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Abstract

The spatial distribution of dengue and its vectors (spp. Aedes) may be the widest it has
ever been, and projections suggest that climate change may allow the expansion to
continue. However, the largest impacts of climate change on dengue might be in regions
where the pathogen is already endemic. In these areas, the waxing and waning of
immunity has a large impact on temporal dynamics of cases of dengue haemorrhagic
fever. Here, we use 51 years of data across 72 provinces and characterise
spatio-temporal patterns of dengue in Thailand, where dengue has caused almost 1.5
million cases over the last thirty years, and examine the roles played by temperature
and dynamics of immunity in giving rise to those patterns. We find that timescales of
multiannual oscillations in dengue vary in space and time and uncover an interesting
spatial phenomenon: Thailand has experienced multiple, periodic synchronization
events. We show that patterns in synchrony of dengue are consistent with those
observed in temperature. Applying a temperature-driven dengue model, we explore how
dynamics of immunity interact with temperature to produce the observed multiannual
dynamics and patterns in synchrony. While multiannual oscillations are readily
produced by immunity in absence of multiannual timescales in temperature, synchrony
in temperature can synchronise dengue dynamics in different locations. However, at
higher mean temperatures and lower seasonal variation, immune dynamics become more
predominant, and dengue dynamics become more insensitive to multiannual fluctuations
in temperature. These findings can help underpin predictions of disease patterns as
global temperatures rise.
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Author summary

Introduction 1

The spatio-temporal dynamics of animal populations, including fluctuations and 2

correlations in amplitudes and phases, has been an important area of research in ecology 3

and the physical sciences for decades. Empirical observations of patterns in population 4

dynamics have propelled theory forward leading to a better understanding of 5

predator-prey interactions [1, 2], allee effects [3] and the interactions between 6

deterministic and stochastic elements of systems [4, 5]. While a rich literature exists on 7

synchronization of systems and their causes [6], there is little empirical evidence for 8

periodic oscillations or fluctuations in spatial synchrony, particularly in epidemiology, 9

where identification of long-term patterns in infectious disease dynamics could be 10

critical for the success of health interventions. For instance, knowing when pathogen 11

population levels are particularly low concurrently across a region presents improved 12

opportunities for pathogen elimination [7]. Likewise, anticipation of global epidemics 13

may assist in the structured allocation of resources, such as vaccines, across space and 14

time. While regular spatial synchrony in other wildlife species has been described 15

(e.g., [8–12]), how the degree of synchrony may vary over time has received less 16

attention [13–15]. Here, we describe regular periodic synchronization in the dynamics of 17

dengue haemorrhagic fever (DHF) in Thailand over a 51-year interval. 18

Dengue virus (DENV) is a mosquito-borne virus estimated to infect 100 million 19

people each year [16, 17]. Four viral serotypes (DENV1–4) exist. Primary infection with 20

a specific serotype confers long-term immunity against subsequent infections of that 21

same serotype, and there is strong empirical support for short term, temporary 22

protection against other serotypes [18–21]. Additionally, other mechanisms such as 23

antibody-dependent enhancement also potentially mediate the dynamics of 24

incidence [22–24]. 25

Multiannual patterns in dengue observed in any location arise as the result of a 26

complex interplay of various factors, including: climate, through its effect on the vector 27

and transmission efficiency; predator-prey dynamics between the virus and the host; the 28

interactions between different serotypes and strains of dengue; spatial patterns in host 29

structure, dynamics, and movement; and viral factors [25–28]. In ascribing drivers to 30

interannual patterns in dengue dynamics, studies have often viewed extrinsic factors, 31

such as climate, and intrinsic factors, particularly the dynamics of immunity, as 32

competing alternative hypotheses [26,29–35]. However, immunity clearly provides a 33

negative feedback where increases in transmission due to favorable climatic conditions 34

can lead to decreases in transmission in future time periods through the protective 35

effects of immunity, leading to multiannual dynamics in many systems [36,37]. 36

Many of the same factors involved in generating multiannual dynamics can also 37

produce synchrony across locations [6]. Again, both intrinsic (specifically host 38

movement between locations), and extrinsic (environmental; the “Moran effect”) have 39

the potential to not only synchronise dynamics across space, but also produce variation 40

in the degree of synchrony over time [13–15]. Empirical studies have tended to focus on 41

climate [34,35]. Van Panhuis et al. [34], for instance, detected synchronous dengue 42

outbreaks across Southeast Asia in 1997–1998, a period of elevated temperatures and a 43

strong El Niño event. 44

The environment, and especially temperature, is a priori expected to be significant 45

in shaping the dynamics of dengue [38–40]. Through its effect on metabolic rates, 46

temperature strongly influences many mosquito life history traits (e.g., biting rates, 47

population growth rates, mortality rates; [28, 39]), and therefore, their population 48

dynamics [41]. Projections suggest that increasing temperatures may expand the range 49
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in which dengue is efficiently transmitted [42–44]. However, the impact of changing 50

temperature regimes on dengue in locations where the pathogen is already endemic is 51

less well studied. It is in these areas which, even in projections to 2050 or 2080, 52

comprise a majority of the world’s population at risk of dengue, that the impacts of 53

climate change might be greatest [42–44]. 54

Here, we examine the spatio-temporal dynamics of dengue in Thailand between 1968 55

and 2018. We characterise multiannual cycles and uncover an interesting spatial 56

phenomenon in which Thailand has experienced periodic synchronizations of dengue 57

incidence. In contrast to previous studies, which tended to focus on either extrinsic or 58

intrinsic drivers to explain observed patterns, we hypothesise that immunity constitutes 59

a strong dynamical filter necessary to understand impacts of temperature on dengue. 60

For this reason, we adapt a mechanistic, temperature-dependent, four-serotype dengue 61

model to disentangle how temperature and dynamics of immunity interact to generate 62

periodic synchronizations. We focus on temporary cross-protection between serotypes 63

because of the clear empirical support, although there are other mechanisms, such as 64

antibody-dependent enhancement, that could conceivably also play a role. 65

Results 66

Empirical patterns in multiannual cycles and synchrony 67

Multiannual cycles in dengue 68

Fig 1a shows a heatmap of the monthly number of dengue cases by province over the 51 69

years, in which seasonal outbreaks are clear, but in which some years (e.g., 1998–1999 or 70

2001) had larger outbreaks throughout the country than other years. It is these latter 71

multiannual patterns that we are interested in here. Specifically, we focus on cyclical 72

patterns with timescales between 1.5 and 5 years (i.e., patterns in which years with 73

larger than average outbreaks are separated by 1.5 to 5 years) because this range 74

encompasses the timescales that have been previously reported for dengue dynamics 75

(see Materials and Methods for a more detailed rationale). To characterise multiannual 76

cycles, we applied continuous wavelet transforms (WTs). WTs quantify the importance 77

of different timescales in a time series over time, and with them, time series can be 78

reconstructed only using only the multiannual components of observed patterns. 79

Reconstructions of the dengue time series confirm the presence of distinct multiannual 80

patterns (Fig 1b). We quantify which multiannual timescale is most important in 81

characterising dengue dynamics in each province and for each point in time (the 82

“dominant timescale”), revealing both that the dominant multiannual timescale tends to 83

change over time (varying between 1.5 and 4.5 years), and that at any given point in 84

time, the dominant timescales can differ substantially across provinces (Fig S6b in 85

Supplementary information (SI)). The presence of multiannual timescales has been 86

previously observed [27,34], but here, with the benefit of longer time series, we show 87

that these change over time and space. 88

Synchrony in dengue 89

We estimate spatial synchrony in dengue cases using a range of methods; we here focus 90

on one approach, wavelet mean fields (WMFs; [45,46]), but provide details and results 91

for the others in Section “Perspectives on synchrony” in SI. WMFs measure synchrony 92

as a function of both timescale and time; they indicate timescales and time points at 93

which both phases and magnitude of oscillations are consistent (or more synchronous) 94

across provinces. The WMF for dengue haemorrhagic fever cases across Thailand 95

describes a system that appears to fluctuate in and out of synchrony (Fig 2b), results 96
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1970 1980 1990 2000 2010

(a)

1970 1980 1990 2000 2010

(b)

Fig 1. Dengue multiannual cycles. Heatmaps of (a) ln number of cases and (b)
reconstructions of time series using multiannual components only, per province arranged from
north (top) to south (bottom). To improve clarity, values for each province were normalised to
standard scores (µ = 0, σ = 1) in all panels. Blues (respectively reds) are lower (respectively
higher) numbers, and whites correspond to a standard score of zero (the mean for each
province). Edge effects in the wavelet transforms may influence results before and after the
vertical dashed lines in (b) (see Materials and Methods).

that are consistent with the travelling waves observed across Thailand [27] and 97

Southeast Asia [34]. The synchrony in dengue is statistically significant at all times, 98

meaning that even when synchrony is lower (the whiter areas in Fig 2b), the degree of 99

synchrony is still greater than would be expected in an asynchronous system. 100

Furthermore, moments of greater synchrony take place at different timescales. For 101

example, while the synchrony event of the late 1980s occurs with a timescale of ≈ 2.2 102

years, the one taking place around the year 2000 has a timescale of ≈ 4.1 years. These 103

results are further corroborated using four additional approaches to estimate synchrony 104

(Fig 3); all methods describe a system that appears to fluctuate in and out of synchrony 105

(Section “Perspectives on synchrony” in SI). In all cases, periods of greater synchrony 106

appear to coincide with larger outbreaks (e.g., comparing Fig S6a and c in SI), as also 107

previously observed [34,47]. 108

Synchrony in temperature 109

We calculated the temperature WMF across provinces for the same time period as the 110

dengue passive surveillance data (1968–2018). As expected, synchrony in temperature 111

was significant at all points in time. The WMF for temperature describes a system 112

similar to that found in dengue, where temperature fluctuates in and out of synchrony 113

at multiannual timescales (Fig 2a; for results using alternative approaches see Figs S10 114
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Fig 2. (Cross-)wavelet mean fields. Wavelet mean fields for (a) temperature, and
ln-transformed dengue cases from the (b) passive surveillance data and (c) model output.
Cross-wavelet mean fields between (d) temperature and ln-transformed dengue cases (data)
and (e) temperature and ln-transformed model output. Model output assumes a mean
cross-protection of one year (see Fig S13 in SI for results using other mean cross-protections).
The same temperature time series are used for both (d,e). Grey bars above panels indicate the
times for which phases (in a–c) and phase difference angles (in d,e) are highly consistent across
provinces and statistically significant (see Material and Methods). In (a–c), higher values in
the mean fields indicate timescales and points in time where the phases are more consistent
across provinces, and where the amplitudes of oscillations are more correlated. In (d,e), higher
values correspond to timescales and points in time where the agreement between dengue and
temperature is itself more consistent across provinces. Fig S14 in SI shows which multiannual
timescales dominate the (C)WMFs for each panel in this Figure. Edge effects in the WTs may
influence results before and after the dashed lines (see Materials and Methods).

and S11 in SI). Furthermore, the moments of greater synchrony appear to align, both in 115

timing and timescale, with those of dengue (Fig 2a,b). 116

If the patterns in synchrony in dengue were to be directly linked to patterns in 117

synchrony in temperature, we would expect the magnitudes of the two respective 118

WMFs (in the multiannual time scales, and for all points in time) to correlate positively 119

and significantly. We found a Pearson correlation of 0.21 (P = 0.060; see Material and 120

Methods for significance testing) and a Spearman correlation of 0.20 (P = 0.069). Thus, 121

while correlations were positive, they were not statistically significant. However, see the 122

result for WMFs of dengue data and a mechanistic model based on temperature in 123

‘Driving the model with actual temperature time series’ below. 124

To address whether the patterns of synchrony in temperature were consistent with 125

those observed in the dengue cases in greater detail, we extended the methods of 126

Sheppard et al. [45, 46] to calculate cross-wavelet mean fields (CWMFs). Cross-wavelets 127

quantify the similarity in two time series’ (temperature and dengue cases) wavelet power 128
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Fig 3. Comparison of all measures of synchrony in dengue. For details on these
measures of synchrony, see Section “Perspectives on synchrony” in SI. The curve for wavelet
mean fields was obtained by taking the mean WMF of Fig 2b across multiannual timescales, for
each point in time. To facilitate comparisons, all metrics were normalised to standard scores,
and where necessary, time series were flipped along the y-axis so that higher values always
equate to greater synchrony. Note that for the metric taken from the distribution of distances
of peaks and nadirs, there are two time series in the same colour (one for peaks and another for
nadirs). The two panels show the same time series, but (b) separates them for clarity. Edge
effects in the WTs may influence results before and after the vertical dashed lines.

and phase angles at each timescale and time point, so the CWMFs (the weighted mean 129

cross-wavelet across provinces) quantify the consistency of this similarity across 130

locations. Results in Fig 2d (in which darker colours mean greater consistency between 131

dengue and temperature across locations) suggest that temperature plays a crucial role 132

particularly when synchrony in dengue was high (as demonstrated by the statistically 133

significant consistency in phase angles between dengue and temperature during 134

synchrony events). 135

Periodicity of synchronization events in dengue and temperature 136

Our analyses describe a system that oscillated in and out of synchrony (Figs 2b, 3). To 137

describe the periodicity of the degree of synchrony itself, we collapsed WMFs to a time 138

series by taking the mean WMF across multiannual timescales for each point in time 139

(red line in Figure 3b). We then normalised the resulting time series to standard scores, 140

and applied WTs. 141

Because these time series of synchrony contain, at most, four distinct cycles (Fig 3), 142

we chose to characterise their periodicity by averaging the wavelet power over time, by 143
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taking the mean wavelet power per timescale. The periodicities that dominated the 144

time series of synchrony of dengue and temperature in Thailand, where synchrony was 145

quantified using WMFs, were 12.6 and 12.5 years, respectively (e.g., the main 146

periodicity of the cycles shown in the red line in Fig 3 is 12.6 years). As a point of 147

comparison, the periodicity of synchrony in dengue, where synchrony is estimated using 148

alternative methods such as weighted median timescales or windowed spline 149

correlograms (Section “Perspectives on synchrony” in SI) was 12.0 years in both cases. 150

Simulations to disentangle the roles played by temperature and 151

immunity 152

Mechanistic dengue model and simulations 153

While our results may suggest a relatively straightforward statistical relationship 154

between dengue cases and temperature (Figs 2 and S30 in SI), we wanted to explore the 155

mechanisms by which temperature could generate asynchronous and synchronous 156

dynamics, while accounting for intrinsic factors, such as the interaction between 157

serotypes. Immunity is central in shaping dengue dynamics; temporary cross-protection 158

between serotypes alone can give rise to a qualitatively wide range of dengue dynamics. 159

Any effects of temperature on dynamics must therefore necessarily be viewed through 160

the lens of the dynamics of immunity. To this end, we used a simple, 161

temperature-dependent four-serotype differential equation dengue model (see Materials 162

and Methods). The model, building on that of Huber et al. [41], explicitly encodes the 163

temperature dependence of vector traits, which in turn allows for temperature to drive 164

transmission and dengue dynamics, while at the same time allowing for simple, 165

cross-protective interactions between serotypes of varying mean lengths of time. 166

The patterns quantified so far describe a system that fluctuates in and out of 167

synchrony. When seeking potential drivers for the observed patterns, these would need 168

to account for both asynchrony, and thus the ability to produce a range of spatially 169

heterogeneous dynamics, and synchrony, during which dynamics are more homogeneous. 170

We ran three sets of simulations to see whether we could better understand how 171

temperature might drive patterns in synchrony, using both real temperature time series 172

and simplified experiments (Table 1; also see SI). First, in simulation 1 we used the 173

Global Historical Climatology Network version 2 and the Climate Anomaly Monitoring 174

System (GHCN CAMS) temperature time series for each province as input for the 175

model, with the objective of reproducing observed spatio-temporal features (specifically 176

the synchrony events; simulation 1). Next, for simulations 2 and 3, we wanted to delve 177

into the specific mechanisms through which temperature may produce asynchronous 178

and synchronous dynamics. The hypothesis that temperature can produce asynchronous 179

dynamics relies on different temperature (and thus transmission) regimes having the 180

potential to generate diverse enough multiannual oscillations across locations. To this 181

end, we devised simplified experiments across five idealised hypothetical locations along 182

a transect in Thailand, going from high mean temperatures and low seasonal variability, 183

to low mean temperatures and high seasonal variability (see Figs S34–S36 in SI). For 184

simulation 2, we used seasonal sine curves as temperature inputs (with no multiannual 185

cycles), and ran simulations for the five locations. Finally, for simulation 3, we built on 186

simulation 2 by introducing a single multiannual fluctuation in the temperature time 187

series, at the same time across the five locations, superimposed over the seasonal cycles. 188

The multiannual fluctuation had varying timescales (2–5 years), and the amplitude of 189

the multiannual wave was a proportion (10%–40%) of the seasonal amplitude. The 190

objective was to determine whether the common multiannual fluctuation across 191

locations would be sufficient to produce synchrony in an otherwise asynchronous system 192

(simulation 3). 193
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Table 1. Simulations used in this study. We use the mechanistic dengue model,
with different temperature inputs and numbers of locations N , to address specific but
related questions (column Aim). Each location was run as an independent simulation
(no host movement between locations), using the same host birth and death rates and
population sizes and starting conditions, such that the only difference across locations
was temperature (see section “Further details on simulation studies” in SI). In all cases,
simulations were run assuming mean cross-protections between dengue serotypes of six
months, one year, and two years. Outputs had a monthly resolution.

Sim. N Temperature input Aim

1 72 Real temperature time series
Reproduce empirical patterns using tempera-
ture as the input.

2 5 Seasonal sinusoids
Reproduce asynchrony using different thermal
regimes alone.

3 5

Seasonal sinusoids, with a super-
imposed single multiannual fluc-
tuation (with a timescale of 2–5
years).

Reproduce synchrony in an asynchronous sys-
tem and explain contributions of intrinsic and
extrinsic factors.

Driving the model with actual temperature time series 194

The mechanistic model, driven by temperature with the mediation of temporary 195

serotype cross-protection, was capable of producing qualitatively similar dynamics to 196

those observed in the data (e.g., see Fig S12 in SI), thereby supporting the hypothesis 197

that temperature plays an important role. For simulation 1 (using temperature time 198

series for the 72 provinces), the WMF for the model output had statistically significant 199

synchrony at all times. The Pearson and Spearman correlations between the model 200

output and the data WMFs (Fig 2c and b) were 0.29 (P = 0.023) and 0.32 (P = 0.016), 201

respectively. These correlations show a statistically significant association between the 202

overall patterns in synchrony in dengue cases and model output, supporting the 203

hypothesis that temperature is likely a strong driver of synchrony in dengue. For 204

different assumptions on the duration of cross-protections, the correlation coefficients 205

between the model output and data WMFs were marginally lower, and P values were 206

higher (Table S1 in SI). The phase angles between temperature and model output 207

across provinces were, as expected, consistent and statistically significant over most 208

time points (Fig 2e). Both the WMF and CWMF for the model output contain a 209

notable synchrony event in the early-1970s, reproducing that found in temperature; this 210

feature is missing from the WMF and CWMF estimated using the data (Fig 2b,d). 211

WMFs and CWMFs for model outputs using different assumptions on cross-protection 212

are shown in Fig S13 in SI, and show that with longer mean cross-protections (e.g., two 213

years), the degree of synchrony in the model output, and consistency in the phase angles 214

between modelled dengue and temperature, is lower than with shorter cross-protections. 215

A temperature gradient can generate asynchronous dengue dynamics 216

For the idealised experiments of simulation 2, we found that with at least a mean of one 217

year temporary cross-protection between serotypes, the resulting dengue dynamics 218

include multiannual cycles (Fig 4a–c), cycles that are completely attributable to the 219

dynamics of immunity given that here there are no multiannual cycles in temperature. 220

The periodicity of these cycles (and their amplitude), however, changed as a result of 221

the temperature regime. As temperature conditions are optimised for transmission (i.e., 222

as mean temperatures increase, approaching the higher temperatures that characterise 223
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temperature in, for instance, Bangkok; Fig S36 in SI), the periodicity of multiannual 224

components in dengue go down (i.e., multiannual cycles are more frequent), and the 225

power at the multiannual timescales increases. At the highest mean temperature, with a 226

mean of two years of cross-protection, seasonal cycles all but disappear (Fig 4c) due to 227

two main trends. On the one hand, as cross-protection becomes longer, the power of the 228

multiannual cycles (and therefore their amplitude) increases (Fig 4a–c). On the other, 229

the seasonal variation in transmission is most limited at the highest mean temperatures 230

(Fig S37 in SI), thus producing more limited seasonal variation in dengue cases. Taken 231

together, these two trends mean that dynamics become increasingly dominated by the 232

multiannual cycles produced through cross-protection, and less so by seasonal variation 233

in temperature. While the periodicity of the multiannual cycles for each temperature 234

regime changes little between means of one and two years of cross-protection, their 235

prominence does: with longer cross-protection, these cycles clearly increase in mean 236

wavelet power. The range of dynamics produced across locations under all assumptions 237

of cross-protection are sufficiently diverse: no synchrony is detected (e.g., Fig 4d). 238
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Fig 4. Multiannual periodicities and synchrony for models driven by simple
seasonal sine curves. (a–c) Mean wavelet power for simulation 2 experiments (seasonal
temperature input with no multiannual components; Table 1) per timescale (over time) for
each of the five hypothetical locations (rows within each panel), assuming a mean
cross-protection of (a) six months, (b) one year, and (c) two years. (d) Mean wavelet field for
the simulations in (b) (i.e., assuming a cross-protection of one year), and (e) mean wavelet field
for the same simulation, except for the introduction of a single four-year fluctuation across all
locations on year 168. The amplitude of the multiannual fluctuation here is 20% of that of the
seasonal cycle. Darker colours indicate greater wavelet power (colours in a–c and d–e are
(separately) on the same scale). Green lines indicate peaks in mean wavelet power over
multiannual timescales. Edge effects in the WTs may influence results before and after the
dashed lines in (d,e). See Figs S15–S28 in SI for more complete results (across all
cross-protections, and timescales and amplitudes of the multiannual fluctuation).
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Common multiannual fluctuations in temperature can synchronise dengue 239

dynamics 240

Because different temperature regimes produce distinct dengue dynamics (Fig 4a–c), 241

one simple explanation for synchrony could be that temperatures across the country 242

converge to a more similar temperature regime during those periods, resulting in more 243

synchronous dengue dynamics. However, this has not been the case in Thailand 244

(Fig S32 in SI). The next hypothesis is that a common multiannual fluctuation in 245

temperature can synchronise dengue dynamics (simulation 3). The result for simulation 246

3 was that when the amplitude of the multiannual fluctuation in temperature was at 247

least 20% of the seasonal cycle, the five locations were temporarily synchronised 248

(Fig 4e), under all assumptions on cross-protection. Synchrony in dengue occurred at 249

approximately the same timescale as that of the multiannual fluctuation in temperature, 250

so, for example, when the multiannual fluctuation in temperature was a single four-year 251

cycle, synchrony in dengue was detected at a four-year timescale. However, when the 252

multiannual fluctuation had an amplitude 10% that of the seasonal cycle and mean 253

cross-protection was two years, synchrony was not detectable (Fig S28 in SI). 254

The roles played by immunity and temperature 255

The synchronisation achieved in the simulation 3 experiments varied as a function of the 256

mean duration of cross-protection: the degree of synchrony fell with a longer 257

cross-protection (Figs S20–S28 in SI). To explain why, we need to better understand 258

how the multiannual timescales produced by intrinsic and extrinsic factors interact. 259

Comparing simulations with and without a single multiannual fluctuation in 260

temperature allows us to quantify how the multiannual timescales in dengue change 261

specifically as a result of the multiannual fluctuation in temperature. We found that 262

while the periodicity of the multiannual fluctuation in temperature is generally 263

detectable in the resulting dengue dynamics, its importance relative to the timescales of 264

the intrinsic dynamics (i.e., the dengue multiannual timescales attributable to 265

cross-protection alone) vary as a function of both mean temperature and mean 266

cross-protection (Fig 5). Dengue appears to be more insensitive to multiannual 267

fluctuations in temperature with increasing mean temperatures and cross-protections. 268

Specifically, as the duration of cross-protection and/or mean temperatures increase (and 269

as seasonality in temperature is reduced), the power of the multiannual intrinsic 270

dynamics increases, such that the effect of the multiannual fluctuation in temperature is 271

overwhelmed. In our simulations, this is particularly the case for mean temperatures of 272

30◦C and a mean cross-protection of two years (Fig 5). 273

It is also worth noting that the multiannual fluctuation in temperature is not 274

necessarily straightforwardly reproduced in dengue dynamics. Instead, it elicits a 275

transient response in dengue cases that can extend in time beyond the multiannual 276

fluctuation in temperature, as can be clearly seen when plotting the phase angle 277

between simulations with a multiannual fluctuation in temperature, and those without 278

(Fig S29 in SI). These show both that the effect of the multiannual fluctuation in 279

temperature can be lasting, and also that the effect of the multiannual fluctuation is 280

reduced with longer cross-protections and higher mean temperatures. 281

This interaction between temperature and cross-protection explains why with longer 282

cross-protection, the degree of synchrony appears to go down: as cross-protection 283

becomes longer, locations with higher mean temperatures are more likely to be 284

dominated by the intrinsic timescales, and as a result, the ability of a multiannual 285

fluctuation in temperature to synchronise locations is reduced. 286
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Fig 5. Comparing multiannual timescales in dengue caused by cross-protection
and by multiannual fluctuations in the environment using simulations. We compare
the mean wavelet power of dengue at the timescale of the environmental multiannual
fluctuation, with the mean wavelet power of dengue at the timescale at which wavelet power is
maximised without a multiannual fluctuation in temperature (the multiannual timescale
attributable to cross-protection alone). Positive values mean that the multiannual fluctuation
in temperature plays a more important role driving dengue multiannual dynamics, and
negative values mean that dengue dynamics are less sensitive to the multiannual fluctuation in
temperature. For example, for a mean temperature of 30◦C, a multiannual fluctuation with a
timescale of four years, and a mean cross-protection of two years, we compared the mean
wavelet power at a timescale of four years (that of the multiannual fluctuation), with the mean
wavelet power at a timescale of 2.7 years (the multiannual timescale at which wavelet power
was maximised with no multiannual fluctuation in temperature, i.e., the peak on the top row of
Fig 4c). In this example, the mean wavelet power was distinctly greater at the 2.7 year
timescale than at the 4 year timescale, meaning dengue dynamics were insensitive to the
multiannual fluctuation in temperature. Differences in wavelet power shown here have been
normalised against the maximum value for each timescale of the multiannual fluctuation, to
improve clarity. Overall, longer cross-protection (the right column of points) and mean
temperatures (purple colors) are more likely to lead to a system dominated by intrinsic
dynamics, and less sensitive to multiannual fluctuations in temperature. Mean wavelet power is
estimated for the duration of the multiannual fluctuation only (so for a four-year multiannual
fluctuation in temperature, mean wavelet power is estimated during those four years only).
Here, the multiannual fluctuation has an amplitude 0.2 times that of the seasonal cycle, but
the patterns are qualitatively similar for the other amplitudes of the multiannual fluctuations.

Discussion 287

Using multiple approaches, we have described an interesting spatial phenomenon in 288

dengue: the country has repeatedly and periodically moved in and out of synchrony in 289

dengue cases. In general, periods of greater synchrony coincided with larger outbreaks. 290

When analysing temperature time series across Thailand, we found a similar pattern in 291

spatial synchrony. Although the correlation between the overall patterns in synchrony 292

in temperature and dengue cases was not statistically significant, the relationship 293
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between temperature and dengue cases was particularly consistent across provinces 294

during times of greater synchrony. Accounting for the dynamics of immunity is essential 295

for understanding dengue dynamics; any effects of temperature on dynamics are 296

modulated by immunity. To gain a more mechanistic understanding of how temperature 297

interacts with the dynamics of immunity to produce the observed patterns in synchrony, 298

we adapted a mechanistic dengue model with temporary cross-protection. When 299

running the model using the observed temperatures across Thai provinces, the patterns 300

in synchrony in the resultant model output dengue time series correlated positively and 301

significantly with observed patterns in dengue cases from the passive surveillance data. 302

The fact that this correlation was statistically significant, but the one between the 303

patterns in synchrony in dengue cases and temperature was not, further highlights the 304

importance of nonlinearities in the way temperature affects dengue and dynamics of 305

immunity. While (a sufficiently long) cross-protection alone can produce multiannual 306

cycles, we found that their periodicity was modulated by temperature; different 307

temperature regimes produced characteristically different dengue dynamics. However, 308

although the timescales of the multiannual periodicities of dengue varied little, their 309

power became more prominent with longer cross-protections. This result sheds some 310

light on the roles played by both temperature and dynamics of immunity, and suggest 311

that both are essential to understand patterns in dengue dynamics. We also found that 312

a range of temperature regimes produced asynchronous dengue dynamics, but the 313

introduction of common multiannual fluctuations across a range of different 314

temperature regimes was sufficient to synchronise the otherwise asynchronous system. 315

The degree of synchrony depended on the duration of cross-protection: as the duration 316

of cross-protection increased, the multiannual cycles produced by cross-protection 317

became more prominent compared to those produced by multiannual fluctuations in 318

temperature, particularly at higher mean temperatures, resulting in a lower degree of 319

synchrony across locations. With longer cross-protections, a larger proportion of the 320

population is temporarily protected and not susceptible to infections, and thus 321

unaffected by variations in transmission. However, with less than two years of mean 322

cross-protection, synchrony in temperature can synchronise an otherwise asynchronous 323

system. 324

Our results highlight how ongoing climate change, together with other concurrent 325

changes, may be affecting dynamics in areas where the disease is endemic and a 326

majority of the population at risk, now and in future projections, lives. 327

Most locations’ temperature appear to be increasing in mean and decreasing in 328

seasonal variation (Fig S33 and S36 in SI). If these trends were to be maintained, our 329

results suggest that dengue dynamics could slowly shift too, and approach a regime 330

characterised by higher average incidence (Figs S15–S17 in SI), and dynamics 331

increasingly dominated by multiannual, rather than seasonal, cycles. Multiannual cycles 332

may also be, to greater extents, dictated by intrinsic factors over the multiannual 333

timescales present in temperature. These trends may also suggest that in the future, 334

synchrony may be driven by increasing similarity in temperatures across Thailand, and 335

less so by synchronous multiannual fluctuations in temperature. However, these 336

hypotheses are contingent on a more precise understanding of the interactions between 337

serotypes and contributions from other intrinsic factors (such as changes in demography 338

and movement of hosts between locations). 339

There are several caveats to our analyses. We chose to focus on temperature and its 340

interaction with the dynamics of immunity. However, we could not ascribe every 341

pattern in synchrony in dengue to synchrony in temperature. For example, Thailand 342

experienced a strongly synchronous two-year fluctuation in temperature around 1972, 343

and while this fluctuation was reproduced in our model output, it was conspicuously 344

absent from the observed dengue dynamics. There are multiple reasons that could 345
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explain this discrepancy. During the earlier part of the records, dengue cases might have 346

been detected less effectively, thus potentially obscuring multiannual patterns. On the 347

other hand, other environmental variables (notably precipitation) and their interaction 348

with temperature are likely important for the dynamics of dengue. For instance, the 349

extent to which a synchronous event in temperature can synchronise multiannual cycles 350

in dengue might depend on the amount of precipitation or timing of the rainy seasons 351

during those years. Additionally, other non-environmental mechanisms might also 352

influence synchrony in dengue. Complex multiannual cycles, synchrony, and variations 353

in the degree of synchrony over time can in theory be produced via, for example, the 354

movement of hosts between locations (weakly-coupled oscillators; [15]). There are also a 355

range of concurrently ongoing changes in Thailand that may also influence multiannual 356

dynamics and synchrony. For instance, the birth rates across the country have been 357

declining [48], and the rates of decline may be spatially heterogeneous. Similarly, 358

long-term trends in population densities across the country could also contribute to the 359

observed spatio-temporal patterns. Exploring how these factors may interact with 360

temperature and contribute to the observed spatio-temporal patterns deserves further 361

attention. Finally, the mechanistic model we use here necessarily makes simplifying 362

assumptions (see “Temperature-dependent dengue model” in SI). Further work is 363

required to understand which of these assumptions may significantly affect the 364

dynamics produced. 365

Materials and methods 366

Data 367

We use data provided by the Thai Ministry of Public Health in their Annual 368

Epidemiological Surveillance Reports. Monthly dengue case counts are given per 369

province, starting in January 1968. Prior to 2003, the counts provided combine the 370

cases of dengue fever, dengue shock syndrome, and dengue haemorrhagic fever (DF, 371

DSS, and DHF, respectively), while separate counts are given for each category 372

thereafter. For 2003 onwards we use DHF cases only given these are the cases that are 373

most likely to lead to severe outcomes and that these are the most likely to have been 374

reported prior to 2003, although results change little when including DF and DSS. 375

Starting in 1982, five new provinces were created. To maintain consistency across the 376

time series, cases for these new provinces were added back to the provinces they were 377

created from, keeping the total number of provinces (72) constant over time. 378

Temperature time series were obtained from the GHCN CAMS gridded (0.5◦ by 0.5◦ 379

resolution) monthly mean temperature data set (provided by NOAA/OAR/ESRL PSD, 380

Boulder, Colorado, USA, from 381

https://www.esrl.noaa.gov/psd/data/gridded/data.ghcncams.html, downloaded 382

on 18/06/2019). This dataset combines station observations from the Global Historical 383

Climatology Network v2 and the Climate Anomaly Monitoring System [49] (Figs S31 384

and S32 in SI). The time series start in 1948. We downloaded shapefiles for Thai 385

provinces from 386

https://data.humdata.org/dataset/thailand-administrative-boundaries on 387

12/02/2019, and estimated province centroids using function ‘calcCentroid’ in R 388

package ‘PBSmapping’ v2.72.1. A time series for each province was then obtained by 389

using the grid point nearest to the centroid of each province. 390
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Wavelet transforms 391

We applied continuous wavelet transforms (WTs) to explore how the oscillatory 392

behaviour of dengue cases has changed over time. WTs have now been applied 393

extensively in the study of infectious disease dynamics [31, 34,50–52] and more broadly 394

in ecology [45,46]. WTs decompose time series into frequency components, but, as 395

opposed to Fourier transforms, WTs are also localised in time. Thus, WTs can be used 396

to characterise non-stationary time series and how the relative importance of different 397

frequencies change over time. The basis for the WT is a “mother” wavelet, a wave 398

localised in both frequency and time (i.e., of limited duration), which is then scaled or 399

stretched (for the frequency component) and shifted along the time axis (for the 400

temporal component) to derive a set of “daughter” wavelets. The WT can then be 401

understood as a correlation between (or more specifically the convolution of) the time 402

series and the set of daughter wavelets [53]. 403

We use the WT as implemented in R package ‘WaveletComp’ v1.1 – details are 404

provided in the package documentation [54] and code, and a summary is given here. 405

The package uses a Morlet mother wavelet, ψ(t) = π−1/4 exp(i ω t) exp(−t2/2), where t 406

is time (t = 1, . . . , T ) and ω is the angular frequency, set to 6 radians t−1 [54]. The WT, 407

W , at a point in time τ and scale s (proportional to period, the inverse of frequency) is: 408

W (τ, s) =
∑
t

x(t)
1√
s
ψ∗
(
t− τ
s

)
, (1)

where x(t) is the original time series, and ∗ denotes the complex conjugate. The 409

modulus of W (τ, s), |W (τ, s)|, gives the local amplitude A at time point τ and scale s. 410

For any plots of the WT or calculations performed directly on it, we correct A so that 411

A(τ, s) = s−1/2 |W (τ, s)| [55]. A(τ, s)2 is the wavelet energy density. W (τ, s) also yields 412

the instantaneous local wavelet phase. Although the WT contains significant 413

redundancy in time and scale, it is possible to reconstruct the original time series (or 414

time series containing specific scales only) on the basis of summing over the real part of 415

the wavelet transform [53]. 416

For these analyses, prior to performing the WT, a value of one was added to time 417

series of dengue cases prior to ln-transforming and normalising to standard scores (mean 418

= 0, standard deviation = 1). Time series of dengue cases were not detrended prior to 419

calculating wavelet power for two reasons: detrending a time series with zero values 420

produced artificially odd patterns. Time series of temperature were not transformed; 421

long-term nonlinear trends were removed by taking the residuals of a local polynomial 422

regression (using function ‘loess’ with a span of 0.75), and the detrended time series 423

were subsequently normalised, as above. Due to the finite length of the time series, 424

whenever the wavelets extend beyond the edges of the time series, estimates of 425

transform coefficients become less accurate. This issue is exacerbated as scales increase, 426

due to wavelets extending further in time [53,54]. Regions where these edge effects are 427

present (often referred to as the “cone of influence”) are clearly indicated in wavelet 428

plots by thick dashed lines. 429

While the dynamics of dengue are seasonal, previous studies have also identified 430

distinct multiannual timescales [27, 29, 31, 34, 52]. We are specifically interested in these 431

multiannual timescales; for this reason we focus on timescales greater than 1.5 years. 432

This lower bound also prevents leakage from the annual signal into the multiannual 433

timescales. As the timescales increase, edge effects increasingly dominate and the length 434

of time we can reliably analyse becomes shorter. Furthermore, previous studies [29,34] 435

typically identified multiannual components at 2–3 years, albeit using shorter time 436

series. For these reasons we here focus on the 1.5–5 year timescales (henceforth, 437

“multiannual” components or timescales refer to this range). 438
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Wavelet mean fields as a measure of synchrony 439

Wavelet mean fields (WMFs), provide a measure of synchrony as a function of both 440

scale and point in time (further details can be found in Sheppard et al. [45, 46]; only a 441

summary is provided here). More intuitively, WMFs indicate scales and time points at 442

which both phases and magnitude of oscillations are consistent (or more synchronous) 443

across provinces. WMFs are a mean of the power-normalised WTs of each location n 444

across all N locations (n = 1, . . . , N), where we normalised each WT by 445

wn(s, τ) =
Wn(s, τ)√

1
N T

∑N
n=1

∑T
τ=1Wn(s, τ)Wn(s, τ)∗

(2)

[45,46]. 446

To test whether synchrony is statistically significant in the multiannual range 447

against a null hypothesis of no synchrony, we focus on the consistency of phases across 448

locations. We do so by estimating the wavelet phasor mean field (WPMF), defined as 449

1

N

N∑
n=1

Wn(s, τ)

|Wn(s, τ)|
, (3)

which retains information on the complex phases of the transforms [46]. When different 450

locations have a similar phase, the value WPMF will be large, while when the phase in 451

each location is independent from all other locations, the value of the WPMF will be 452

small. We test significance by generating surrogate datasets where the autocorrelation 453

structure within each time series is preserved. We do this by generating time series with 454

the same Fourier spectrum as the original time series [46]. Following this approach, we 455

produced 1000 surrogate time series, using function ‘surrog’ in R package ‘wsyn’ 456

v1.0.2 [56]. For each surrogate dataset, we produced a WPMF, and then, for each point 457

in time, and across the multiannual scales, we: 458

1. compared, scale by scale within a single time point, the power of the ‘real’ WPMF 459

with that of all surrogate WPMFs, noted which scales were at least in the 95 460

percentile, and then calculated the fraction of scales at that point in time for 461

which this was the case (producing a time series of proportions); 462

2. repeated step 1 but taking each surrogate WPMF in turn, and comparing it to all 463

other surrogate WPMFs (producing a time series of proportions for each surrogate 464

WPMF); and, finally, 465

3. calculated the points in time for which the time series of step 1 were at least in 466

the 95 percentile compared to the time series in step 2. 467

Drivers of synchrony 468

To assess the association in the patterns in synchrony between the WMFs of dengue 469

cases and temperature, and between the WMFs of dengue cases and modelled dengue 470

output, we perform both Pearson and Spearman correlations on the respective WMF 471

values within the timescales of interest for all points in time (excluding the cone of 472

influence). These correlations quantify the overall similarity in the pairs of WMFs, and 473

when statistically significant, would imply that the two WMFs are related (and thus 474

lend support to the hypothesis that the patterns in synchrony of temperature drive 475

patterns in dengue). For the Pearson correlations, we square-root transform the WMF 476

values. We estimate statistical significance by producing null distributions of 477

correlations. We generate surrogate WMFs for 1000 surrogate datasets of dengue cases, 478
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obtained, as above, by preserving the same Fourier spectrum as the original time series 479

of dengue cases, but assuming asynchrony. The Pearson and Spearman correlations 480

between each of these surrogate WMFs and the temperature WMF or the model output 481

WMF produce the null distributions against which we compare the observed 482

correlations. 483

To determine in greater detail whether the patterns of synchrony in temperature 484

were consistent with those observed in the dengue cases, we extended the method above 485

for WMFs [46] to calculate cross-wavelet mean fields (CWMFs). Cross-wavelets 486

quantify the similarity in two time series’ (temperature and dengue cases) wavelet power 487

at each scale and time point, so the CWMFs quantify the consistency of this similarity 488

across locations. CWMFs are an average of the power-normalised cross-wavelets at each 489

location between temperature and dengue cases. A cross-wavelet X between two time 490

series is defined as 491

X(s, τ) =
1

s
W1(s, τ)W2(s, τ)∗, (4)

where the cross-wavelet is corrected following Veleda et al. [57]. The argument of X 492

gives the phase angles between the two time series per time point and scale. For time 493

series of temperature and dengue cases with respective power-normalised (eq. (2)) 494

wavelets wd
n(s, τ) and wm

n (s, τ), the CWMF is defined as 495

C(s, τ) =
1

N

N∑
n=1

wd
n(s, τ)wm

n (s, τ)∗. (5)

C(s, τ) will be large if the phase differences between temperature and dengue for each 496

time point and scale are are consistent across locations, and if the amplitudes of the 497

oscillations are correlated. Two unrelated but temporally and spatially autocorrelated 498

variables can quite readily produce patterns in synchrony. For example, if instead of 499

using temperatures for Thailand we were to produce a CWMF using temperatures from 500

a different location, with similar temporal and spatial autocorrelation, we could 501

potentially observe similar patterns in synchrony, despite the two variables being clearly 502

unrelated. For this reason, we test significance in the multiannual timescales using the 503

same three-step approach described above, but here, surrogate dengue datasets are 504

produced that not only preserve the autocorrelation structure of the time series, but 505

also the cross-correlation structure across locations (i.e., synchrony-preserving 506

surrogates). We do this by generating time series with the same Fourier spectrum as the 507

original time series (as above), but then adding the same random uniformly distributed 508

phase at each frequency across all time series [46]. As above, we test significance by 509

focussing on the consistency of phase angles between dengue and temperature. Using 510

these surrogate dengue datasets, cross-wavelets are estimated relative to the real 511

temperature dataset, and these in turn are used to produce the surrogate cross-wavelet 512

phasor mean fields, which we use for comparison. 513
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