 630 

method was used on 𝑋𝑇𝐹, forcing the branch lengths to be multiples of 𝜏𝑒
𝑇𝐹𝑠_𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 via the 631 

contraction/expansion factor 𝛦′𝑇𝐹
 632 

𝜏𝑒
𝑇𝐹 = 𝜏𝑒

𝑇𝐹𝑠_𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 ∗ 𝛦′𝑇𝐹
 633 

The evolutionary rate 𝐸𝑇𝐹 of 𝑇𝐹 was estimated as that instance of 𝛦′𝑇𝐹
 which resulted in the 634 

corresponding maximized likelihood 𝐿𝑜𝑛𝑒_𝑟𝑎𝑡𝑒
𝑇𝐹  using the default method. To test for an 635 

acceleration/deceleration on the human branch, one additional methylation-based tree was 636 
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reconstructed for each 𝑇𝐹 with the maximized likelihood 𝐿ℎ𝑢𝑚𝑎𝑛_𝑒𝑥𝑡𝑟𝑎
𝑇𝐹 .  For this tree, all branches but 637 

the human branch were scaled with a fix contraction/expansion factor as before, while the human 638 

branch was free to vary. The actual phylogenetic hypothesis testing based on a likelihood ratio test then 639 

follows the standard procedure as described in the literature (see, e.g., (Huelsenbeck and Crandall 640 

1997)) using 𝐿ℎ𝑢𝑚𝑎𝑛_𝑒𝑥𝑡𝑟𝑎
𝑇𝐹  for the alternative hypothesis and  𝐿𝑜𝑛𝑒_𝑟𝑎𝑡𝑒

𝑇𝐹  for the null hypothesis. Test 641 

results are expected to be chi-square distributed with one degree of freedom. We used the Benjamini-642 

Hochberg method for multiple test correction (Benjamini and Y. 1995) and a significance threshold of 643 

FDR < 0.01 on transcription factor level (Table S3). For comparison, a nucleotide sequence-based 644 

estimate of the evolutionary rate at the TFBS was calculated with a co-occurrence model using the same 645 

multiple sequence alignments from which the corresponding MFAs were derived (see Identification of 646 

orthologous defined regions and CpG Alignment).  647 

Subsequently, enrichment analyses were performed with the following gene sets taken from the 648 

Molecular Signature Database collections (MSigDB, (Liberzon, et al. 2015)): Biological Process Gene 649 

Ontology (The Gene Ontology 2019), Pathway Interaction Database (Schaefer, et al. 2009) and Biocarta 650 

pathway database. The analyses were restricted to gene sets containing at least 6 transcription factors 651 

and carried out using a fisher test followed by Benjamini-Hochberg correction as well as the above 652 

mentioned 340 transcription factors as background (Benjamini and Y. 1995). The significance threshold 653 

was set to FDR < 0.1. The test was applied separately for transcription factors with accelerated and 654 

decelerated evolution on the human branch. To identify pathways with significantly higher or lower 655 

evolutionary rates on methylation level as compared to the nucleotide level, we applied a t-test to the 656 

residuals of a linear model by contrasting residuals of the transcription factors in the respective pathway 657 

gene set vs. the residuals of the other transcription factors. Normality of the residuals was confirmed 658 

using the Shapiro-Wilk test. 659 
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Furthermore, we were interested in finding out whether individual genes regulated by a transcription 660 

factor themselves differ in terms of their epigenomic evolutionary rates. We reconstructed gene trees 661 

from methylation fraction alignments 𝑋𝑔 of single genes using our default method and enforcing the 662 

correct great apes topology.  We consider a single epigenetic evolution rate 𝛦𝑔 of the gene 𝑔 as well as 663 

the associated deviation 𝐷𝑔 from an expected tree based on 𝛦𝑔 and the average tree across all genes. 664 

Genes are sorted with respect to both metrics and correlated with the estimate of the transcription 665 

factor binding density 𝑇𝐹𝐵𝐷𝑔, i.e. the fraction of the 340 TFs having a binding site in the gene 𝑔 divided 666 

by the gene length. 667 

We define 𝐷𝑔 =  arg min
𝛦′𝑔∈ℝ∗+

√∑ (𝜏𝑒
𝜇

− 𝜏𝑒
𝑔

/𝛦′𝑔)2
𝑒 ∈ 𝛹  and 𝛦𝑔 as that instance of 𝛦′𝑔 that minimizes 𝐷𝑔. 668 

In this context, 𝛹 is defined as the set of edges of the correct great apes tree topology, 𝜏𝑒
𝑔

 as the branch 669 

length of edge 𝑒 of the tree reconstructed from 𝑋𝑔, and 𝜏𝑒
𝜇

 as the mean edge length of 𝑒 from 100 670 

reconstructions from as many drawings of 𝑋 with each having a sample size of 𝑁 = 10,000.  671 

For correlations and examples, no genes were considered that reached either the minimum or the 672 

maximum of the allowed branch length of our optimization algorithm, which filtered out about 60% of 673 

the genes.   674 

Simulations 675 

Model vs. reality 676 

We analyzed the capability of the default method to describe the real data. To this end, we repeatedly 677 

compared artificial scenarios reflecting the evolutionary methylation model with different levels of noise 678 

added to the real great ape methylation data.  679 

First, we first converted the simulated states into simulated methylation fractions. Specifically, we drew 680 

a methylation fraction 𝑀 for the respective state 𝑠 from the interval corresponding to the discretization 681 
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function 𝑑 assuming a uniform distribution within the states. Subseqently, the noise 𝜀 was drawn from a 682 

normal distribution with mean 0 and a fixed standard deviation 𝑠𝑑. The new state 𝑠∗ corresponding to 𝑠 683 

was then determined by 684 

𝑠∗ = 𝑑(min (max (𝑀 + 𝜀, 0),1)) 685 

The entire approach described in this section was performed for different values of 𝑠𝑑. The expectation 686 

is that the quality measures deteriorate with increasing 𝑠𝑑. 687 

In addition to the comparison with the performance of simulated data, we also compared the 688 

methylation data with the results on nucleotide data. Basis for these results were the same nucleotide 689 

alignments from which also our MFAs were derived (see Identification of orthologous defined regions 690 

and CpG Alignment). For this exercise, nucleotides were drawn from the whole alignment instead of 691 

methylation fraction from CpG sites.  Since the No Jump Model underlying the default method was not 692 

applicable to the nominal scaled nucleotide data, the Co-occurrence Model was used.  693 

Resolution limits for reconstruction depending on the branch length 694 

We extended our simulations to obtain an estimate of the evolutionary time scales on which the default 695 

method would be able to generate reliable results. For this purpose, we assumed the evolutionary rates 696 

estimated from data (great apes) to be fixed. Accordingly, the branch lengths of the tree used to 697 

generate the alignment were multiplied by fixed edge factors. The approach was performed with the 698 

following edge factors: 0.001, 0.01, 0.1, 10, 50, 100, 1000. 699 

Site-specificity of phylogenetic signals 700 

To find out to what extent the phylogenetic signal is site specific, i.e. to answer the question of whether 701 

the evolutionary conservation rather affects single CpG sites or larger regions containing multiple sites, 702 

we resorted to the MFA’s obtained from real data (see Preparation steps for empirical data). Specifically,  703 
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methylation fractions of randomly chosen sites were replaced with values from nearby CpGs of the 704 

same species. 705 

Let 𝑋𝑔 = (𝑋𝑖,𝑗
𝑔

) , analogous to the definition of 𝑋, be the methylation fraction of the alignment of a gene 706 

𝑔 with 𝜆 homologous CpG sites; 1 ≤ 𝑖 ≤ 𝜆,  1 ≤ 𝑗 ≤ 𝑙. For each alignment 𝑋𝑔 we then generate a 707 

modified alignment 𝑋𝑔∗ using a fixed modification probability 𝜌 and a fixed modification distance 𝛿 708 

𝑋𝑖,𝑗
𝑔∗

= {
𝑋𝑖,𝑗

𝑔
 , with probability 1 − 𝜌

𝑋𝜃(max(𝑖−𝛿,1),min(𝑖+𝛿,𝜆)),𝑗 
𝑔

, with probability 𝜌
 709 

where 𝜃 is a function 𝜃: ℕ2 → ℕ: 710 

𝜃(𝛼, 𝛽) = random number from {𝛼, 𝛼 + 1, … , 𝛽}, with equal probability
1

𝛽−𝛼+1
for all possible outcomes  711 

with 𝛼 ≤ 𝛽. By column-wise concatenation all 𝑋𝑔∗ of a region, we create a merged modified alignment 712 

𝑋∗ analogous to 𝑋. Finally, we apply the same procedure to 𝑋∗ as described earlier in Evaluation 713 

strategy and Maximum likelihood for 𝑋. 714 

For this exercise, we chose a modification probability 𝜌 = 0.7 and the modifying distance 𝛿. The 715 

expectation is that the quality measures will deteriorate with larger values for 𝛿. 716 

Long branch attraction 717 

To evaluate the tree reconstruction methods with more divergent evolutionary rates than those of the 718 

great apes, we again created an artificial alignment of 100.000 sites, however, a phylogenetic tree that is 719 

more susceptible to long branch attraction instead of the great ape phylogeny was used (Fig. S11, 720 

(Bergsten 2005)) Finally, the procedure described in Evaluation strategy was applied with different tree 721 

reconstruction methods. 722 

 723 
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