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Abstract

Population variability and correlations in bone mineral density can be described by a spatial random field, which can be
inferred from the routine computed tomography (CT) data. Random fields were simulated by transforming pairwise uncor-
related Gaussian random variables into correlated variables through the spectral decomposition of age-detrended correlation
matrix estimated from CT. The validity of random field model was demonstrated on spatio-temporal analysis of bone min-
eral density and bone mineral content. The similarity of CT samples and that generated from random fields was analyzed
with energy distance metric. It was found that the bone mineral density random field was approximately Gaussian/slightly
left-skewed/strongly right-skewed in various locations. However, bone mineral content could be well simulated with the pro-
posed Gaussian random field and that of energy distance, i.e., a measure to quantify discrepancies between two distribution
functions, is convergent with respect to the number of correlation eigenpairs. The proposed random field allows for enriching
computational biomechanical models with variability in bone mineral density, which could increase the model usability and
provide a step forward in digital twin paradigm.
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Introduction

Bone structural and intrinsic properties are inhomoge-
neous, and vary across the multiple spatial and temporal
scales and population. It was documented that bone proper-
ties vary at collagen fibrils level as well as lamellae level and
naturally vary across the anatomical sites [1, 2]. Structural
inhomogeneities are related to bone fragility and toughness
[3, 4, 5, 6]. The bone mineral density (BMD) is widely used
study the bone properties. BMD is remarkably inhomoge-
neous [3, 7], connected to bone elasticity and fracture risk
[8, 9, 10].

The spatial variation of BMD was previously analyzed
through variograms [11, 12], where the authors attempted to
enhance the fracture risk prediction ability related to BMD.
Other studies demonstrated significant correlations of pa-
rameters of BMD variogram with trabecular bone morpho-
logical measures and bone strength [13, 14]. On the op-
posite, the relation of vertebrae strength and variogram pa-
rameters were not significantly correlated in [15]. Dong et
al. [16] demonstrated that bone elasticity variation at nano
scale can be described as a random field. Due to bone com-
plex behavior controlled by many factors including remod-
eling process, stationarity and isotropicity assumptions will
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likely be violated, but to the authors’ knowledge, this has
never been investigated. Recent studies emerged the de-
scribing bone properties as a random field. Desceliers et al.
[17] introduced a simplified random field model of cortical
bone, but not yet calibrated on clinical data. Another study
showed that trabecular structure can be generated by an in-
verse Monte Carlo simulation on Voronoï cells which exhib-
ited a good match with trabecular morphology [18]. In the
study of Luque et al. [19], a density random field of tra-
becular region of interest (ROI) was modelled with direction-
ally separable autocorrelation functions based on CT. But this
study lacks sufficient samples and moreover a stationary cor-
relation kernel was estimated only on a ROI of a small size.

Study Aim & Outline

This given study aimed to analyze the spatio-temporal vari-
ability of BMD and to demonstrate BMD as a random field.
Firstly, a shape registration algorithm was used to geometri-
cally align CTs (Section Shape Registration). In a next step,
the Karhunen-Loève expansion (KLE) was employed to sim-
ulate BMD as random field with Gaussian coefficients, see
Section Karhunen-Loève Expansion. The new realizations
of BMD based on model of random field were validated on
bone mineral content (BMC), which can be considered as
a global measure of bone quality. Further, the so-called en-
ergy distance [20] was computed between random field of
BMD known from CTs and that generated with KLE, which
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is evaluated locally to see how similar are the distributions
point-wise and globally as an integral measure (Section Val-
idation Measures); see the flow chart in Figure 1.

Materials and Methods

CT Data Collection

The anonymized retrospective CT data of 97 females and
88 males were randomly taken from routine examinations
in the Faculty Hospital in Hradec Králové under ethical ap-
proval 202102IO2P. The CT resolution of the dataset was
0.8× 0.8× 0.8 mm (Siemens Definition AS+, Siemens Defi-
nition 128, both Siemens AG, Erlangen, Germany; 120–130
kV using CareDose, reconstruction kernel 80–90, bone algo-
rithm). The inclusion criteria were as follows: abdominal
CT scans, bones without any trauma, and an age range of 20
years or older. The sample population age per sex is in range
22–88 years, divided into 10 bins, where each bin contains
more than 5 samples. The pelvic bone geometry implicitly
defined by Hounsfield (HU) field was extracted with interac-
tive segmentation software MITK-GEM [21]. The CT scans
were calibrated internally resulting in BMD [22]. Only the
right hand side pelvic bone was considered because no sig-
nificant difference was explored between the left and right
sides.

Shape Registration

The estimation of the random field density requires a uni-
versal description of bone locations among all experimen-
tally studied bones using a single reference/template bone
shape. This is achieved by introducing a fixed metric for spa-
tial or temporal locations per sample to evaluate at. This
requirement is violated for bone samples because each sam-
ple has different size and different shape. However, bone
samples are anatomically and topologically equivalent. This
implies the existence of a point correspondence between two
shapes under some suitable class of bijective maps and sim-
ilarity metrics. To find such correspondence, a non-linear
mapping was found with help of diffeomorphic based regis-
tration algorithm ANTs, see [23]. But before non-linear map-
ping being used, the rigid and affine transforms are realized
for initial global alignment of bones in datasets. The similar-
ity of bone shapes was measured with a modified intensity-
based criterion called the demons-like metric. This metric
provides best accuracy/speed balance among the other met-
rics tested (mean-squared difference, cross-correlation, mu-
tual information) [23, 24]. In order to minimize a registra-
tion error, a template bone shape, which is an estimation of
a sample mean shape, was estimated according to [25, 23].

Finite Element Projection of BMD Field

The template geometry described by implicit HU field was
transformed to a triangulated surface by marching cube algo-
rithm [26]. The resultant triangular mesh was used to build
the volume tetrahedral mesh (fTetWild [27]).

There are two sets of finite element (FE) models. The first
set consists of validation models. The morphed BMD fields
from dataset were projected onto a discontinuous FE space
constructed on template mesh. All samples in the dataset
shared the same geometry domain and finite element space.
The correlation matrix of BMD can then be estimated. The
FE models in the second set contain BMD fields simulated
by KLE on the template geometry. The FE mesh size was
estimated based on the auxiliary convergence study where
the BMC difference between two mesh refinements below
5% was considered as converged. The resultant number of
degrees of freedom (DOFs) was roughly M ≈ 0.7 · 106.

Karhunen-Loève Expansion
The data set was split into two sets according to sex in or-

der to capture sex differences. Consequently, the relation be-
tween age and BMD was analyzed and linear regression was
used to separate deterministic trend composing of intercept
(sample mean) ρ0 and slope ρ1 from matrix X.

A random field ρ(x) ∈ Ω is not known explicitly, but only
through a set of N standardized realizations projected onto
the template bone:

X ={X1,X2, . . . ,XM}, X ∈ RM ,N (1)

The projected realizations are evaluated at DOF coordinates,
from which the matrix of realizations X is build. The empir-
ical correlation matrix C is estimated as 1

N−1 XXT . The dis-
cretized random field can be viewed as a set of correlated
random variables. Sample paths of Gaussian random fields
can then be generated by transforming uncorrelated Gaus-
sian random variables into correlated space [28, 29]. One
possible linear mapping between the uncorrelated and corre-
lated Gaussian random vectors is via KL expansion. This ex-
pansion involves eigen-decomposition of the correlation ma-
trix (or the covariance function having the role of covariance
kernel in the continuous version of KL expansion). In order
to compute the KL decomposition of C, the associated dis-
crete eigenvalue problem must be solved [30]:

CΨ = DΨ (2)

where Ψ ∈ RM ,M is a matrix of eigenvectors and D =
diag(λ1,λ2, . . . ,λM ) is the diagonal matrix of eigenvalues.
The full population of correlation matrix C is impossible as
it is dense, moreover the rank of the matrix C is N only
and hence we adopt an alternative solution of the above
eigenproblem represented by a suitable matrix decomposi-
tion. Considering an economic QR decomposition of X, the
matrix C can be expressed:

C= QRRT QT , RRT ∈ RN ,N . (3)

Consequently, the singular value decomposition of product
RRT is computed:

RRT = VDVT (4)

Substitution of Eq. (4) into Eq. (3) leads to:

C= QV
Ψ∈RM ,N

DVT QT , D ∈ RN ,N (5)
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Figure 1: A flowchart of the study.

where Ψ and D are the eigenvector and eigenvalue matri-
ces of C. Having the N eigenpairs computed and sorted in
decreasing order λ1 > λ2, . . . ,λN−1 > λN , the spectral rep-
resentation of random field ρ(x) can be replaced with trun-
cated discrete KL expansion [30]:

ρ(x) =ρ0(x) +ρ1(x)t +σ(x)
P
∑

i=1

Æ

λiθiψi(x) (6)

where the θi is zero mean, unit variance ith Gaussian pair-
wise uncorrelated variable described by N (0,1), t is a time
(age) in range 22–89 years (from CT data sets) and σ(x)
sample standard deviation.

The truncation in the KLE expressed in Eq. (6) may lead
to dramatic computation time savings, since P can be consid-
erably less than the order of correlation matrix (= the num-
ber of discretization points), M , and also less than the or-
der N . An appropriate selection of truncation order P can
be based on various points of view. The standard way is
to control the truncation error in KLE on the decay of the
covariance operator’s eigenvalues. The eigenvalues play the
role of variances of the underlying uncorrelated random vari-
ables θi which serve as random coefficients of determinis-
tic eigenfunctions/vectors ψi(x). Given this interpretation,
one can easily control the total amount of variance repre-
sented via truncated KLE. Since the correlation matrix C
is positive (semi)definite by definition, the eigenvalues are
nonnegative and their sum is known. The eigenvalues can
be sorted from the maximum eigenvalue to the minimum
one, along with the corresponding eigenvectors (or eigen-
functions). The gradual sum of the sorted eigenvalues serves
as an indicator of how much variance is captured by the cor-
responding subset of eigenmodes. In other words, the ex-
pansion can be truncated after taking a subset of P domi-
nant eigenvalues (=variables with the largest variance). The

number of modes needed to cover a sufficient variability de-
pends on the reach of autocorrelation function: when the au-
tocorrelation length is high compared to the domain dimen-
sions, usually only a small subset of eigenpairs is necessary
for a given truncation error. Furthermore, it can be shown
that KL expansion is optimal with respect to the global mean-
squared error among all series expansions of truncation order
P. We remark that, in order to achieve convergence, there are
restrictions to the mesh discretization [28].

The amount of variance captured by the truncated KLE
may not be the only criterion for the selection of truncation
order, P. One may also consider stabilization of the energy
distance between the generated samples and required value
with P as shown in the numerical results below, or other ap-
propriate criteria.

In order to generate sample paths of random fields via KL
expansion, a technique for generation of the underlying stan-
dardized pairwise uncorrelated Gaussian random variables θi
must be employed. As shown in [28], utilization of the strat-
ification technique called Latin Hypercube Sampling (LHS)
[31, 32] leads to faster convergence of the sample statistics
to the target values with the number of samples compared
to crude Monte Carlo sampling. Therefore, LHS was used to
generate KLE realizations (nsim = 300 samples were found
sufficient to obtain converged mean and standard deviation).
The LHS generator of pelvic BMD realizations is available on
website BoneGen.

Validation Measures

BMC and energy distance [20] were considered as valida-
tion measure of a proposed BMD random field. The BMC
measure is an integral value, defined as BMC =

∫

Ω
ρ dΩ.

This integral can be computed by finite element method. The
BMC reflects the overall bone mass formed by mineral con-
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tent and it is a sensitive measure of bone quality [33, 34, 35].
The energy distance d provides a way to measure the simi-
larity between two probability distributions. For two one-
dimensional distributions, u and v, the distance d is com-
puted [20]:

d(u, v) =

√

√

√

2

∫ +∞

−∞

�

U(x)− V (x)
�2

dx (7)

where U and V are cumulative distribution functions.1 In
virtue of this study, the expression above describes a spa-
tial distance density over the bone volume and hence we ad-
ditionally introduce global distance measure as well: D =
∫

Ω
d dΩ. This spatial integral over bone volume is again com-

puted with the help of interpolation functions in the finite
element method.

Results

The mean and standard deviation functions of BMD varied
spatially significantly and differed for cortical and trabecular
regions and for both females and males, i.e. BMD random
fields were non-stationary in space.

Data analysis for female yielded the highest value of the
sample mean value 1.246 (arcuate line, upper third), while
the least was 0.106 (above the greater sciatic notch). The
highest value of sample standard deviation (std) was 0.191
(top of the acetabular margin) while the lowest was 0.015
(deep to the auricular surface). The BMD normality is con-
sidered to be acceptable on significance level p ≥ 0.05, which
was fulfilled for 59% of bone volume. The skewness range
is −1.893 (midpart of anterior margin of the greater sciatic
notch) to 7.502 (posterior part of the iliac wing). The nega-
tive values corresponding to left-skewed distributions occupy
23% of volume, while the right-skewed distributions occupy
77% of volume.

The data analysis for male yields the lowest value of the
mean value 0.119 (deep to the auricular surface), while the
highest was 1.135 (uppermost part of arcuate line). The
lowest value of std was 0.016 (in between the iliac wing
and iliac tuberosity), while the highest was 0.218 (top of
the acetabular margin). BMD distributions can be consid-
ered being normal for 54% of volume, while the rest con-
tained non-normally distributed data. The skewness range
is from −1.895 (inferior to ischial spine) to 6.177 (deep to
the auricular surface). The left skewed distributions occupy
17% of volume, while the rest of the volume was occupied by
right skewed distributions. The spatial descriptive statistics
is shown in Figure 2.

Influence of Spectral Threshold on BMC

The BMC was computed from CT samples and the new
ones generated by KLE with different number of eigenpairs.

1For empirical distribution functions, the integral is replaced by a sum.

It was found that the most significant eigenvalue explains al-
ready 82%/86% of variance in the BMD, and taking five ex-
plains more than 97% variance for both female and male.
There is no significant statistical difference between BMD
computed from CT- and KLE-based realizations, even with
KLE containing only the most significant eigenpair, see Fig-
ure 3.

Age dependence of BMC

The BMD slope for female varied in range from −5.163
(dorsally to the arcuate line) to 3.269 (above the greater
sciatic notch) and from −5.470 (superior-posterior part of
acetabular margin) to 3.625 (anterior third of iliac crest)
[mg/cc/year] for female and male. The BMD is interme-
diately correlated with age (R2 ≤ 0.51) and (R2 ≤ 0.49)
for female and male respectively. The age correlation was
significant at 73% and 56% of volume on significance level
p ≤ 0.05 for female and male respectively, see Figure 4. In
71%/61% of volume, BMD decreased with age for both fe-
male and male. The difference in BMC age rate estimated
from CT and KLE realizations is 5.57% and 4.71% for female
and male respectively. The difference in standard error was
47% and 55% for female and male. The difference in R2 is
21% and 50% for female and male; see Table 1.

Table 1: An age dependence of BMC estimated by linear regression on both
CT and KLE samples. The KLE sample were generated with five eigenpairs
included and LHS design.

female male
source: CT KLE CT KLE

BMC rate [mg/year] −0.2369 −0.2501 −0.1168 −0.1223
standard error 0.060 0.032 0.075 0.034
R2 0.140 0.169 0.028 0.042

Energy Distance

The minimum/maximum distance dmin/dmax stabilized af-
ter including more than 30 eigenpairs for female. The total
distance D is decreasing with number KL pair included in-
creasing and end up with a value 7425 for female.

The minimum/maximum distance dmin/dmax is decreasing
up to the 50th KL pair and consequently stabilized up to the
last KL pair. The total distance decreasing with increasing
the number of eigenpairs included up to a minimum value
of 8303. The detailed evolution of energy distance is shown
in Figure 5 together with snapshots at selected eigenpairs in-
cluded. Including only first KL pair, there are energy distance
peaks at dorsal portion of acetabular notch for female and be-
low the anterior inferior iliac spine for male.

Discussion

Quantifying the uncertainties in bone mechanical prop-
erties originating from a representative population is of
paramount importance to allow for clinically relevant con-
clusions and research-informed practice in bone treatment.
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Figure 2: Spatial statistics of BMD composing of three statistical moments for both female and male

Due to complex bone shape and material with broad indi-
vidual variations, any biomechanical experiments, both real
and virtual (for example finite element simulations), should
be equipped with a sufficient samples size. This requirement
is often difficult to achieve, and lack of samples may reduce
the potential for research conclusions to be applied to a broad
population. We here introduce a random field model for
BMD. With this model at hand, one can generate a number
of BMD samples respecting the population variability and age
dependence. The current model allows to replicate the BMD
density in a domain, which is a sample mean population bone
shape. In consequence, it is not necessary to capture shape
variations. This step aiming to separate BMD and shape al-
lows analyzing BMD variations at fixed metric as a random
field, but it limits the model usability. Nevertheless, shape
variations can be considered as a random field as well. The
study of BMD and shape variations as random fields, poten-
tially cross-correlated, will form the objective of subsequent
studies. Although the random field model of BMD inferred
from CT of patients with no bone disease seems a leap to-
wards creating digital twins of bone [36, 37], a most benefi-
cial approach would be to estimate random fields respecting
pathological changes in bone structure and predicting the re-
lated risk of bone fractures [10, 8, 9].

Spatio-Temporal Dependence of BMD Random Field

Bone mechanical properties are well known to be age de-
pendent ([38, 39, 40, 41]), and likely the studied random
field will also be time temporally dependent. For this given
study, only the deterministic part of an age trend was iso-
lated. Generally, a temporal correlation structure can be
modelled by KL expansion, but requires a sufficient sample

size per analyzed time period. Knowing the temporal effect
on BMD random field is extremely important and hence it is
on a priority list for the next study.

Clinical CT Resolution

The multi-scale nature of bone could not be considered in
details in the given study. The random field was estimated
only at organ scale obtained from routine CT data that might
not have a sufficient resolution to capture properly trabecu-
lar architecture or bone cortical shell. This issue complicates
the estimation of local variations and anisotropy (fabric ten-
sor [42, 43]) of trabecular network as well as the composite
structure of the cortical shell. Although the gradient of the
structure tensor might potentially be used to analyze bone
anisotropy based on clinical data, this has not been tested
in this study [44]. Clinical routine CT is known to distort
the cortical density and thickness [45, 46], thereby exceed-
ing a 100%-error in the sub millimeter structure of cortical
bone. The effect of insufficient CT resolution might be seen
at the central part of the iliac wing, where the thickness of
the trabecular bone layers is minimized and prone to par-
tial volume effects; this likely affects the random field. In
some cases, even a fenestration may be present at this loca-
tion [47]. It is not obvious how the statistical moments and
correlation structure is affected and must be carefully ana-
lyzed with help of cortical thickness and density estimation
algorithm introduced in [48], dedicated for clinical CT.

Spatial Variation of BMD

We assume that spatial fluctuation of BMD reflects bones’
response to external loading, which causes bone to deform in
a complex mode (bending+ torsion+ tension/compression).
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Figure 3: Analysis of explained variance by eigenpairs (λ,ψ) and its influence on BMC [g] computed by truncated KLE.

The load from trunk is directed through the sacroiliac (SI)
joint to the acetabulum and the femoral head while stand-
ing, or through the ischial tuberosity while sitting. Simulta-
neously, more than thirty muscles and several ligaments are
attached to the pelvis, loading the bone with their tension in
various directions. Increased BMD in area of the greater sci-
atic notch, the upper part of arcuate line and body of ischium
seems to correspond well to weight-bearing load. The rela-
tively low standard deviation in this area could indicate that
the weight-bearing load can be considered as a common base
load in population. Even though the force generated by re-
lated muscles can be significant, just slight density elevations
following the margins of large muscles’ attachments (iliacus,
gluteus medius) or isolated peaks for muscles with smaller in-
sertion sites such as the rectus femoris were found. However,

an interesting similarity between the high values of standard
deviation and sites of possible apophyseal avulsions was ob-
served. This could indicate an increased individual localized
stress induced by inserted muscles or ligament insertions (an-
terior superior iliac spine – rectus femoris; anterior superior
iliac spine – sartorius; ischial tuberosity – hamstrings; iliac
crest – abdominal wall muscles; ischial spine – sacrospinous
ligament and coccygeus muscle). The increased standard de-
viation in these sites could reflect variation in physical activ-
ity and other unknown effects. Other sites with increased
standard deviation, i.e. superior acetabulum and anterior
margin of auricular surface are typical of osteophytes.
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Figure 4: Spatio-temporal evolution of BMD and BMC.

Figure 5: Spatial evaluation of the energy distance composed of spatial functions dmin and dmax and total distance D with respect to the number of eigenpairs
included. The ratios dmin/dmax are defined as minimum/maximum of distance over the domain. The minimum/maximum distance location changed with
each eigenpair included, which leads to scatter in convergence plot.

Age Evolution of Bone Density
Most publications generally assume a gradual reduction

in bone mineral density with increasing age [49, 50, 51].
It however remains unclear whether this is a uniform pro-
cess for all skeletal sites or whether there might be some re-
gion dependence [52, 53, 54]. Moreover, due to the variable
surface-volume ratio and related bone turnover the local dif-

ferences between cortical and cancellous bone should be ex-
pected [55, 56, 57]. The age changes in cortical BMD can
be described by cortical thinning, higher porosity, pores di-
ameter and osteon density [58, 59, 57, 60, 61]. Cancellous
bone is affected by trabecular loss. In male it is mostly in
a form of trabecular thinning, in female of trabecular dis-
connection [62, 63, 64, 65]. There is, however, little known
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about the spatial and age distribution of BMD in human in-
nominate bone as majority of studies focus on long bone,
vertebral or hip examinations. Our results showed general
age dependent cortical BMD decline and, surprisingly, local
mild trabecular BMD elevation. The reason is unclear and
could be connected to higher trabecular mineralization pat-
terns, which correlates with age, as documented in [66]. We
found that female BMD is more sensitive to age. The BMD
decreases with age in more than 68%/58% volume of bone
for female/male. The BMC decreases faster for female (51%
faster than for male).

Correlation Structure of BMD

In the given study, a non-parametric approach to generate
new realizations of BMD has been demonstrated. This ap-
proach was purely based on input CT data, and the next step
is to determine parametric correlation kernels, which could
represent the correlation structure in time and space. A sim-
ple stationary random field model for whole bone exists un-
likely being for several reasons: Bone forms a geometrically
highly complex structure, and the Euclidean distance will un-
likely properly capture bone topology [67]. Moreover, due
to the adaptation processes at bone undergoes, there might
be a spatially-dependent anisotropy in correlation structure
as well as distance metric will be spatially dependent. Fi-
nally, multiple latent variables coexist, for example adapta-
tion process, geometrical influence and other metabolic vari-
ables [68]. Together, those variables most likely cause long
correlation distances, as seen in Figure 6. The identification
and separation of these latent variables is difficult due to the
limited information available from CT and from patient med-
ical records. This will be the topic of future study. Another
question raised is from how well the empirical correlation C
and its eigenpairs represents the true population correlation
due to course of dimensionality and noise (potentially spuri-
ous correlation) [69].

Figure 6: A correlation dependence on distance for BMD random field for
female estimated from CT samples.

Assumption of Gaussian KL Coefficients

The distribution of BMD is site dependent. There are
locations which follow approximately normal distribution,
while other locations are slightly left-skewed and signifi-
cantly right-skewed in distribution as well. The proposed
KLE-based model used uncorrelated Gaussian coefficients,
which introduces a certain inaccuracy, that is seen in the en-
ergy distance metric. The energy metric reveals that the dis-
tributions estimated from CT samples and those from KLE
model are different at some locations. It has been shown
that taking five dominant KL coefficients is sufficient for an
accurate reproduction of variance in BMD/BMC. However,
the analysis of the energy distance shows that far more KL
coefficients (>30) are needed to reproduce the distribution
function of the BMD random field. Energy distance is stricter
than BMD/BMC because it directly describes the similarity
of BMD distributions. Hence, the energy distance could be
a good indicator of that the local properties such as fracture
risk probability estimation might not be accurate enough and
mean/std estimation might be biased. To improve our model,
the identification of (generally non-Gaussian) distributions
of KL coefficients should be incorporated into random field
model based on KLE, for example by iterative algorithm in-
troduced in [70].

Random Field Model Implementation

The covariance matrix of BMD is dense and large, hence
it disallows a common storage representation and solving of
Fredholm integral. Although we partially avoided these dif-
ficulties by directly manipulating with data on discrete level,
a more robust approach must be applied, for instance the re-
cent approximation of KL by isogeometric method [71].

Comparison with Statistical Shape & Appearance Models
(SSM/SSA)

Our method shares the steps of geometry aligning and
spectral decomposition of empirical covariance matrix with
SSM/SSA [72, 73, 74], but the meaning and computing of
these steps is different. The bone shape aligning is com-
puted on ROI of whole pelvic bone allowing to align the
interior as well (cortical thickness and trabecular structure,
although highly blurred caused by clinical CT resolution).
Our approach uses the covariance eigenpairs as bases for
generating new BMD realizations. And most importantly,
our approach is rather focused on exploring/explaining the
spatio-temporal correlation structure, which reflects some-
how (mechano-)biological mechanisms of growth and adap-
tation [75] in authors’ opinion.

Conclusion

The understanding of uncertainties in bone density arising
from population is of paramount importance to biomechan-
ics, in understanding of bone mechanobiology and it should
be properly incorporated into computational models. We in-
troduced a random field model describing the fluctuation in
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bone density via the KLE. The following sub-conclusions can
be made:

• the BMD has a complex correlation structure which can-
not be modelled by an isotropic, spatially/temporally
stationary Gaussian random field,

• Gaussian KL coefficients allows to simulate BMC accu-
rately,

• the modelled BMD random field allows to incorporate
age dependence of BMD.
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[28] M. Vořechovský, Simulation of simply cross correlated random fields
by series expansion methods, Structural safety 30 (4) (2008) 337–363.
doi:10.1016/j.strusafe.2007.05.002.

[29] H. Harbrecht, M. Peters, M. Siebenmorgen, Efficient approximation
of random fields for numerical applications, Numerical Linear Alge-
bra with Applications 22 (4) (2015) 596–617. doi:10.1002/nla.
1976.

[30] R. G. Ghanem, P. D. Spanos, Stochastic finite elements: a
spectral approach, Courier Corporation, 2003. doi:10.1007/
978-1-4612-3094-6.

[31] W. Conover, On a better method for selecting input variables, unpub-
lished Los Alamos National Laboratories manuscript, reproduced as
Appendix A of “Latin Hypercube Sampling and the Propagation of
Uncertainty in Analyses of Complex Systems” by J.C. Helton and F.J.
Davis, Sandia National Laboratories report SAND2001-0417, printed
November 2002. (1975).
URL https://prod-ng.sandia.gov/techlib-noauth/
access-control.cgi/2001/010417.pdf

[32] M. D. McKay, W. J. Conover, R. J. Beckman, A comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code, Technometrics 21 (1979) 239–245. doi:10.
1080/00401706.1979.10489755.

[33] R. Hou, S. A. Cole, M. Graff, K. Haack, S. Laston, A. G. Comuzzie,
N. R. Mehta, K. Ryan, D. L. Cousminer, B. S. Zemel, S. F. Grant, B. D.
Mitchell, R. J. Shypailo, M. L. Gourlay, K. E. North, N. F. Butte, V. S.
Voruganti, Genetic variants affecting bone mineral density and bone
mineral content at multiple skeletal sites in Hispanic children, Bone
132 (2020) 115175. doi:10.1016/j.bone.2019.115175.

[34] M. Bellver, L. Del Rio, E. Jovell, F. Drobnic, A. Trilla, Bone mineral
density and bone mineral content among female elite athletes, Bone
127 (2019) 393–400. doi:10.1016/j.bone.2019.06.030.

[35] H. Kaur, P. Joshee, S. Franquemont, A. Baumgartner, J. Thurston,
L. Pyle, K. J. Nadeau, V. N. Shah, Bone mineral content and bone den-
sity is lower in adolescents with type 1 diabetes: A brief report from the
RESISTANT and EMERALD studies, Journal of Diabetes and its Com-
plications 32 (10) (2018) 931–933. doi:10.1016/j.jdiacomp.
2018.06.004.

[36] M. A. Juárez, M. Pennisi, G. Russo, D. Kiagias, C. Curreli, M. Viceconti,
F. Pappalardo, Generation of digital patients for the simulation of tu-
berculosis with UISS-TB, BMC Bioinformatics 21 (S17) (2020) 1–8.
doi:10.1186/s12859-020-03776-z.

[37] M. Viceconti, F. Pappalardo, B. Rodriguez, M. Horner, J. Bischoff, F. M.
Tshinanu, In silico trials: Verification, validation and uncertainty quan-
tification of predictive models used in the regulatory evaluation of
biomedical products, Methods (2020). doi:10.1016/j.ymeth.
2020.01.011.

[38] T. M. Keaveny, D. L. Kopperdahl, L. J. Melton III, P. F. Hoffmann,
S. Amin, B. L. Riggs, S. Khosla, Age-dependence of femoral strength in
white women and men, Journal of bone and mineral research 25 (5)
(2010) 994–1001. doi:10.1359/jbmr.091033.

[39] F. Yu, Y. Xu, Y. Hou, Y. Lin, R. Jiajue, Y. Jiang, O. Wang, M. Li,
X. Xing, L. Zhang, L. Qin, E. Hsieh, W. Xia, Age-, site-, and sex-
specific normative centile curves for HR-pQCT -derived microarchitec-
tural and bone strength parameters in a chinese mainland population,
Journal of Bone and Mineral Research 35 (11) (2020) 2159–2170.
doi:10.1002/jbmr.4116.

[40] J. Sanchez-Siles, I. Tamimi-Mariño, A. Cortes, J. Ackerman,
D. González-Quevedo, E. Guerado, A. García, F. Yaghoubi, M. Abdal-
lah, H. Eimar, et al., Age related changes in the bone microstruc-
ture in patients with femoral neck fractures, Injury (2020). doi:
10.1016/j.injury.2020.02.014.

[41] D. M. Patton, E. M. Bigelow, S. H. Schlecht, D. H. Kohn, T. L. Bredben-
ner, K. J. Jepsen, The relationship between whole bone stiffness and
strength is age and sex dependent, Journal of Biomechanics 83 (2019)
125–133. doi:10.1016/j.jbiomech.2018.11.030.

[42] T. Gross, D. H. Pahr, P. K. Zysset, Morphology-elasticity relation-
ships using decreasing fabric information of human trabecular bone

from three major anatomical locations, Biomechanics and model-
ing in mechanobiology 12 (4) (2013) 793–800. doi:10.1007/
s10237-012-0443-2.

[43] P. Varga, P. Zysset, Assessment of volume fraction and fabric in the
distal radius using HR-pQCT, Bone 45 (5) (2009) 909–917. doi:
10.1016/j.bone.2009.07.001.

[44] D. Larsson, B. Luisier, M. E. Kersh, E. Dall’Ara, P. K. Zysset, M. G.
Pandy, D. H. Pahr, Assessment of transverse isotropy in clinical-level
CT images of trabecular bone using the gradient structure tensor,
Annals of biomedical engineering 42 (5) (2014) 950–959. doi:
10.1007/s10439-014-0983-y.

[45] G. Dougherty, D. Newman, Measurement of thickness and density of
thin structures by computed tomography: a simulation study, Medical
Physics 26 (7) (1999) 1341–1348. doi:10.1118/1.598629.

[46] S. Prevrhal, J. C. Fox, J. A. Shepherd, H. K. Genant, Accuracy of CT-
based thickness measurement of thin structures: Modeling of lim-
ited spatial resolution in all three dimensions, Medical Physics 30 (1)
(2003) 1–8. doi:10.1118/1.1521940.

[47] J. Hernigou, A. Alves, Y. Homma, I. Guissou, P. Hernigou, Anatomy of
the ilium for bone marrow aspiration: map of sectors and implication
for safe trocar placement, International Orthopaedics 38 (12) (2014)
2585–2590. doi:10.1007/s00264-014-2353-7.

[48] G. Treece, A. Gee, Independent measurement of femoral cortical thick-
ness and cortical bone density using clinical CT, Medical Image Anal-
ysis 20 (1) (2015) 249–264. doi:10.1016/j.media.2014.11.
012.

[49] O. Demontiero, C. Vidal, G. Duque, Aging and bone loss: new in-
sights for the clinician, Therapeutic advances in musculoskeletal dis-
ease 4 (2) (2012) 61–76. doi:10.1177/1759720X11430858.

[50] S. Khosla, B. L. Riggs, Pathophysiology of age-related bone loss and
osteoporosis, Endocrinology and Metabolism Clinics 34 (4) (2005)
1015–1030. doi:10.1016/j.ecl.2005.07.009.

[51] B. L. Riggs, L. J. Melton III, R. A. Robb, J. J. Camp, E. J. Atkinson, J. M.
Peterson, P. A. Rouleau, C. H. McCollough, M. L. Bouxsein, S. Khosla,
Population-based study of age and sex differences in bone volumetric
density, size, geometry, and structure at different skeletal sites, Journal
of Bone and Mineral Research 19 (12) (2004) 1945–1954. doi:10.
1359/JBMR.040916.

[52] X.-H. Ma, W. Zhang, Y. Wang, P. Xue, Y.-K. Li, Comparison of the spine
and hip BDM assessments derived from quantitative computed tomog-
raphy, International Journal of Endocrinology 2015 (2015). doi:
10.1155/2015/675340.

[53] E. G. Vajda, R. D. Bloebaum, Age-related hypermineralization in
the female proximal human femur, The Anatomical Record 255 (2)
(1999) 202–211. doi:10.1002/(sici)1097-0185(19990601)
255:2<202::aid-ar10>3.0.co;2-0.

[54] A. Paschall, A. H. Ross, Biological sex variation in bone mineral density
in the cranium and femur, Science & Justice 58 (4) (2018) 287–291.
doi:10.1016/j.scijus.2018.01.002.

[55] S. M. Ott, Cortical or trabecular bone: what’s the difference?, Amer-
ican journal of nephrology 47 (6) (2018) 373–376. doi:10.1159/
000489672.

[56] X. Wang, Cortical bone mechanics and composition: effects of age and
gender, in: Skeletal Aging and Osteoporosis, Springer, 2012, pp. 53–
85. doi:10.1007/8415_2011_108.

[57] E. Seeman, Structural basis of growth-related gain and age-related
loss of bone strength, Rheumatology 47 (Supplement 4) (2008) iv2–
iv8, proceedings of a satellite symposium held on the occasion of
the EULAR Congress, Paris, France, June 13, 2008. doi:10.1093/
rheumatology/ken177.

[58] E. F. Kranioti, A. Bonicelli, J. G. García-Donas, Bone-mineral density:
clinical significance, methods of quantification and forensic applica-
tions, Research and Reports in Forensic Medical Science 9 (2019) 9–
21. doi:10.2147/RRFMS.S164933.

[59] A. Ural, D. Vashishth, Hierarchical perspective of bone toughness–from
molecules to fracture, International Materials Reviews 59 (5) (2014)
245–263. doi:10.1179/1743280414Y.0000000031.

[60] K. J. Jepsen, N. Andarawis-Puri, The amount of periosteal apposi-
tion required to maintain bone strength during aging depends on
adult bone morphology and tissue-modulus degradation rate, Jour-
nal of Bone and Mineral Research 27 (9) (2012) 1916–1926. doi:

10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.25.432881doi: bioRxiv preprint 

https://doi.org/10.1145/3386569.3392385
https://doi.org/10.1145/3386569.3392385
https://doi.org/10.1016/j.strusafe.2007.05.002
https://doi.org/10.1002/nla.1976
https://doi.org/10.1002/nla.1976
https://doi.org/10.1007/978-1-4612-3094-6
https://doi.org/10.1007/978-1-4612-3094-6
https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2001/010417.pdf
https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2001/010417.pdf
https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2001/010417.pdf
https://doi.org/10.1080/00401706.1979.10489755
https://doi.org/10.1080/00401706.1979.10489755
https://doi.org/10.1016/j.bone.2019.115175
https://doi.org/10.1016/j.bone.2019.06.030
https://doi.org/10.1016/j.jdiacomp.2018.06.004
https://doi.org/10.1016/j.jdiacomp.2018.06.004
https://doi.org/10.1186/s12859-020-03776-z
https://doi.org/10.1016/j.ymeth.2020.01.011
https://doi.org/10.1016/j.ymeth.2020.01.011
https://doi.org/10.1359/jbmr.091033
https://doi.org/10.1002/jbmr.4116
https://doi.org/10.1016/j.injury.2020.02.014
https://doi.org/10.1016/j.injury.2020.02.014
https://doi.org/10.1016/j.jbiomech.2018.11.030
https://doi.org/10.1007/s10237-012-0443-2
https://doi.org/10.1007/s10237-012-0443-2
https://doi.org/10.1016/j.bone.2009.07.001
https://doi.org/10.1016/j.bone.2009.07.001
https://doi.org/10.1007/s10439-014-0983-y
https://doi.org/10.1007/s10439-014-0983-y
https://doi.org/10.1118/1.598629
https://doi.org/10.1118/1.1521940
https://doi.org/10.1007/s00264-014-2353-7
https://doi.org/10.1016/j.media.2014.11.012
https://doi.org/10.1016/j.media.2014.11.012
https://doi.org/10.1177/1759720X11430858
https://doi.org/10.1016/j.ecl.2005.07.009
https://doi.org/10.1359/JBMR.040916
https://doi.org/10.1359/JBMR.040916
https://doi.org/10.1155/2015/675340
https://doi.org/10.1155/2015/675340
https://doi.org/10.1002/(sici)1097-0185(19990601)255:2<202::aid-ar10>3.0.co;2-0
https://doi.org/10.1002/(sici)1097-0185(19990601)255:2<202::aid-ar10>3.0.co;2-0
https://doi.org/10.1016/j.scijus.2018.01.002
https://doi.org/10.1159/000489672
https://doi.org/10.1159/000489672
https://doi.org/10.1007/8415_2011_108
https://doi.org/10.1093/rheumatology/ken177
https://doi.org/10.1093/rheumatology/ken177
https://doi.org/10.2147/RRFMS.S164933
https://doi.org/10.1179/1743280414Y.0000000031
https://doi.org/10.1002/jbmr.1643
https://doi.org/10.1101/2021.02.25.432881
http://creativecommons.org/licenses/by-nc-nd/4.0/


10.1002/jbmr.1643.
[61] K. M. Nicks, S. Amin, E. J. Atkinson, B. L. Riggs, L. J. Melton III,

S. Khosla, Relationship of age to bone microstructure independent
of areal bone mineral density, Journal of Bone and Mineral Research
27 (3) (2012) 637–644. doi:10.1002/jbmr.1468.

[62] J. E. Aaron, N. B. Makins, K. Sagreiya, The microanatomy of trabecular
bone loss in normal aging men and women, Clinical Orthopaedics and
Related Research 215 (1987) 260–271, pMID: 3802645. doi:10.
1097/00003086-198702000-00038.

[63] M. Ding, A. Odgaard, F. Linde, I. Hvid, Age-related variations in the mi-
crostructure of human tibial cancellous bone, Journal of Orthopaedic
Research 20 (3) (2002) 615–621. doi:10.1016/S0736-0266(01)
00132-2.

[64] K. J. Jepsen, Functional interactions among morphologic and tis-
sue quality traits define bone quality, Clinical Orthopaedics and
Related Research® 469 (8) (2011) 2150–2159. doi:10.1007/
s11999-010-1706-9.

[65] H. Chen, X. Zhou, H. Fujita, M. Onozuka, K.-Y. Kubo, Age-related
changes in trabecular and cortical bone microstructure, Interna-
tional journal of endocrinology 2013 (2013). doi:10.1155/2013/
213234.

[66] T. Koehne, E. Vettorazzi, N. Küsters, R. Lüneburg, B. Kahl-Nieke,
K. Püschel, M. Amling, B. Busse, Trends in trabecular architecture and
bone mineral density distribution in 152 individuals aged 30–90 years,
Bone 66 (2014) 31–38. doi:10.1016/j.bone.2014.05.010.

[67] S. Pezzuto, A. Quaglino, M. Potse, On sampling spatially-correlated
random fields for complex geometries, in: International Conference
on Functional Imaging and Modeling of the Heart, Springer, 2019, pp.
103–111. doi:10.1007/978-3-030-21949-9_12.

[68] V. S. Cheong, B. C. Roberts, V. Kadirkamanathan, E. Dall’Ara, Bone
remodelling in the mouse tibia is spatio-temporally modulated by oe-
strogen deficiency and external mechanical loading: A combined in
vivo/in silico study, Acta Biomaterialia 116 (2020) 302–317. doi:
10.1016/j.actbio.2020.09.011.

[69] J. Bun, J.-P. Bouchaud, M. Potters, Cleaning large correlation matrices:
Tools from random matrix theory, Physics Reports 666 (2017) 1–109,
cleaning large correlation matrices: tools from random matrix theory.
doi:10.1016/j.physrep.2016.10.005.

[70] Z. Zheng, H. Dai, Y. Wang, W. Wang, A sample-based iterative scheme
for simulating non-stationary non-Gaussian stochastic processes, Me-
chanical Systems and Signal Processing 151 (2021) 107420. doi:
10.1016/j.ymssp.2020.107420.

[71] M. Ł. Mika, T. J. R. Hughes, D. Schillinger, P. Wriggers, R. R. Hiem-
stra, A matrix-free isogeometric Galerkin method for Karhunen-Loève
approximation of random fields using tensor product splines, ten-
sor contraction and interpolation based quadrature, arXiv preprint
arXiv:2011.13861 (2020).
URL https://arxiv.org/abs/2011.13861v1

[72] N. Sarkalkan, H. Weinans, A. A. Zadpoor, Statistical shape and appear-
ance models of bones, Bone 60 (2014) 129–140. doi:10.1016/j.
bone.2013.12.006.

[73] V. Chandran, G. Maquer, T. Gerig, P. Zysset, M. Reyes, Supervised learn-
ing for bone shape and cortical thickness estimation from CT images
for finite element analysis, Medical Image Analysis 52 (2019) 42–55.
doi:10.1016/j.media.2018.11.001.

[74] S. P. Väänänen, L. Grassi, G. Flivik, J. S. Jurvelin, H. Isaksson, Gener-
ation of 3D shape, density, cortical thickness and finite element mesh
of proximal femur from a DXA image, Medical Image Analysis 24 (1)
(2015) 125–134. doi:10.1016/j.media.2015.06.001.

[75] T. J. Paul, P. Kollmannsberger, Biological network growth in complex
environments: A computational framework, PLOS Computational Bi-
ology 16 (11) (2020) e1008003. doi:10.1371/journal.pcbi.
1008003.

11

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 26, 2021. ; https://doi.org/10.1101/2021.02.25.432881doi: bioRxiv preprint 

https://doi.org/10.1002/jbmr.1643
https://doi.org/10.1002/jbmr.1468
https://doi.org/10.1097/00003086-198702000-00038
https://doi.org/10.1097/00003086-198702000-00038
https://doi.org/10.1016/S0736-0266(01)00132-2
https://doi.org/10.1016/S0736-0266(01)00132-2
https://doi.org/10.1007/s11999-010-1706-9
https://doi.org/10.1007/s11999-010-1706-9
https://doi.org/10.1155/2013/213234
https://doi.org/10.1155/2013/213234
https://doi.org/10.1016/j.bone.2014.05.010
https://doi.org/10.1007/978-3-030-21949-9_12
https://doi.org/10.1016/j.actbio.2020.09.011
https://doi.org/10.1016/j.actbio.2020.09.011
https://doi.org/10.1016/j.physrep.2016.10.005
https://doi.org/10.1016/j.ymssp.2020.107420
https://doi.org/10.1016/j.ymssp.2020.107420
https://arxiv.org/abs/2011.13861v1
https://arxiv.org/abs/2011.13861v1
https://arxiv.org/abs/2011.13861v1
https://arxiv.org/abs/2011.13861v1
https://doi.org/10.1016/j.bone.2013.12.006
https://doi.org/10.1016/j.bone.2013.12.006
https://doi.org/10.1016/j.media.2018.11.001
https://doi.org/10.1016/j.media.2015.06.001
https://doi.org/10.1371/journal.pcbi.1008003
https://doi.org/10.1371/journal.pcbi.1008003
https://doi.org/10.1101/2021.02.25.432881
http://creativecommons.org/licenses/by-nc-nd/4.0/

