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Abstract 9 

MicroRNAs (miRNAs) regulate gene expression post-transcriptionally and circulate in 10 

the blood, making them attractive biomarkers of disease state for tissues like bone that are 11 

challenging to interrogate directly. Here we report on five miRNAs – miR-197-3p, miR-320a, 12 

miR-320b, miR-331-5p, and miR-423-5p – that are associated with bone mineral density (BMD) 13 

in 147 healthy adult baboons. These baboons range in age from 15 to 25 years (45 to 75 human 14 

equivalent years) and were 65% female with a broad range of BMDs including a minority of 15 

osteopenic individuals. miRNAs were generated via RNA sequencing from buffy coats collected 16 

at necropsy and areal BMD evaluated via DXA of the lumbar vertebrae post-mortem. Differential 17 

expression analysis controlled for the underlying pedigree structure of these animals to account 18 

for genetic variation which may be driving miRNA abundance and BMD values. While many of 19 

these miRNAs have been associated with risk of human osteoporosis, this finding is of interest 20 

because the cohort represent a model of normal aging and bone metabolism rather than a 21 

disease cohort. The replication of miRNA associations with osteoporosis or other bone 22 

metabolic disorders in animals with healthy BMD suggests an overlap in normal variation and 23 

disease states. We suggest that these miRNAs are involved in the regulation of cellular 24 

proliferation, apoptosis, and protein composition in the extracellular matrix throughout life. 25 

However, age-related dysregulation of these systems may lead to disease causing associations 26 

of the miRNAs among individuals with clinically defined disease. 27 
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Research interest in microRNAs (miRNAs) has exploded in the past decade with 30 

recognition of the potential for these small circulating RNAs to act as biomarkers of disease 31 

state or regulators of bone across cell types. As post-transcriptional regulators, these small non-32 

coding RNAs are uniquely able to regulate gene expression in the cytoplasm and may travel 33 

among cells to do so. While a number of studies have focused on the potential of miRNAs as 34 

biomarkers for osteoporosis and fracture risk, little is known about the miRNAs in the context of 35 

normal variation in spinal bone mineral density (BMD) among healthy adults. Here we report on 36 

five circulating miRNAs that are associated with variation in BMD within the healthy range for 37 

middle-aged and older baboons.  38 

The baboon is unique model for age-related bone loss, as it is closely related 39 

phylogenetically to humans, is relatively large bodied, and exhibits intracortical remodeling 40 

throughout life, unlike rodent models of skeletal aging. The adult bone remodeling and skeletal 41 

fracture properties of baboons are also more similar to humans than are other mid- to large-42 

sized mammals (Wang, Mabrey, and Agrawal 1998; Brommage 2001). Like humans, baboons 43 

undergo postmenopausal bone loss and sex and age influence BMD (L Havill et al. 2003) 44 

leading to osteopenia in approximately 25% of older females (L. M. Havill et al. 2008). 45 

Furthermore, biomechanical properties directly relevant to fracture, including vertebral 46 

trabecular bone mechanical properties (LM Havill, Allen, and Bredbenner 2010), femoral cortical 47 

bone microstructure (L. Havill et al. 2008), and femoral bone shape (Hansen et al. 2009), are 48 

strongly heritable in the baboon, making pedigreed animals ideal for assessing the effects of 49 

genetic and non-genetic factors bone biomarkers to bone fragility (Cox et al. 2013). 50 

We leveraged the unique anatomical and genetic features of the baboon to identify 51 

circulating miRNAs associated with BMD across a broad range of mildly osteopenic and healthy 52 

adult baboons while controlling for underlying genetic factors.    53 

 54 

Methods 55 

Study Population 56 

We generated miRNA and BMD data for 147 middle-aged and older baboons (hybrid 57 

Papio hamadryas species) drawn from a larger pedigree of baboons housed at the Southwest 58 

National Primate Center and Texas Biomedical Research Institute (Vagtborg 1973). Animals 59 

were 65% female and ranged in age from 15 to 25 years of age which is the equivalent of 60 

approximately 45 to 75 human years (Figure 1).  61 
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 62 

Figure 1. Distribution of animals by age and sex in sample. 63 

During life, all animals were housed outdoors in large social group cages and maintained 64 

on commercial monkey chow to which they had ad libitum access. Animals with medical 65 

conditions known to influence bone metabolism (e.g. diabetes, chronic renal disease) or a 66 

history of traumatic fracture were excluded. No animals were sacrificed for this study, all were 67 

euthanized for other reasons and monitored by the Institutional Animal Care and Use 68 

Committee. Blood samples were drawn in EDTA tubes at necropsy and processed buffy coat 69 

stored at -80̊C until RNA was extracted. Lumbar spines were stored at -20̊C.  70 

DXA 71 

Dual-energy x-ray absorptiometry (DXA) scans were performed post-mortem on thawed 72 

lumbar vertebrae using a Lunar DPX 6529 (General Electric) and areal BMD analyzed with the 73 

manufacturer’s software for adults. All analyzed values are for DXA measured for the anterior-74 

posterior (AP) axis of L4-L2 vertebrae. Baboons exhibit high levels of sexual dimorphism in 75 

weight and body size leading to significant differences in mean BMD (0.22 g/cm2, p = 1x10-6, 76 

Figure 2). The distribution of BMD in these animals is consistent with previously published 77 

reference standards from more than 650 baboons (L Havill et al. 2003). Within the 10-year age 78 

range of our study, there is no significant decline in BMD. Nevertheless, the distribution of BMD 79 

across the sample is broad ranging from 4.3 standard deviations below to 8.4 standard 80 

deviations above the healthy, young adult mean for females and -3.5 to 9.3 standard deviation 81 

for males. To account for sexual dimorphism in BMD, we performed z-scoring on male and 82 

female BMD values separately and combined the scaled values for analysis. 83 
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 84 

Figure 2. Distribution of BMD in study sample by age and sex. 85 

miRNA Sequencing and Analysis 86 

Total RNA was isolated from buffy coat using TRIzol (Invitrogen) and the Qiagen 87 

miRNeasy Mini Kit as described previously (Spradling et al. 2013). RNA quality was assessed 88 

using an Agilent Bioanalyzer 2100 and RNA was enriched for small non-coding RNAs 89 

(sncRNAs) by using the Ambion mirVana miRNA Isolation Kit. Complementary DNA (cDNA) 90 

libraries were generated with the Illumina Small RNA Prep Kit v1.5 following the manufacturer’s 91 

protocol and sequenced in Illumina’s Genome Analyzer (GAIIx) (Karere et al. 2012).  mirDeep2 92 

(Mackowiak 2011) was used to align reads to the known human miRbase version 21 (Griffiths-93 

Jones et al. 2008, 2006) mature and hairpin miRNAs and to identify novel miRNAs.  94 

Raw miRNA counts were analyzed using the R statistical package DESeq2 to identify 95 

individual miRNAs associated with BMD (Love, Huber, and Anders 2014; R Core Team 2019).  96 

DESeq2 has the advantage of incorporating shrinkage estimators for dispersion and fold 97 

change which better handles low-abundance miRNAs compared to other methods. After z-98 

scoring, weight and age were no longer associated with BMD and so were not included as 99 

covariates. miRNAs significantly associated with BMD at a FDR < 0.05 were further tested to 100 

determine if this association was driven by underlying genetic variation in the pedigree. A 101 

likelihood ratio test was calculated to compare linear mixed effects models fit with lmekin in the 102 

coxme R package (Therneau 2020) with and without miRNA abundance as a fixed effect while 103 

including pedigree-based kinship as a random effect.  104 

miRNA Target Prediction 105 

A major challenge in understanding the potential functional role of miRNAs is that most 106 

are computationally predicted to bind dozens of different mRNAs. To better predict what role 107 
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these circulating miRNAs could play in the bone, we used the R package multiMiR (Ru et al. 108 

2014) to query three experimentally validated miRNA target databases –  miRecords (F. Xiao et 109 

al. 2009), miRTarBase (Hsu et al. 2011), and TarBase (Karagkouni et al. 2018). To be 110 

considered a potential target we required experimental validation of miRNA-mRNA interaction 111 

via luciferase, qRT-PCR, or Western blot experiments as well as the presence of the target 112 

protein in baboon bone (unpublished mass spectrometry data). 113 

 114 

Results 115 

miRNAs Associations 116 

After FDR correction, 15 miRNAs were significantly associated with BMD in the DESeq2 117 

analysis of which 5 were associated (likelihood ratio test p < 0.1) after correcting for the genetic 118 

relatedness of the animals (Table 1). All five of these highly associated miRNAs miRNAs – miR-119 

197-3p, miR-320a, miR-320b, miR-331-5p, and miR-423-5p – are negatively correlated with 120 

BMD (Figure 3) suggesting that increased levels of these miRNAs – which would be expected to 121 

decrease mRNA expression – are indicative of a decline in BMD. The heat map in Figure 4 122 

illustrates a high level of heterogeneity in miRNA abundance across animals with varying BMD.  123 

Table 2. miRNAs significantly associated with BMD after FDR correction in DESeq2 analysis. Bolded 124 

miRNAs remained significantly associated after correction for pedigree structure. 125 

  β Mean Expression p LRT p 

hsa-miR-423-5p -0.28 886 2.4X10-4 0.03 

hsa-miR-320a -0.22 2,561 3.9X10-3 0.04 

hsa-miR-339-5p -0.19 1,697 6.2X10-3 0.22 

hsa-miR-3173-5p -0.38 16 3.0X10-2 0.14 

hsa-miR-371a-5p 0.6 7 3.0X10-2 0.40 

hsa-miR-16-2-3p -0.44 137 3.3X10-2 0.27 

hsa-miR-197-3p -0.18 577 3.5X10-2 0.09 

hsa-miR-21-5p 0.16 30,037 3.5X10-2 0.68 

hsa-miR-331-5p -0.09 808 3.5X10-2 0.07 

hsa-miR-374a-3p 0.26 231 3.5X10-2 0.88 

hsa-miR-374a-5p 0.19 4,255 3.5X10-2 0.92 

hsa-miR-424-3p -0.16 86 3.5X10-2 0.10 

hsa-miR-484 -0.13 2,334 3.5X10-2 0.19 

hsa-miR-320b -0.21 28 3.6X10-2 0.05 

hsa-miR-574-3p -0.16 94 4.1X10-2 0.25 

 126 
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 127 

Figure 3. miRNA abundance versus BMD for significantly associated miRNAs.  128 
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 129 

Figure 4. Heatmap of all miRNAs with nominal p < 0.05 in DeSeq2. Columns are color-coded by z-scored 130 

BMD tertile with purple indicating the lowest tertile and teal the highest. 131 
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Putative miRNA targets 132 

Based on our screening criteria, we identified 60 genes present in bone and 133 

experimentally validated as potential targets of our five significant miRNAs (Supplementary 134 

Table 1). Analysis in DAVID (Huang, Sherman, and Lempicki 2009) identified several 135 

significantly enriched functional annotations within the 60 genes. The top five enriched gene 136 

ontology terms representing more than 10% of the genes on the list are myelin sheath (26.4 fold 137 

enrichment, FDR = 6.1x10-10), focal adhesion (11.2 fold enrichment, FDR = 2.9x10-7), 138 

extracellular matrix (11.1 fold enrichment, FDR = 3.6x10-5), cadherin binding involved in cell-cell 139 

adhesion (9.5 fold enrichment, FDR = 9.0x10-4), cell-cell adherens junction (9.0 fold enrichment, 140 

FDR = 5.4x10-4). Additionally, these putative targets include seven genes previously linked to 141 

osteoporosis in genome wide association studies based on data drawn from the Public Health 142 

Genomics and Precision Health Knowledge Base (v7.1) (Yu et al. 2010) (Table 2).  143 

Table 2. miRNA targets linked to osteoporosis in genome wide association studies  144 

GENE NAME MIRNA 

FGB hsa-miR-197-3p 

IGFBP5 hsa-miR-197-3p 

SOD1 hsa-miR-197-3p 

SOD2 hsa-miR-197-3p 
hsa-miR-331-5p 

GAPDH hsa-miR-320a  
hsa-miR-423-5p 

MIF hsa-miR-320a 

MMP9 hsa-miR-320a 

 145 

Discussion 146 

Most previous research on bone density and miRNAs has focused on patients with 147 

osteoporosis or other disorders of bone metabolism. This is reflected in links between 148 

osteoporosis or fracture risk in human patients and the miRNAs we have identified, many of 149 

which have been suggested as potential clinical biomarkers. 150 

Of the miRNAs we identified, literature linking the miRNA-320 family to bone fragility is 151 

the most robust. miR-320b is more common in women with a recent fracture compared to age-152 

matched controls (Weilner et al. 2015). This may be due to its role in osteoblast differentiation. 153 

miR-320b over-expression prevents osteoblast differentiation, while inhibition promotes bone 154 

matrix mineralization and differentiation via BMP-2 (Laxman et al., 2017). Additionally, 155 
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researchers studying low-traumatic fractures in premenopausal, postmenopausal, and idiopathic 156 

osteoporosis patients found miR-320a was upregulated in these patients compared to controls 157 

(Kocijan et al., 2016). Prior analysis of trabecular bone tissue showed significant dysregulation 158 

of miR-320a in patients with osteoporosis, possibly via regulation of osteogenesis by targeting 159 

bone-forming genes such as CTNNB1 (B-catenin) and RUNX2 (De-Ugarte et al., 2015). These 160 

findings led to the inclusion of miR-320a on the commercially available OsteomiR panel 161 

(Tamirna).  162 

Similarly, in a study of plasma miRNAs associated with fracture risk, miR-423-5p 163 

expression was significantly negatively associated with FRAX score, but not BMD, in 164 

osteoporosis patients (Bedene et al. 2016). This finding was reinforced by research on facial 165 

bone atrophy where miR-148-3p  was shown to promote bone proliferation via prevention of 166 

apoptosis in mesenchymal stem cells (Yang et al. 2018). While there is little additional evidence 167 

of a role for this miRNA in bone, it has also been linked to regulation of apoptosis in 168 

cardiomyocytes (Zhu and Lu 2019), kidney cells (Yuan et al. 2017), retinal pigment epithelial 169 

cells (Q. Xiao et al. 2019), and colon cancer cells (Jia et al. 2018). 170 

Circulating miR-331-5p levels have been identified as a potential biomarker for 171 

osteoporosis and subsequent bone fracture (Liu et al. 2015), although there is little known about 172 

the role of this miRNA in bone. Hints to its function come from studies of vascular smooth 173 

muscle cells, where miR-331-5p is induced by BMP2-PPARγ signaling to regulate cellular 174 

proliferation (Calvier et al. 2017). We predict a role for miR-331-5p in regulating SOD2 175 

expression which directly induces a BMP2 response under hypoxic conditions (Kamiya et al. 176 

2013). 177 

 While miR-197-3p has not previously been linked to adult bone metabolism, it was 178 

identified in the downregulation of osteogenesis in human amniotic membrane-derived 179 

mesenchymal stem cells due to its suppression of SMAD2 in the TGF-β pathway during 180 

osteoblast differentiation (Avendaño-Félix et al. 2019). We predict that miR-197-3p may target 181 

expression of both SOD1 and SOD2, antioxidative enzymes that respond to vitamin D levels 182 

(Lisse 2020) and are thought to play a critical role in the regulation of cellular senescence 183 

(Zhang et al. 2017; Jeong and Cho 2015).  184 

Taken together, our BMD-associated miRNAs and their putative targets point towards 185 

regulation of extracellular matrix proteins, apoptosis, and cell proliferation – three key 186 

components in the maintenance of bone homeostasis. Our findings demonstrate the overlap in 187 
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miRNAs associated with bone mineral density and related traits in humans and nonhuman 188 

primates, highlighting the utility of this model for understanding aging bone. The association of 189 

these miRNAs with variation in bone mineral density within the healthy, non-osteoporotic, range 190 

suggests they may be useful in identifying the earliest stages of metabolic shifts in bone. While 191 

the impact of epigenetic regulation of gene expression is evident in bone tissue, the use of 192 

miRNAs as biomarkers for low BMD and high fracture risk is still relatively new. It is apparent 193 

more research is needed to better understand these molecular pathways. Future work should 194 

focus on identifying the presence and functional role of these miRNAs in bone tissue to solidify 195 

their promise as biomarkers. 196 

 197 
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