
1 

 

Gut microbial structural variations as determinants of human bile acid 1 

metabolism 2 

Authors 3 

Daoming Wang 1, Marwah Doestzada 1,2,*, Lianmin Chen 1,2,*, Sergio Andreu-4 

Sánchez 1,2, Inge C.L. van den Munckhof 3, Hannah Augustijn 1,2, Martijn Koehorst 2,4, 5 

Vincent W. Bloks 2, Niels P. Riksen 3, Joost H.W. Rutten 3, Mihai G. Netea 3,5,6, 6 

Alexandra Zhernakova 1, Folkert Kuipers 2,4, Jingyuan Fu 1,2,# 7 

 8 

Affiliations 
9 

1 Department of Genetics, University of Groningen, University Medical Center 10 

Groningen, Groningen 9713AV, the Netherlands 11 

2 Department of Pediatrics, University of Groningen, University Medical Center 12 

Groningen, Groningen 9713AV, the Netherlands 13 

3 Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, 14 

Radboud University Medical Center, Nijmegen 6500HB, the Netherlands 15 

4 Department of Laboratory Medicine, University of Groningen, University Medical 16 

Center Groningen, Groningen 9713AV, the Netherlands 17 

5 Department for Genomics & Immunoregulation, Life and Medical Sciences Institute, 18 

University of Bonn, Bonn 53113, Germany 19 

6 Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, 20 

Craiova 200349, Romania 21 

* These authors contributed equally 22 

# Lead Contact 23 

 24 

Correspondence should be addressed to J.F. (j.fu@umcg.nl) 25 

 26 

  27 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2021. ; https://doi.org/10.1101/2021.02.28.432952doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.28.432952
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Summary 28 

Bile acids (BAs) facilitate intestinal fat absorption and act as important signaling 29 

molecules in host�gut microbiota crosstalk. BA-metabolizing pathways in the 30 

microbial community have been identified, but how the highly variable genomes of 31 

gut bacteria interact with host BA metabolism remains largely unknown. We 32 

characterized 8,282 structural variants (SVs) of 55 bacterial species in the gut 33 

microbiomes of 1,437 individuals from two Dutch cohorts and performed a systematic 34 

association study with 39 plasma BA parameters. Both variations in SV-based 35 

continuous genetic makeup and discrete subspecies showed correlations with BA 36 

metabolism. Metagenome-wide association analysis identified 797 replicable 37 

associations between bacterial SVs and BAs and SV regulators that mediate the 38 

effects of lifestyle factors on BA metabolism. This is the first large-scale microbial 39 

genetic association analysis to demonstrate the impact of bacterial SVs on human BA 40 

composition, and highlights the potential of targeting gut microbiota to regulate BA 41 

metabolism through lifestyle intervention. 42 
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Introduction 48 

Bile acids (BAs) represent an important class of biologically-active metabolites that 49 

act at the interface between host and gut microbiota. BAs are amphiphilic steroids 50 

synthesized from cholesterol in the liver and are well-known for their roles in 51 

facilitating intestinal fat absorption, promoting hepatic bile formation and maintaining 52 

whole-body cholesterol balance. In addition, BAs exert hormone-like functions by 53 

signaling via membrane-bound and nuclear receptors involved in the control of lipid, 54 

glucose and energy metabolism (Kuipers et al., 2014). Altered BA metabolism has 55 

been associated with several metabolic diseases, including type 2 diabetes (T2D) and 56 

non-alcoholic fatty liver disease (NAFLD) (Chávez-Talavera et al., 2017), and with 57 

colorectal cancer (Dermadi et al., 2017) and hepatocellular carcinoma (Gao et al., 58 

2019). 59 

Gut bacteria are essential players in human BA metabolism: bacterial bile salt 60 

hydrolases (BSH) convert the glycine- and taurine-conjugated primary BAs produced 61 

by the liver (cholic (CA) and chenodeoxycholic (CDCA) acids) into unconjugated 62 

primary BAs that can subsequently be dehydroxylated to form secondary BAs 63 

(deoxycholic (DCA) and lithocholic (LCA) acids) (Jia et al., 2017). Secondary BAs 64 

are efficiently absorbed in the ileum and, to a lesser extent the colon, and return to the 65 

liver via the portal venous system for re-secretion into the bile. Consequently, the BA 66 

pool consists of a mixture of primary and secondary BAs that travel between liver and 67 

intestine within the enterohepatic circulation. Recent cohort studies have 68 

demonstrated remarkable inter-individual variation in the human BA pool 69 

composition, as inferred by analyzing BA composition in peripheral blood from both 70 

healthy (Steiner et al., 2011) and obese subjects (Chen et al., 2020). Importantly, this 71 

variability could largely be attributed to metabolic and transport processes within the 72 

enterohepatic circulation rather than to differences in hepatic synthesis rates, implying 73 

a key role for the microbiome in BA diversity (Chen et al., 2020). 74 

In recent years, we have learned a great deal about the large variability of 75 

microbial composition in healthy humans and compositional alterations associated 76 

with specific diseases (Falony et al., 2016; Jackson et al., 2018; Zhernakova et al., 77 

2016). The relationships between host BA pool and gut microbial composition were 78 

also investigated in several cohorts with differing health status. For instance, in 79 

untreated T2D patients, concentrations of plasma glycoursodeoxycholic acid 80 
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(GUDCA), LCA and DCA were associated with the overall composition of gut 81 

microbiome (Gu et al., 2017). In the 300OB obesity cohort, a considerable number of 82 

associations were identified between the relative abundances of gut bacteria and BA 83 

parameters in feces and plasma (Chen et al., 2020). Many bacterial genes involved in 84 

BA biotransformation have been identified through experimental and homologue-85 

based bioinformatic approaches. For instance, the BSH gene pool has been quantified 86 

and characterized in the metagenomes of diverse populations (Song et al., 2019). 87 

Based on the catalog of known BA-related genes present in gut bacterial genomes, the 88 

BA biotransformation potential of individuals can be predicted using metabolic model 89 

reconstructions (Heinken et al., 2019).  90 

However, abundance-based analyses commonly assess taxa abundance at genus- 91 

or species-level, and the interaction of genetic diversity with BA metabolism within 92 

species has not yet been properly addressed. Since the functionality of a considerable 93 

proportion of microbial genes is still unknown (Heintz-Buschart and Wilmes, 2018), 94 

the homologue-based method for microbial BA gene analysis, which relies on the 95 

known references of BA biotransformation genes, has limited our understanding of 96 

the interactions of BAs with the “dark matter” of the gut microbiome. In addition, the 97 

accuracy of in silico modeling of BA biotransformations is affected by the possibility 98 

of undiscovered pathways in BA modification. Importantly, BAs themselves also 99 

influence gut microbiome composition through their antimicrobial activities and via 100 

indirect signaling pathways (Jia et al., 2017). However, the overall genetic shift of gut 101 

bacteria due to their exposure to the various BAs present in the human BA pool is 102 

currently unknown. This motivated us to explore the relationships between the gut 103 

microbiome and host BA metabolism at the level of microbial genetics. 104 

Microbial structural variants (SVs) are highly variable segments of bacterial 105 

genomes that have been defined in recent years based on metagenomic sequencing 106 

data (Zeevi et al., 2019). Microbial SV regions potentially contain functional genes 107 

involved in host�microbe interactions and could thus provide information on sub-108 

genome resolution of bacterial functionality. A variety of associations have been 109 

found between SVs and metabolite levels in human blood (Zeevi et al., 2019). 110 

Recently, a longitudinal study comparing subjects with irritable bowel syndrome to 111 

healthy individuals reported associations between BAs and microbial SVs for the first 112 

time (Mars et al., 2020). In this study, fecal levels of two unconjugated primary BA 113 
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species, CDCA and CA, were found to correlate with variable genomic segments of 114 

Blautia wexlerea. This finding provided the initial clue that previously unknown 115 

bacterial genes are involved in the modification of primary BAs or indirectly associate 116 

with host BA metabolism (Mars et al., 2020). However, in view of the limited sample 117 

size and number of individual BA species analyzed in this study and the unknown 118 

reproducibility of the associations between SVs and BAs across different cohorts, 119 

systematic analysis in large-scale, population-based cohorts is required. Moreover, 120 

although the BA-associated SVs were interpreted as potential BA-metabolizing 121 

genomic segments (Mars et al., 2020), the existence of a causal relationship between 122 

BAs and microbial variants remains to be established because BAs can also act as 123 

regulators of the gut microbiome. 124 

We therefore aimed to systematically evaluate the relationships between several 125 

parameters of human BA metabolism and the genetic architecture of the gut 126 

microbiome based on SVs. This study involved 1,437 individuals from two 127 

independent Dutch cohorts: the population-based Lifelines-DEEP cohort (LLD, N = 128 

1,135) (Tigchelaar et al., 2015) and the 300-Obesity cohort (300-OB, N = 302) (Horst 129 

et al., 2019). In both cohorts, we profiled fasting plasma levels of 15 different BA 130 

species and 7α-hydroxy-4-cholesten-3-one (C4), which reflects the hepatic synthesis 131 

rate of BAs. We also calculated the relative proportions of individual BAs as well as 132 

different BA concentration ratios that represent metabolic pathways and enzymatic 133 

reactions. In all, we obtained 39 BA-related parameters. Simultaneously, the 134 

metagenomics sequencing data was subjected to characterization of microbial SVs to 135 

generate variable SV (vSV) and deletion SV (dSV) profiles that represent the 136 

standardized coverage and presence/ absence status of genomic segments, 137 

respectively. We then performed a systematic microbial genetic association analysis 138 

of BAs, not only with individual SVs, but also with discrete strains and the 139 

continuous genetic structures defined by the SV profiles. We further integrated 140 

several lifestyle factors, including diet, drug usage and smoking, and constructed 141 

tripartite networks of in silico-inferred causal relationships that included exposures, 142 

microbial genetics and host plasma BA composition. This identified potential novel 143 

microbial genetic regulators that mediate the effect of lifestyle on BA metabolism, 144 

which supports the potential of targeting the gut microbiome to alter human BA 145 

metabolism. 146 
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Results 149 

High variability of plasma BA composition between individuals and cohorts 150 

We included 1,437 individuals from two independent Dutch cohorts in this study: 151 

1,135 individuals from the population-based LLD cohort and 302 individuals from the 152 

obese elderly-targeted 300-OB cohort (Figure 1A-C; Table S1). We assessed the 153 

concentrations and proportions of 15 BA species (6 primary and 9 secondary BAs) in 154 

fasting plasma: cholic acid (CA), chenodeoxycholic acid (CDCA), lithocholic acid 155 

(LCA), deoxycholic acid (DCA), ursodeoxycholic acid (UDCA) and their glycine- or 156 

taurine-conjugated forms (Table S2). We also computed 8 ratios that reflect hepatic 157 

and bacterial enzymatic activities (Table S2; STAR�Methods) and quantified the 158 

plasma level of C4, a biomarker of hepatic BA biosynthesis (Chiang, 2017). In total, 159 

we obtained 39 plasma BA parameters in this study. 160 

Both the concentrations and proportions of the 15 BA species showed 161 

considerable inter-individual variation in both cohorts (Figure 1D and 1E). For 162 

instance, the total plasma BA concentration ranged from 0.084 to 18.008 μM (Figure 163 

1D; Table S3) and the secondary/primary BA ratio ranged from 0 to 10.13 across all 164 

samples (Figure 1E; Table S3). Principal coordinate analysis (PCoA) also showed 165 

significant differences in plasma BA composition between LLD and 300-OB 166 

(Permutational multivariate analysis of variance (PERMANOVA), P = 0.001 in BA 167 

concentration profile, P = 0.001 in BA proportion profile; Figure 1F and 1G). We 168 

also observed that 34 of the 39 BA parameters showed significant differences between 169 

LLD and 300-OB (Wilcoxon rank-sum test, FDR < 0.05; Figure S1A; Table S4). In 170 

view of the distinctly different characteristics of participants between LLD and 300-171 

OB (Figure 1A-1C), the difference in BA composition between the two cohorts could 172 

be caused by phenotypic differences. We therefore estimated the explanatory power 173 

of basic phenotypes such as age, sex and body mass index (BMI) on the variation in 174 

BA composition. These factors collectively explained only 3.07% and 2.94% of the 175 

variance in plasma BA concentration and BA proportion profiles, respectively 176 

(Figure 1H and 1I). Here, age had the largest effect, explaining 1.66% and 1.74% of 177 

the variance in plasma BA concentration and proportion profiles, respectively 178 

(PERMANOVA, p < 0.05; Figure 1H and 1I). This suggests that a large proportion 179 

of BA variation remains unexplained and may be attributed to other factors such as 180 
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lifestyle factors, host genetic background and gut microbial factors. 181 

SV profiling unravels microbial genetic differences between the general 182 

population-based and the obesity-based cohorts 183 

Using the metagenomics sequencing data from both cohorts, we detected 8,282 SVs, 184 

including 2,616 vSVs and 5,666 dSVs in 55 species that were present in at least 75 185 

samples in the two cohorts with sufficient coverage across the reference genomes 186 

(STAR�Methods) with 32–374 SVs per species (Figure 2A and 2B; Table S4). 187 

These 55 species together accounted, on average, for 66.60% of the total microbial 188 

species composition, ranging from 27.02%–90.25% (Figure S2A). The average 189 

sample size of all 55 species with SVs was 432 (Figure S2B; Table S5). The most 190 

prevalent species with SV calling was B. wexlerae, which could be detected in 1,350 191 

samples (1,071 from LLD and 279 from 300-OB), followed by E. rectale (N = 1,160), 192 

E. hallii (N = 1,138) and Ruminococcus sp. (N = 1,095). 193 

We further assessed the Canberra distance of bacterial SV profiles between all 194 

samples (Figure 2C). Principal components (PCo) 1 and 2 together explained 20.70% 195 

of the total SV-based genetic variance (Figure 2C), which showed significant 196 

differences between LLD and 300-OB (Wilcoxon rank-sum test, P = 9.83x10-4 for 197 

PCo1 and P = 2.62x10-11 for PCo2), indicating the divergence of microbial genetics 198 

between the general population-based cohort and the obesity cohort. Interestingly, age, 199 

gender, BMI and read counts collectively only explained 1.79% of the variance of the 200 

metagenome-wide SV profile (Figure S2C), while the top factor, total read counts, 201 

explained only 0.7% of the variation. 202 

Species-level genetic makeup correlates with human BA metabolism independent 203 

of bacterial species abundance 204 

We first investigated the taxonomic abundance and microbial genetic associations 205 

with fasting plasma BA parameters separately at the species level (Figure S3A and 206 

S3B). In total, we identified 226 significant associations between the relative 207 

abundance of 34 bacterial species and 36 BA parameters (Linear regression, 208 

FDRMeta<0.05; Figure S3B; Table S6). Several BA parameter-associated species had 209 

been reported earlier in the 300-OB cohort, e.g. the negative association of the relative 210 
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abundance of the butyrate-producing species F. prausnitzii with 20 BA parameters, 211 

including a negative association with secondary/primary BA ratio (Linear regression, 212 

BetaMeta=-0.18, FDRMeta=3.97x10-6; Table S6). The relative abundance of another 213 

butyrate-producing species, E. hallii, correlated with C4 concentration (Linear 214 

regression, BetaMeta=0.10, FDRMeta=4.72x10-3; Table S6), consistent with findings 215 

from a mouse study showing that E. hallii is able to modify BA metabolism 216 

(Udayappan et al., 2016). The most significant abundance association was found 217 

between R. gnavus and UDCA proportion in plasma (Linear regression, BetaMeta=0.34, 218 

FDRMeta=7.77x10-28; Table S6). Altogether, these results confirm that microbiome 219 

composition is closely associated with human BA metabolism. 220 

As bacterial genomes are highly variable, the microbial genetic content of each 221 

species varies across different individuals (Rossum et al., 2020; Tierney et al., 2019), 222 

which may also be relevant to human BA metabolism. Therefore, we first calculated 223 

the SV-based genetic distance per species (Figure S4) and associated these with the 224 

39 plasma BA parameters using PERMANOVA, after correcting for age, sex, BMI, 225 

read counts and species abundance if applicable (STAR�Methods). In total, we 226 

identified 260 significant associations between genetic distances of 39 bacterial 227 

species and 36 BA parameters (PERMANOVA, FDRMeta < 0.05; Figure S3A; Table 228 

S6), which indicates that SV-represented microbial genetic associations with BA 229 

parameters are largely independent of the relative abundances of the species. 230 

Interestingly, some species were found to be more likely associated with BA 231 

parameters at the genetic level (e.g. C. comes, E. rectale and R. intestinalis), whereas 232 

other species tended to be associated with BA parameters at the relative abundance 233 

level (e.g. A. muciniphila, B. bifidum, B. crossotus and I. bartlettii) (Figure 3A). Out 234 

of 260 BA associations with species-specific genetic makeup, only 50 were also 235 

detected at the species abundance level (Figure S3C; Figure 3A), which highlights 236 

that microbial genetic variation represents a new layer of information about bacterial 237 

functionality. 238 

The species with the highest number of genetic associations was B. wexlerae. 239 

The inter-individual genetic differences of B. wexlerae were significantly associated 240 

with 27 BA parameters (PERMANOVA, FDRMeta<0.05; Table S6), whereas only 6 241 

BA parameters correlated with the relative abundance of B. wexlerae (Linear 242 

regression, FDRMeta<0.05; Table S6). The strongest genetic association of B. 243 
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wexlerae was with plasma CA proportion (PMeta = 8.70x10-6; Figure 3B; Table S6), 244 

indicating that individuals with very similar B. wexlerae genome content tend to have 245 

similar CA-contributions to their plasma BA content. Another species, F. prausnitzii, 246 

contributes to 12-dehydro-CA production, and the depletion of F. prausnitzii was 247 

inferred to lower the unconjugated CA and CDCA levels in feces of IBD patients 248 

(Heinken et al., 2019). In addition to associations at species-abundance level, genetic 249 

differences in F. prausnitzii were also associated with 23 BA parameters (Table S6). 250 

For instance, genetic differences in F. prausnitzii correlated with the proportion of 251 

GUDCA in plasma (PERMANOVA, FDRMeta<0.05; Figure 3C; Table S6), even 252 

though the association was not significant at species-abundance level. Altogether, we 253 

observed that species-specific genetic makeup is highly variable and correlates with 254 

BA composition independent of the relative abundances of the species in the 255 

microbial community. 256 

 257 

Discrete subspecies correlate with human BA metabolism 258 

Based on the genetic differences between species, we stratified the population genetic 259 

structure for each species using the partitioning around medoid�based method 260 

(STAR�Methods; Figure S4) and detected two or more subspecies for 29 of the 55 261 

species (Figures S5 and S6; Table S7). Some subspecies have been previously 262 

reported based on different methods. For instance, we identified two E. rectale 263 

subspecies and four A. muciniphila subspecies in our cohorts, while Costea et al. 264 

observed three E. rectale and two A. muciniphila subspecies based on a single-265 

nucleotide variant (SNV)-typing profile in 2,144 samples (Costea et al., 2017). All the 266 

subspecies we identified could be detected in both LLD and 300-OB samples, but the 267 

subspecies proportions of P. copri, S. vestibularis and P. merdae showed different 268 

enrichments in LLD and 300-OB (chi-square test, FDR < 0.05). Of these, P. copri 269 

subspecies 1, S. vestibularis subspecies 1 and P. merdae subspecies 2 were enriched 270 

in LLD, whereas P. copri subspecies 2, S. vestibularis subspecies 3 and P. merdae 271 

subspecies 1 were enriched in 300-OB (Chi-square test, FDR < 0.05; Figure S7; 272 

Table S8). Consistent with the previous results reported for SNV-based subspecies of 273 

E. rectale (Costea et al., 2017), the SV-based subspecies of E. rectale we identified 274 

was also associated with host BMI (Wilcoxon test, P = 0.0045). 275 
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The presence of different subspecies may differentially affect BA metabolism. 276 

We therefore conducted an association analysis between the SV-based subspecies and 277 

plasma BA parameters and found 41 significant associations (Permutational Kruskal-278 

Wallis rank-sum test, FDR < 0.05; Figure 4; Table S9). E. rectale showed the highest 279 

number of associations with BAs (10 associations), followed by R. gnavus (8 280 

associations). The most significant association was between E. rectale and C4 281 

concentration (Permutational Kruskal-Wallis rank-sum test, FDR = 2.26x10-5). We 282 

compared the SV profiles of two subspecies of E. rectale and found that 55 of the 56 283 

vSVs and 72 of the 124 dSVs were significantly enriched in subspecies 1 or 2 284 

(Wilcoxon test for vSV and Chi-square test for dSV, FDR < 0.05). Although no 285 

enrichment was observed for BA biotransformation genes between E. rectale 286 

subspecies, their wide association with BA parameters may reflect a physiological 287 

impact of bacterial subspecies diversity on BA metabolism, or vice versa. The 288 

antimicrobial activity of BAs exerts survival pressure on microbes (Langdon et al., 289 

2016; Tian et al., 2020), which may drive some or all of the changes in bacterial 290 

genomes.  291 

 292 

Metagenome-wide SV-based association identifies BA-associated microbial 293 

genomic segments 294 

To identify SVs that potentially harbor genes involved in human BA metabolism, we 295 

performed a metagenome-wide microbial SV-based association study on the BA 296 

parameters. Considering the significant differences in plasma BA composition and 297 

microbial genetic makeup between LLD and 300-OB, we associated the 8,282 SVs 298 

with the 39 plasma BA parameters using linear models for LLD and 300-OB 299 

respectively, followed by meta- and heterogeneity analysis (random effect model). In 300 

addition to age, sex, BMI and total read counts, we also included the corresponding 301 

species abundances as a covariate because we observed that the abundance levels of 302 

34 of the 55 species were associated with at least one BA parameter (Table S6). In 303 

total, we identified 792 significant and replicable associations in our meta-analysis 304 

using a random effect model (FDRmeta<0.05), including 725 associations with vSVs 305 

(Figure S8A; Table S10) and 67 associations with dSVs (Figure S8B; Table S11). 306 

The effect sizes and directions of all 792 associations were highly consistent between 307 
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cohorts (Phetero<0.05; Figure S8C and S8D). These results indicate that the SV 308 

associations we identified were robust and replicable between the two cohorts despite 309 

the large differences in their profiles of gut microbial genetic makeup and plasma BA 310 

composition. 311 

The 792 replicable SV-BA associations linked 300 SVs of 33 species with 32 312 

plasma BA parameters (Figure 5A), indicating that BA-related SVs are highly 313 

prevalent across gut bacterial species. 183 (23.11%) of the 792 replicable associations 314 

were for B. wexlerae (Figure 5B). In the genome of B. wexlerae, 52 SVs were 315 

associated with 21 BA parameters (FDRMeta<0.05; Figure 5B), with the most 316 

significant association being between the variable SV region 1715-1716 kbp and the 317 

CA dehydroxylation/deconjugation ratio (Beta = -0.29, Pmeta = 2.18x10-23; Table S10). 318 

Since the reference genome of B. wexlerae was not well annotated in the database 319 

provided by SGVFinder, we further annotated its genome with PATRIC 320 

(STAR�Methods) and identified three genes that encode choloylglycine hydrolase 321 

(or bacterial BSH; EC number: EC 3.5.1.24), which catalyzes the deconjugation of 322 

glycine- and taurine-conjugated BAs. One of the annotated BSH genes is located in 323 

the region of 2,938,104–2,938,946 bp, which is close to three BA-associated SVs of B. 324 

wexlerae that span four genomic segments (2,079–2,081 kbp, 2,081–2,082 kbp, 325 

2,083–2,084, and 2,086–2,090 kbp) (Figure 5B and 5C). These three SVs also 326 

significantly correlated with 10 BA parameters (FDRMeta < 0.05; Figure 5B), and the 327 

most significant association was with DCA concentration (BetaMeta = -0.23, PMeta = 328 

1.67x10-16; Figure 5D; Table S10). This is in line with recent findings that fecal 329 

CDCA and CA were associated with several SVs of B. wexlerae (Mars et al., 2020). 330 

Our study further confirms that B. wexlerae is a novel bacterium involved in BA 331 

transformation that possesses BA metabolism�related genes. 332 

Besides B. wexlerae, we also identified BA biotransformation genes near the 333 

associated SV regions in several other species. For instance, a 5-kbp vSV 334 

(2,932�2,935 and 2,935�2,937 kbp) of Coprococcus comes harbors a BSH gene 335 

(2,938,104–2,938,946 bp) that was significantly associated with 12 BA parameters 336 

(Figure 5E; Table S10), of which the strongest association was with the 337 

secondary/primary BA ratio (BetaMeta = 0.36, PMeta = 4.77Ex10-34; Figure 5F). This 338 

appeared to be the most significant association among all SV-BA associations. In 339 

addition to being found in the most prevalent species, BA biotransformation genes 340 
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were also found in some low prevalence species. For instance, near a BSH gene 341 

(genomic position: 1,519,343�1,520,332 bp) in the genome of E ventriosum, three 342 

variable SVs were significantly associated with 10 BA parameters (FDRMeta < 0.05) 343 

(Figure 5G; Table S10), of which the most significant association was between the 344 

vSV region 1,512�1,517 kbp and the secondary/primary BA ratio (BetaMeta = -0.41; 345 

PMeta = 1.06x10-7; Figure 5H). 346 

We also identified 118 BA�SV associations with significant heterogeneity 347 

between our general population- and obesity-based cohorts (Phetero < 0.05, FDRLLD < 348 

0.05 and/or FDR300-OB < 0.05; Table S12 and S13). The most significant 349 

heterogeneity was observed for the association between a 3-kbp vSV of Escherichia 350 

coli (1,062�1,065 kbp) and TCDCA proportion (BetaLLD = -0.16, FDRLLD = 0.76, 351 

Beta300-OB = 0.68, FDR300-OB = 0.032, Phetero = 3.24x10-6; Table S12). This variable 352 

genomic region contains two genes, Salmochelin siderophore protein IroE and 353 

Enterochelin esterase, that play a role in maintaining iron homeostasis of E. coli. A 1-354 

kbp vSV of C. comes (966�967 kbp) harboring a BSH gene was associated with three 355 

BA parameters (CA/CDCA ratio, secondary/primary BA ratio and DCA proportion) 356 

with significant heterogeneity between LLD and 300-OB (Phetero < 0.05; Table S12), 357 

and the effect sizes of the BA associations were higher in 300-OB than in LLD. 358 

 359 

Bi-directional causality between bacterial SVs and host BAs 360 

The genetic makeup of gut bacteria can be affected by host-specific features and 361 

environmental factors, thus a symbiotic genomic variant�based GWAS alone will not 362 

be sufficient to provide causal interpretation of the relationships between correlated 363 

microbial variants and host phenotypes. Although we did identify several bacterial 364 

genes known to be involved in BA biotransformation that were located in BA-365 

associated SV regions, the causality behind most of the BA�SV associations we 366 

identified remains unknown. The lifestyle exposure factors collected in the LLD 367 

cohort enabled us to infer in silico causal relationships between correlated SVs and 368 

BAs and identify lifestyle factors that may impact the interactions between gut 369 

microbial genetics and host BA metabolism. We integrated 127 lifestyle factors (78 370 

dietary factors, 44 drug usage factors and 5 smoking-related factors; Table S14) with 371 

SV and BA data. Here, we first identified lifestyle�SV�BA groups in which all the 372 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2021. ; https://doi.org/10.1101/2021.02.28.432952doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.28.432952
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

variables correlated with each other and then conducted bidirectional mediation 373 

analysis. In the first causal direction, we hypothesized that SVs act as regulators that 374 

mediate the effects of lifestyle factors on the composition of the BA pool and thus 375 

treated SVs as mediators and BA parameters as outcomes. In the second causal 376 

direction, we assessed whether BAs can mediate the effects of lifestyle factors on 377 

bacterial SVs (Figure 6A). In total, we identified 502 groups of inferred in silico 378 

causal relationships, including 38 unidirectional causal relationships in direction 1, 379 

216 unidirectional causal relationships in direction 2 and 248 bidirectional causal 380 

relationships (Figure 6B, FDRmediation < 0.05).  381 

The tripartite causal network in direction 1 was composed of 18 lifestyle factors, 382 

32 SVs as mediators and 17 plasma BA parameters as outcomes (FDRmediation < 0.05, 383 

Figure 6C, Table S15). Notably, 15 of the 32 SVs were from B. wexlerae, including 384 

the SVs with known BA biotransformation genes. For instance, a 2-kbp vSV 385 

(2079�2081 kbp) close to a BSH gene in B. wexlerae regulated the effect of drinking 386 

red wine on the CA dehydroxylation/deconjugation ratio (FDRmediation < 0.05; 387 

Mediated proportion = 33%; Figure 6D). Another SV of B. wexlerae in 3513�3516 388 

kbp mediated both the positive effect of the frequency chocolate consumption on 389 

GUDCA proportion in plasma (FDRmediation < 0.05; Mediated proportion = 13%; 390 

Figure 6E) and the inverse effect of smoking habit on this parameter (FDRmediation < 391 

0.05; Mediated proportion = 18%; Figure 6F). These findings indicate that gut 392 

bacterial genes involved in BA metabolism can be regulated by lifestyle factors and 393 

thereby affect the composition of the host’s BA pool. The inferred regulatory SVs that 394 

causally affect the composition of host BA pool may contain novel genes involved in 395 

BA biosynthesis and biotransformation and can potentially be used as targets to 396 

regulate BA metabolism.  397 

We found 216 in silico causal relationships in which 22 BA parameters mediated 398 

the effects of 43 lifestyle factors on 80 bacterial SVs belonging to 12 bacterial species 399 

(FDRmediation < 0.05; Table S15). Among the 80 regulated SVs, 29 were from B. 400 

wexlerae, followed by 11 from R. torques. In mice, the growth of Ruminococcus 401 

species can be inhibited by DCA (Tian et al., 2020), and we found 8 SVs of 402 

Ruminococcus species to be negatively regulated by both DCA concentration and 403 

proportion (FDRmediation < 0.05), indicating that enrichment of the circulating BA pool 404 

with DCA may exert selective pressure on Ruminococcus species and cause a loss of 405 
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their genomic content. 406 

  407 
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Discussion 408 

We characterized the gut microbial SV and plasma BA profiles of 1,437 Dutch 409 

individuals from two independent cohorts and systemically assessed the correlation 410 

between gut microbial genetics and host BA metabolism from species genetic makeup 411 

level down to single variant level. Species genetic makeup was found to correlate with 412 

BA parameters independent of the relative abundances of these species. We also 413 

identified subspecies of 29 bacterial species using SV-based clustering analysis, 414 

revealed the within-species genetic differentiation and diversity and associated the 415 

SV-based subspecies with plasma BA parameters. We further performed a 416 

metagenome-wide microbial SV association study on 39 BA parameters and 417 

identified 786 replicable associations between SVs and BA parameters and 118 418 

heterogeneous associations using meta-analysis. Bi-directional mediation analysis 419 

inferred in silico regulatory relationships behind the correlations we identified. Our 420 

study thus provides a resource of bacterial genomic entities that potentially contain 421 

novel genes involved in human BA metabolism while also revealing genetic shifts in 422 

the bacterial genomes that are potentially due to the antimicrobial effects of specific 423 

BAs within the intestinal lumen. To the best of our knowledge, this is the largest 424 

study so far on microbial genetic determinants of plasma BA concentrations and 425 

composition in humans. In view of the growing awareness of the involvement of 426 

specific BAs in the onset and progression of human diseases (Chávez-Talavera et al., 427 

2017; Dermadi et al., 2017; Gao et al., 2019), as well as the current development of 428 

pharmacological agents that target BA-signaling pathways for treatment of liver and 429 

metabolic diseases (Jia et al., 2017; Krautkramer et al., 2021; Pathak et al., 2018; Sun 430 

et al., 2018), this knowledge is of direct clinical relevance. 431 

Our study demonstrates that SV-based metagenome-wide association is a 432 

powerful method to bring microbial associations closer to functionality and 433 

mechanistic understanding. Firstly, our study shows that the BA associations with 434 

microbial SVs were often stronger than those with species relative abundances and 435 

can even be independent of species relative abundances. This highlights the value of 436 

metagenomic SVs as a new source of information that describes the functionality of 437 

the human gut microbiome. Although previous studies identified some BA-438 

metabolizing species (Krautkramer et al., 2021; Li et al., 2021), our metagenome-439 

wide SV association study supplements the list of novel bacterial species that interact 440 
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with BA metabolism, adding Blautia wexlerae, Eubacterium rectale, Blautia obeum 441 

and Ruminococcus torques, amongst others. The sub-genome scale analysis also 442 

pinpoints the location of genomic segments that associate with host BA pool, which 443 

means that association of microbial SV across the whole metagenome with host 444 

phenotypes helps to locate microbial genes or genetic elements involved in 445 

host�microbe interaction. Our study underscores the contribution of gut microbial 446 

genetics to the individuality of host BA metabolism. The comprehensive association 447 

analysis approach we used provides a template for cohort-based microbial genetics 448 

studies, demonstrating a paradigm shift from “micro-ecology” to “micro-population 449 

genetics”. 450 

Our study further highlights the complex, bi-directional effect between the gut 451 

microbiome and BA metabolism. We used lifestyle factors as exogenous predictors to 452 

infer in silico potential causal relationships between SVs and BAs using bidirectional 453 

mediation analysis and identified specific lifestyle factors involved in the interaction 454 

between bacterial genetics and BA metabolism. This highlights the potential of 455 

targeting the gut microbiota to regulate BA metabolism through lifestyle intervention. 456 

For instance, we found that an SV of B. wexlerae mediated the effect of red wine 457 

drinking on the CA dehydroxylation/deconjugation ratio, reflecting the conversion of 458 

glycine- or taurine-conjugated CA to unconjugated DCA within one cycle of the 459 

enterohepatic circulation. Red wine is rich in polyphenols, a group of molecules with 460 

anti-oxidative properties (Naumann et al., 2020; Queipo-Ortuño et al., 2012) that can 461 

increase fecal BA excretion by regulating gut microbiota (Chambers et al., 2019). We 462 

also observed that the frequency of chocolate consumption increases the GUDCA 463 

proportion in plasma through an SV of B. wexlerae. GUDCA is a hydrophilic BA that 464 

has been suggested to act as an antagonist of human FXR and to contribute to the 465 

beneficial effects of metformin in subjects with T2D (Sun et al., 2018). Furthermore, 466 

its parent molecule, UDCA, is widely used in treatment of cholestatic liver diseases 467 

and has been suggested as a potential drug for the treatment of T2D and other 468 

metabolic diseases (Pathak et al., 2018; Sun et al., 2018). Chocolate is rich in 469 

flavonoids, a subclass of polyphenols. Thus, it appears that polyphenols from 470 

chocolate increase the level of GUDCA by regulating gut bacterial genes. Previous 471 

studies reported that dietary polyphenols from plant-derived foods can affect the 472 

composition of fecal BAs in humans by regulating gut microbiota (Chambers et al., 473 
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2019; Ozdal et al., 2016; Queipo-Ortuño et al., 2012; Sembries et al., 2006). Our in 474 

silico causal inference analysis revealed that the bacterial SV serves as a mediator that 475 

regulates the effects of dietary polyphenols on BA metabolism. Conversely, our study 476 

also provided evidence that BAs, likely via their anti-bacterial activities as “intestinal 477 

soaps”, not only affect the growth of intestinal microbes but also pose selective 478 

pressure on bacterial genetics.   479 

Limitations of the study 480 

We acknowledge several limitations of our current study. We investigated the 481 

association between plasma BA parameters and variable genomic segments of gut 482 

bacteria in two independent cohorts, identified substantial consistent associations in 483 

both these general population and obese individuals, and demonstrated the reliability 484 

of BA associations with microbial SVs. However, all the samples included in this 485 

study were collected from the residents of the Netherlands. Considering the potential 486 

heterogeneity of host�microbiome interaction across populations with different 487 

genetic and environmental backgrounds, the associations between plasma BA 488 

parameters and microbial SVs need to be replicated in other populations with different 489 

background. As this is a cross-sectional study, we inferred the regulatory relationships 490 

between BA parameters and microbial SVs using mediation analysis, but whether the 491 

shifts of microbial genetic elements causally correlate with host BA metabolism still 492 

requires further confirmation in a longitudinal study design and through experimental 493 

validation. Additionally, plasma BA parameters cannot fully represent the flux of the 494 

BA pool in enterohepatic circulation and are only modestly correlated with the fecal 495 

BA pool (Chen et al., 2020), further study of the association between microbial 496 

genetic variation and BA metabolism in their actual niche � the enterohepatic 497 

circulation � is thus needed. Despite these limitations, our study represents a step 498 

towards successful microbiome-targeted interventions to improve host metabolism, in 499 

particular through modulation of BA metabolism, which is a major target for the 500 

treatment of NAFLD and its metabolic co-morbidities. 501 

 502 

  503 
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Figure legends 548 

Figure 1. High variability in human fasting plasma bile acid concentration and 549 

composition. A. Sex proportions of LLD and 300-OB. B. Age distribution in LLD 550 

and 300-OB. C. BMI distribution in LLD and 300-OB. D. Concentrations of 15 bile 551 

acids (BAs) in fasting plasma across all samples of LLD and 300-OB. E. Proportions 552 

of 15 BAs in plasma across all samples of LLD and 300-OB. Samples were sorted by 553 

the proportion of the primary BAs (cholic and chenodeoxycholic acid and their 554 

conjugated forms) within each cohort. The order of samples is identical in (D) and (E). 555 

F-E, Principal coordinates analysis (PCoA) plot of the differences between all 556 

samples based on BA concentration profile (F) and BA proportion profile (E). H-I, 557 

Explained variance proportions (R2) of BA concentration (H) and proportion (I) 558 

profiles by sex, age and BMI. Blue bars indicate the cumulative explained BA 559 

variance proportion in multivariate models. Green bars indicate individually explained 560 

BA variance proportion by each factor in univariate models. 561 

 562 

Figure 2. Overview of structural variation profile in LLD and 300-OB. A. 563 

Number of structural variants (SV) of each species. B. Total SV numbers. C. 564 

Population structure of SV-based genetic makeup. 565 

 566 

Figure 3. Species-level associations of gut microbiome with human bile acid 567 

parameters. A. Heatmap of species-level associations with BA parameters. Blue 568 

indicates purely genetics-based associations. Yellow indicates purely relative 569 

abundance�based associations. Red indicates associations based on both genetics and 570 

relative abundance. Black indicates genetics-based associations where relative 571 

abundance is not available for the corresponding species. White indicates no 572 

association. B. Genetic association of B. wexlerae with CA proportion in plasma, the 573 

color scale from red to blue represents the increase in standardized value of CA 574 

proportion. C. Genetic association of F. prausnitzii with GUDCA proportion in 575 

plasma the color scale from red to blue represents the increase in standardized value 576 

of GUDCA proportion. 577 

 578 

Figure 4. Bile acid parameters correlate with structural variant�based 579 

subspecies. The subspecies of 13 species are shown by the t-SNE plots, with distinct 580 
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subspecies shown by different colors. The circos correlation plot shows their 581 

associations with BA. Each line indicates an association between subspecies of a 582 

species and plasma levels of a BA parameter. 583 

 584 

Figure 5. Associations between bile acid parameters and structural variants. A. 585 

Replicable significant associations between BA parameters and SVs (FDRMeta<0.05). 586 

B. Heatmap of associations between BA parameters and SVs of Blautia wexlerae. C-587 

H. Examples of SV regions close to known BA biotransformation genes (C, E, and G) 588 

and associations with BA parameters (D, F, and H). Blue and yellow circles represent 589 

LLD and 300-OB samples, respectively. 590 

 591 

Figure 6. Causal relationship inference using bi-directional mediation analysis. A. 592 

Framework of bi-directional mediation analysis between lifestyle factors, SVs and 593 

BAs. B. Number of inferred causal relationships for direction 1 (from SV to BA), 594 

direction 2 (from BA to SV), and both. C. Sankey diagram showing the inferred 595 

causal relationship network of direction 1. D-F. Examples of causal relationships 596 

between lifestyle factors, SVs and BAs inferred by bi-directional mediation analysis. 597 

The beta coefficient and significance are labeled at each edge and the proportions of 598 

indirect effect (mediation effect) are labeled at the center of the ring charts. 599 

 600 

  601 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2021. ; https://doi.org/10.1101/2021.02.28.432952doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.28.432952
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

STAR�Methods 602 

KEY RESOURCES TABLE 603 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Biological Samples   
Fecal samples This study  
Blood samples This study  
Critical Commercial Assays 
AllPrep DNA/RNA Mini Kit QIAGEN 80204 
Quant-iT PicoGreen dsDNA Assay Life Technologies P7589 

Bile Acid Assays 
(Hoogerland et al., 
2019) 

PMID: 31102537 

Blood Assays Lifelines Biobank 
https://www.lifelin
es.nl 

Deposited Data 
Metagenomic sequencing data of LifeLines-DEEP This study European 

Genomics-
Phenome Archive, 
EGAS0000100170
4 

Metagenomic sequencing data of 300-Obesity This study European 
Genomics-
Phenome Archive, 
EGAS0000100350
8 

Software and Algorithms 
Bowtie2 (version 2.3.4.3) (Langmead and 

Salzberg, 2012) 
http://bowtie-
bio.sourceforge.net
/bowtie2/index.sht
ml 

Trimmomatic (version 0.39) (Bolger et al., 2014) http://www.usadell
ab.org/cms/?page=
trimmomatic 

KneadData (version 0.7.4) Huttenhower lab https://huttenhower
.sph.harvard.edu/k
neaddata/ 

MetaPhlAn3 (Beghini et al., 
2020) 

https://huttenhower
.sph.harvard.edu/m
etaphlan3/ 

ICRA (Zeevi et al., 2019) https://github.com/
segalab/SGVFinde
r 

SGVFinder (Zeevi et al., 2019) https://github.com/
segalab/SGVFinde
r 

R (version 4.0.1) R Core Team https://www.r-
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project.org/ 
Python (version 2.7.16) Python Core Team https://www.pytho

n.org/ 
PATRIC (version 3.6.6) (Wattam et al., 

2017) 
https://www.patric
brc.org/ 

Other 
Progenome (Mende et al., 2017) http://progenomes1

.embl.de/ 
   

 604 

RESOURCE AVAILABILITY 605 

Lead Contact 606 

Further information and requests for resources, software, reagents and data sharing 607 

should be directed to the Lead Contact, Jingyuan Fu (j.fu@umcg.nl). 608 

Materials Availability 609 

This study did not generate new unique reagents. 610 

Data and Code Availability 611 

Raw metagenomic sequencing data of LifeLines-DEEP and 300-Obesity are publicly 612 

available from the European Genome-Phenome Archive via accession number 613 

EGAS00001001704 and EGAS00001003508, respectively. The code used for 614 

statistical analysis is available via https://github.com/GRONINGEN-MICROBIOME-615 

CENTRE/Groningen-Microbiome/tree/master/Projects/SV_BA . 616 

 617 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 618 

LifeLines-DEEP cohort 619 

LifeLines-DEEP (LLD) is a sub-cohort of LifeLines, a large population-based 620 

prospective cohort that enrolled 167,729 participants from the north of Netherlands, 621 

established to explore the risk factors of complex diseases. In LLD, 1,539 individuals 622 

were included and multi-layers of omics data were collected. In the current study, 623 

high-quality metagenomic sequencing data, 78 dietary factors, 5 smoking factors and 624 

44 drug usage factors were available for 1,135 individuals (474 males and 661 625 

females). The average age of LLD participants was 45.04 years old (18�81, SE = 626 

0.40) and the average BMI was 25.26 (16.67–48.56, SE = 0.12). 627 
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300-Obesity cohort 628 

The 300-Obesity (300-OB) cohort was established by Radboud University Medical 629 

Center, Nijmegen, the Netherlands (Horst et al., 2019). In total, 302 individuals (167 630 

males and 135 females) aged 55�81 years with a high body mass index (BMI) > 27 631 

were enrolled in 300-OB. The average age of 300-OB participants was 67.1 years old 632 

(54�81, SE = 0.31) and the average BMI was 30.7 (26.3–45.5, SE = 0.20). All 633 

participants were included between 2014 and 2016. 634 

Ethical approval 635 

The LifeLines-DEEP study has been approved by the Institutional ethics Review 636 

Board (IRB) of the University Medical Center Groningen (ref. M12.113965), the 637 

Netherlands. The 300-Obesity study has been approved by the IRB CMO Regio 638 

Arnhem-Nijmegen (nr. 46846.091.13). 639 

 640 

METHOD DETAILS 641 

Bile acid quantification 642 

Levels of 15 BAs and C4 concentrations in fasting plasma were quantified by liquid 643 

chromatography–mass spectrometry (LC-MS) procedures, as previously described 644 

(Eggink et al., 2017; Hoogerland et al., 2019). The proportions of 15 BAs (with suffix 645 

‘_p’) were calculated by dividing by total BA concentration. Additionally, 8 indices 646 

of BA metabolism were calculated (Chen et al., 2020): (1) Total BA (Total_BAs) = 647 

sum of all BA concentrations, (2) total primary BA (Total_primary_BAs) = sum of all 648 

primary BA concentrations, (3) total secondary BA (Total_secondary_BAs) = sum up 649 

of all secondary BA concentrations, (4) ratio of Secondary BAs to primary BAs ratio 650 

(Secondary_primary_ratio) = Total_primary_BAs/Total_secondary_BAs, (5) ratio of 651 

CA to CDCA concentrations (CA_CDCA_ratio) = (CA + TCA + GCA)/(CDCA + 652 

TCDCA + GCDCA), (6) ratio of unconjugated BA to conjugated BA concentrations = 653 

(CA + CDCA + DCA + LCA)/(TCA + GCA + TCDCA + GCDCA + TDCA + 654 

GDCA + TLCA + GLCA), (7) ratio of dehydroxylated CA to deconjugated CA 655 

concentrations (CA_dehydro_deconju_ratio) = (DCA + TDCA + GDCA)/(CA + TCA 656 

+ GCA) and (8) ratio of taurine conjugated BA to glycine conjugated BA 657 

concentrations (Taurine_glycine_ratio) = (TCA + TCDCA + TDCA + TLCA)/(GCA 658 

+ GCDCA + GDCA + GLCA). 659 
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Metagenomic sequencing and quality control 660 

Microbial DNA was isolated from fecal samples of LLD and 300-OB and sequenced 661 

as previously described (Kurilshikov et al., 2019; Zhernakova et al., 2016). We 662 

removed host genome�contaminated reads and low-quality reads from the raw 663 

metagenomic sequencing data using KneadData (version 0.7.4), Bowtie2 (version 664 

2.3.4.3) (Langmead and Salzberg, 2012) and Trimmomatic (version 0.39) (Bolger et 665 

al., 2014). In brief, the data-cleaning procedure includes two main steps: (1) filtering 666 

out the human genome�contaminated reads by aligning raw reads to the human 667 

reference genome (GRCh37/hg19) and (2) removing adaptor sequences and low-668 

quality reads using Trimmomatic with default settings (SLIDINGWINDOW:4:20 669 

MINLEN:50). 670 

Taxonomic abundance 671 

We generated the taxonomic relative abundance for both LLD and 300-OB samples 672 

from the cleaned metagenomic reads using MetaPhlAn3 with default parameters 673 

(Beghini et al., 2020). 674 

Detection of structural variations 675 

Structural variants (SVs) are highly variable genomic segments within bacterial 676 

genomes that can be absent from the metagenomes of some individuals and present 677 

with variable abundance in other individuals. Based on the cleaned metagenomic 678 

reads, we detected the microbial SVs of all 1,437 samples from LLD and 300-OB 679 

using SGVFinder with default parameters. SGVFinder was devised and described by 680 

(Zeevi et al., 2019) and can detect two types of SV – deletion SVs (dSVs) and 681 

variable SVs (vSVs) – from metagenomic data. If the deletion percentage of the 682 

genomic segment across the population is < 25%, the standardized coverage will be 683 

calculated for this SV (vSV). If the deletion percentage is > 25% and < 75%, only the 684 

presence or absence status of this genomic segment will be kept (dSV). If the deletion 685 

percentage of a region is > 75%, the region is excluded from the analysis. The SV-686 

calling procedure includes two major steps: (1) resolving ambiguous reads with 687 

multiple alignments according to the mapping quality and genomic coverage using the 688 

iterative coverage�based read assignment algorithm and reassigning the ambiguous 689 

reads to the most likely reference with high accuracy and (2) splitting the reference 690 

genomes into genomic bins and then examining the coverage of genomic bins across 691 

all samples to identify highly variable genomic segments and detect SVs. We used the 692 
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reference database provided by SGVFinder, which is based on the proGenomes 693 

database (http://progenomes1.embl.de/ ) (Mende et al., 2017). In total, we detected 694 

5,666 dSVs and 2,616 vSVs from 55 bacteria using default parameters. All bacterial 695 

species with SV calling were present in at least 5% of total samples. 696 

Functional annotation 697 

The reference genome of Blautia wexlerae DSM 19850, Coprococcus comes ATCC 698 

27758, Eubacterium ventriosum ATCC 27560, Eubacterium hallii DSM 3353 and 699 

Eubacterium rectale DSM 17629 were downloaded from progenome 700 

(http://progenomes1.embl.de/) (Mende et al., 2017) and annotated using the web-701 

based genome annotation service provided by PATRIC (version 3.6.6, 702 

https://www.patricbrc.org/) (Wattam et al., 2017). 703 

 704 

QUANTIFICATION AND STATISTICAL ANALYSIS 705 

All statistical tests were performed using R (version 4.0.1). Details of statistical tests 706 

are also provided in results and figure legends. 707 

Association analysis 708 

Before association analysis, all continuous variables were standardized to follow a 709 

standard normal distribution (N~(0, 1)) using empirical normal quantile 710 

transformation. Associations between SV and BAs were assessed in LLD and 300-OB 711 

using linear models with the following formula: 712 

BA ~ SV + Age + Sex + BMI + Reads number + Species relative abundance 713 

The association between species relative abundance and BA parameters were 714 

assessed in LLD and 300-OB using linear model with following formula: 715 

BA ~ Species relative abundance + Age + Sex + BMI + Reads number 716 

The association results of LLD and 300-OB were furtherly integrated using meta-717 

analysis with a random-effect model, while the statistical heterogeneities were 718 

estimated with I2. To control the false discovery rate (FDR), Benjamina-Hochberg 719 

and Bonferroni P-value correction were performed using p.adjust() function in R. The 720 

association analysis and P-value correction were conducted for vSVs, dSVs and 721 

species relative abundance separately. The replicable significant SV�BA associations 722 
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were confirmed with following four criteria: (1) PLLD < 0.05, (2) P300-OB < 0.05, (3) 723 

FDRmeta < 0.05 and (4) Pheterogeneity > 0.05. 724 

The differences of BA parameters between SV-based clusters within species were 725 

tested using the Kruskal-Wallis rank-sum test. Empiric P values were estimated based 726 

on 999 permutations. For the analysis shown in Figures S8C and S8D, the Spearman 727 

correlation coefficient was calculated between the effect size in LLD and 300-OB. In 728 

Figure S1A, the mean value ± standard deviation is shown. 729 

Mediation analysis 730 

The causal relationships between exposure factors, SVs and BAs were inferred by 731 

bidirectional mediation analysis with R package mediation (version 4.5.0). To reduce 732 

the number of tests, before mediation analysis we identified lifestyle�SV�BA groups 733 

in which all variables correlated with each other as candidate groups with a potential 734 

causal relationship. A candidate group had to meet the following criteria: (1) the 735 

association between the BA and SV is significant and replicable in both LLD and 736 

300-OB, (2) the association between BA and lifestyle factor is significant (P < 0.05) 737 

and (3) the association between lifestyle factor and SV is significant (P < 0.05). We 738 

identified 1,338 candidate groups for vSVs and 175 candidate groups for dSVs. We 739 

then performed bidirectional mediation analysis on the candidate variable groups 740 

following the framework described in Figure 6A. For the vSV candidate groups, a 741 

linear model was used in each step of mediation analysis. For the dSV candidate 742 

groups, a logistic regression model was used when the response variable was a dSV. 743 

Finally, the P-values of indirect effects were corrected by FDR estimation. 744 

Distance calculation 745 

We merged the vSV and dSV profiles and calculated Canberra distance between all 746 

samples based on the SV profile of each species respectively. We then standardized 747 

all matrices by dividing each matrix by its maximum distance value. To quantify the 748 

overall microbial genetic kinships between all individuals, we calculated the 749 

metagenome-wide genetic dissimilarities between all samples by calculating the 750 

distance of shared SVs. To quantify the overall compositional differences of the BA 751 

pool, we calculated the Canberra distance between all samples based on BA 752 

concentration profile and proportion profile. Distance matrices were computed using 753 

the vegdist() function from R package vegan (version 2.5-6). 754 
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Unconstrained and constrained ordination analysis 755 

We performed principal coordinates analysis (PCoA) on Canberra distance matrices 756 

of SV and BA profiles using cmscale() function from R package vegan. We estimated 757 

the proportion of BA pool variance explained by basic phenotypes (sex, age, and BMI) 758 

and cohort factor using permutational multivariate analysis of variance 759 

(PERMANOVA) with adonis() function from R package vegan. We estimated 760 

proportions of metagenome-wide SV-based genetic variance explained by age, sex, 761 

BMI and read count using PERMANOVA. 762 

Clustering analysis 763 

Based on the genetic dissimilarity matrix of each species, we clustered the samples 764 

using the partitioning around medoid method and assigned samples to clusters with a 765 

given cluster number k (k ∈ [2, 10]). The best cluster numbers were determined by 766 

prediction strength (PS) (Tibshirani and Walther, 2012), with the highest number of 767 

clusters with a PS above 0.55 considered the best cluster number. If there was no PS 768 

value > 0.55, we assumed there was no obvious cluster (subspecies) within the 769 

corresponding species. The clustering results were then visualized using PCoA plot 770 

and t-distributed stochastic neighbor embedding (t-SNE) (Kobak and Berens, 2019). 771 

 772 

 773 

  774 
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